Academic Commons


Statistical Distance as a Measure of Physiological Dysregulation Is Largely Robust to Variation in Its Biomarker Composition

Cohen, Alan A.; Li, Qing; Milot, Emmanuel; Leroux, Maxime; Faucher, Samuel; Morissette-Thomas, Vincent; Legault, Veronique; Fried, Linda P.; Ferrucci, Luigi

Physiological dysregulation may underlie aging and many chronic diseases, but is challenging to quantify because of the complexity of the underlying systems. Recently, we described a measure of physiological dysregulation, Dᴍ, that uses statistical distance to assess the degree to which an individual’s biomarker profile is normal versus aberrant. However, the sensitivity of Dᴍ to details of the calculation method has not yet been systematically assessed. In particular, the number and choice of biomarkers and the definition of the reference population (RP, the population used to define a “normal” profile) may be important. Here, we address this question by validating the method on 44 common clinical biomarkers from three longitudinal cohort studies and one cross-sectional survey. Dᴍs calculated on different biomarker subsets show that while the signal of physiological dysregulation increases with the number of biomarkers included, the value of additional markers diminishes as more are added and inclusion of 10-15 is generally sufficient. As long as enough markers are included, individual markers have little effect on the final metric, and even Dᴍs calculated from mutually exclusive groups of markers correlate with each other at r~0.4-0.5. We also used data subsets to generate thousands of combinations of study populations and RPs to address sensitivity to differences in age range, sex, race, data set, sample size, and their interactions. Results were largely consistent (but not identical) regardless of the choice of RP; however, the signal was generally clearer with a younger and healthier RP, and RPs too different from the study population performed poorly. Accordingly, biomarker and RP choice are not particularly important in most cases, but caution should be used across very different populations or for fine-scale analyses. Biologically, the lack of sensitivity to marker choice and better performance of younger, healthier RPs confirm an interpretation of Dᴍ physiological dysregulation and as an emergent property of a complex system.


Also Published In

More About This Work

Academic Units
Public Library of Science
Published Here
September 29, 2015
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.