
A Methodology for Programming Production Systems
and its Implications on Parallelism

Alexander J. Pasik

Department ofComputer Science. Columbia University
New York City. New York 10027

币lesis Proposal

CLlCS 3"~己 -88
Abstract

Production systems have been studied as a language for artificial intelligence programming

~ for over a decade.ηle flexibility of a programrning paradigm which allows for 1∞sely structured,

independent rules to represent knowledge is attractive. Unfortunately, two seemingly independent

phenomena have hindered the abili叩 to take full advantage of production systems. First, the

performance of large production systems suffers due to the large amounts of computation required

to run them. Second, the programrning styles of individuals primarily accustomed to conventional

programming has adversely affected the maintainability and performance of the resulting systems.

The parallel execution of production systems has been studied in order to address the perfo口nance

issues. Preliminary results have been interpreted pessimistically; production systems have been

observed to contain only moderate to low levels of parallelism. By investigating the issue of

programming style, however, it will be shown 由at 由e app缸ent lack of large-scale or massive

parallelism is an anifact of 由is problem. Indeed, a set of programming guidelines and tools wi1l be

presented which yield more maintainable, understandable, and parallelizable production systems.

Is there a programming methodology or environment which will allow for the development

of more maintainable and parallelizable production systems? This work will attempt to demonstrate

that using a combination of severa1 techniques , resulting production systems wiU more

appropria出ly conform wi由由e 由e。可 which supports their use. Production systems are not

appropriate for enc创ing all problem solving tasks. They are appropriate when there is a clear

separation of explicit control knowledge , tabular knowledge , and pattern-directed knowledge.

Th is classification has been presented by many researchers in the field, often in order to advocate

their separation. The issue has been addressed from a knowledge representation standpoint: here

it will be one of several issues which, when addressed properly , will result in systems with

出lproved performance in additionωtheir more adequate representation of the knowledge.

Substantially more paral1elism can be extracted from these systems. In this regard , the

techniques complement parallel match algorithms which provide 由e f1I'St step in the solution for

rnapping production systerns omo parallel architectures. The techniques are table-driven ru/es,

creating constrained copies o[cu/prit rules, mu/中le rule firÏl哩， and combining ru/e chains. ηlese

methods are combined into a new way of viewing production system execution. Rather than

assuITÙng the sequentiality of production systems and trying to extract parallelism explicit/y ， 出e

systems are assumed to be implicitly paral1el and all necessarily sequential aspects are explicitly

defmed.

Table of Contents

1. Intrcxiuction. …………………………………………………………………………………… l

2. Control Knowledge.. 3

3. Obstacles to Par剖lelization.………………………………………………………….............5

4. Rule Independence.... " . '" '" 6

5. U sing Macrorules " 7

6. Table-driven Rules...9

7. Creating Constrained Copies of Rules.…"...................................""...."".."...."..""""......"......… .10

8. Conventional Ccxie op出口ization.………………………………………………………........13

9. Measurements .. .20

ι10. Case Study: Homex21

11. Conclusions " '" '", •••••• •••• ••• " • • ••• •••• •• • •• • • .22

1. Introduction

A Methodology for Programming Production Systems
and its Implications on Parallelism

Thesis Proposal

Over 40 years ago, production systems were introduced as a general computational model

[post 1943]. As compu臼r science and, in particular, artificial intelligence developed, the

production system paradigm proved itself inva1uable in a variety of frameworks. In the early

1970s, several prominent researchers established production systems 臼 an adequate model for the

expression of a wide range of problem-solving tasks [Newell 1973, Newell and Simon 1972 ,

Nilsson 1971]. A defmitive dissertation was prepared demonstrating production systems to be an

jdeal language for artificial intelligence programming [Rychener 1976]. All these results were

commentaries on the model of knowledge representation provided by production systems. It was

not until the development of the Rete pattem match algorithm 出at production systems could be

realistically used for large scale artificial inte1ligence systems [Forgy 1982]. The Rete a1gorithm

P严rovi诅de创d a mechanism fi伽O町r 由阳e rapid e口xe臼cu叫tio∞nofp严ro创du山i沁ctiω阳Oα∞ns叮ys臼臼ms; 由阳e many pat口te町rnJr

match problem which Rete addressed was an obstacle preventi由n咱g the use of production systems

dueto 出eirp∞r~也rformance.

