Academic Commons

Theses Doctoral

Sandboxed, Online Debugging of Production Bugs for SOA Systems

Arora, Nipun

Short time-to-bug localization is extremely important for any 24x7 service-oriented application. To this end, we introduce a new debugging paradigm called live debugging. There are two goals that any live debugging infrastructure must meet: Firstly, it must offer real-time insight for bug diagnosis and localization, which is paramount when errors happen in user-facing applications. Secondly, live debugging should not impact user-facing performance for normal events. In large distributed applications, bugs which impact only a small percentage of users are common. In such scenarios, debugging a small part of the application should not impact the entire system.
With the above-stated goals in mind, this thesis presents a framework called Parikshan, which leverages user-space containers (OpenVZ) to launch application instances for the express purpose of live debugging. Parikshan is driven by a live-cloning process, which generates a replica (called debug container) of production services, cloned from a production container which continues to provide the real output to the user. The debug container provides a sandbox environment, for safe execution of monitoring/debugging done by the users without any perturbation to the execution environment. As a part of this framework, we have designed customized-network proxies, which replicate inputs from clients to both the production and test-container, as well safely discard all outputs. Together the network duplicator, and the debug container ensure both compute and network isolation of the debugging environment. We believe that this piece of work provides the first of its kind practical real-time debugging of large multi-tier and cloud applications, without requiring any application downtime, and minimal performance impact.


  • thumnail for Arora_columbia_0054D_14471.pdf Arora_columbia_0054D_14471.pdf application/pdf 5.1 MB Download File

More About This Work

Academic Units
Computer Science
Thesis Advisors
Kaiser, Gail
Ph.D., Columbia University
Published Here
April 21, 2018