Theses Doctoral

Molecular control of dendritic cell development and function

Lau, Colleen

Dendritic cells (DCs) comprise a distinct lineage of potent antigen-presenting mononuclear phagocytes that serve as both mediators of innate immune responses and key facilitators of the adaptive immune response. DCs play both immunogenic and tolerogenic roles through their dual ability to elicit pathogen-specific T cell immunity as well as induce regulatory T cell (Treg) responses to promote tolerance in the steady state. The aim of the work presented here is to examine the normal regulatory mechanisms of DC development and function, starting with the dissection of mechanisms behind an aberrantly activated developmental pathway, followed by the exploration of new mechanisms governed by two candidate transcription factors. The first chapter of the thesis focuses on the growth factor receptor Flt3, an essential regulator of normal DC development in both mice and humans, and concurrently one of the most commonly mutated proteins found in acute myeloid leukemia (AML). We investigated the effect of its most common activating mutation in AML, the Flt3 internal tandem duplication (Flt3-ITD), and found that this mutation caused a significant cell-intrinsic expansion of all DC populations. This effect was associated with an expansion of Tregs and the ability to dampen self-reactivity, with an inability to control autoimmunity in the absence of Tregs. Thus, we describe a potential mechanism by which leukemia can modulate T cell responses and support Treg expansion indirectly through DCs, which may compromise immunosurveillance and promote leukemogenesis. The subsequent chapters explore the basic molecular mechanisms of DC development by using Flt3 expression as a guide to uncover new candidates involved in the DC transcriptional program. We show that Myc family transcription factor, Mycl1, is largely dispensable for DC development and function, contrary to recent published findings that propose a role in proliferation and T cell priming. On the other hand, we find that conditional deletion of our second candidate gene, an Ets family transcription factor, has diverse effects on DC development, monocyte homeostasis, and cytokine production. Overall, our studies highlight an unexpected molecular link between DC development and leukemogenesis, and elucidate novel mechanisms controlling DC differentiation and function.


  • thumnail for Lau_columbia_0054D_12699.pdf Lau_columbia_0054D_12699.pdf application/pdf 12.9 MB Download File

More About This Work

Academic Units
Cellular, Molecular and Biomedical Studies
Thesis Advisors
Reizis, Boris
Ph.D., Columbia University
Published Here
May 12, 2015