节1e in口e臼ing availability of production system int臼preters resulted in a proliferation of rule­

based expe口 systems. These systems , though, were written primarily by individuals with

extensive experience in conventional programming，出 opposed to researchers intimately involved

in the theory of production systems. In addition, many researchers subscribe to the belief 由at

production systems could and shou1d be used to 尼present all aspects of a given knowledge base or

cornplete system. Due to these factors , many exis由19 expe口 systems are encoded entirely in 由e

production system paradigrn, including explicit control knowledge, pattem-directed knowledge ,

and all other categories of infonnation.

Many of the systerns represent solutions to problems which have some degree of

sequentialityω 由e皿古1e explicit control knowledge being embedded in the production systern's

architecture has resulted in an inherent sequential nature in the execution of such systems.

However, execution of production systems on par剖lel architectures intuitively was expected to

provide massive perfoπn缸1ce improvements. lnitial results and projections on parallelizing

production system execution were disappointing. Unforrunately , researchers have pessimistically

generalized these pre

A Merlwdology for Programming Production Sys:ems and its Inψlications on Parailelism 1

sequential machine as their target The lack of parallelism is sornetimes due to the sequential nature

of the prob1ern, but may also arise from the programming s可le of the knowledge engineers who

built the systems. In the forrner case, no imp1ementation cou1d provide a parallel s01ution , but in

由e lat町， techniques could be applied which dramatically increase the level of parallelisrn.

1s there a programming methodology or environrnent which will allow for the development

of more maintainable and p缸allelizable production systems? 古le fundamental nature of production

systems is 由at of a collection of independent rules, each of which can be processed

simultaneously. Programmers crea由19 production systems in sequential environments , though,

often write interdependent rules. This interdependency is most often due to 由e attempt to repr臼ent

control knowledge in production ru1es , not due to a dependency in the pattern-d.irected knowledge

of the domain. 古lis introduction of sequentiality can be removed by providing a controllanguage

to represent the sequential aspec臼 of the prob1em.τñis approach would invoke sets of production

--rules to solve subproblems whose solutions can be represented with a collection of independent

rules 由at can be frred in parallel (commutative production systems [Nilsson 1980]). In the past,

controllanguages have been suggested for separating control knowledge from domain knowledge

in production systems, s01ely for knowledge representational advantages [St01fo 1979, Georgeff

1982]. Here, a contr011anguage will provide the enriched knowledge representation as well as a

mechanism for explicitly de白ling n民εssarily sequential aspects of 由e problem.

The remaining portions of the problem, with solutions expressed as sets of independent

production rules , will be more eas i1y maintained, underst∞d， and parallelized. During each cycle,

all satisfied rules should be able to be frred sirnultaneously. This would result in fewer cycles and

more para11e1 processing at each cycle. 古lÌs mechanism can on1y be used if 由e production systems

satisfy certain criteria. The goa1 of 由1S 由esis is to outline 由ese criteria and provide methods for

generating a1ternative solutions to existing problems which can be executed in this fashion. The

techniques described will be applied to a reirnplementation of a set of existing systems. Also, two

complete, commercia1 expert sys出ms written wi由 the aid of these techniques will be analyzed.

The systems will

production systems as a more satisfying language for artificial intelligence
programming by providing a methodology for rule-base design ,

the ab出ty to take advantage of massive para11elism for the rapid execution of
well-designed pattern-directed inference systems,

A J1erho也logy for Programming Production Systerr.s an.d its lmplicarions on Para1!elism 2

出e relationship between good_ knowledge representational models and parallel
pr∞essing applicability in artificial inte山gence systems.

出e generalization of the technìques applied to other formalisms such as frame­
and object-b出ed systems.

2. Control Knowledge

Production systems are certainly not appropriate for all programming tasks and, as wil1 be

discussed, also not for all knowledge representational tasks. Production system architecture

provides a product臼nmemoηin which an unordered set of rules are stored, a worlång memory in

which the current problern state is represented as a set of assertions, and a conflict resolution

strategy which, given a set of satisfied rules and the assertions rnatched, determines which

-=ìnstantiation to frre. Each rule is cornprised of a set of conditions (abs位actions on potential

assertions) and a set of actions (predominan tIy new elernents to be asserted and directives to

rernove existing elements). In a state-saving environrnent in which each pr‘ .Juction rule

remembers its partial matches, a production system cycle begins with the match o t" the previous

cycle's new assertions and rernovals against the conditions in all the rules resul由19 in a change ω

出e conflict set Conflict resolution then chooses the instantiation to frre and the 缸tions feed 由e

next cyc1e. According to this model , the control knowledge de出口口ining which rule frres is

represented as reactions to the state described in working memory. In 0由er words , a rule can be

generally expressed as:

1 f a portion of 出e current problem fits 由is abstraction,

Then alter 由e current problem description according to these directives.

An ex缸nple rule from an expe口 systern for underwriting horne owner' s insurance policies

which fits 由is description is:

1 f the home was built before 1950 and

tbe 叩plication requests coverage for more than 0$ 150，α刀，

Then assert that an ins归ction of the prernises is needed and

白白口由at 由e 叩plication should not be approved without referral to the

head underwriter.

Patterns detectεd in the problem state cause rules to be triggered and 由us alter the state of the

problern. A rule such as 由is does not explici tIy refer to the next or previous rule in the frring

sequence. These rules encode control as parrem-directed knowledge.

A .He:hodology卢r Programming Production Sysrems and its ["ψlications on Paralle!ism 3

T ahu/ar knowledge is also used to 世ive rule selection. Often , large tables of information can

summarize knowledge about a subdornain of the problern. These tables can be represented in

working rnernory and rules can be driven frorn their contents , specific entries in the table being

selected by problern-state descriptive working rnernory elernents. An exarnple frorn the

underwriting expert systern is:

In WM: Rating table with fields town, county, state, and zip code.

If the address is in a given county, town , state, and zip code and

there is no entry in 由e rating table for the county or zip code and

由e entry in the rating table for the town in the state has a rninimurn

home value,

Then assert 出at 由e current address has the minimum horne va1ue 仕om 由e

table.

These rules which rnatch on the tabular knowledge are further examples of using pa口em­

directed informaúon 臼 control knowledge. 白1e patterns 缸官 satisfied partially from lhe assertions

d臼cribing 由e problem and partially frorn the knowledge represented in the table.

Explicit control knowledge is often represented in production rules as well. These rules

explicitly direct which rules should be selected next by asserting working rnernoηelements which

do not describe facts about the problern but just the current stage of problern-solving being

严rformed. 白1e next ru1臼 m 国ggered by 由e presence of 由ese control elernents. For example:

1 r the stage is ca1culating prernium and

the factors are x, y, and z,

Then as臼rt 出at the premium is x与*zand

as臼口出at the stage is underwrite risk.

This embedded explicit control knowledge differs frorn pattern-directed knowledge. It

represents rnovement through different stages of problem solving , not reactions to problem

descriptions. Explicit control knowledge in production systems can be viewed as an attempt to

force conventional progr臼nrning structures into 阳 production system paradigm. Through its use,

sequential blocks , conditional code segments , and iteration can be implemented.. One of the goa1s

of 由1S 由esis is to argue 由at explicit control information should not be represented in production

rules or，江 it rnus t, it should be carefully separated frorn the remainder of 由e system. An extemal

controllanguage invoking production systern executions in sequence, conditionally, or iteratively

is a be口er rnodel for expressing combinations of explicit control and pattern-directed knowledge.

A .We:hodology for Programming Producrion Systems and its 117ψlicarions on Parallelism 4

This qualification w诅 be supported bo由 qualit.atively by critically contrasting altemative encodings

of a set of problems and quanùtatively by empirically demonstrating perfo口口ance and

parallelizaùon improvemen臼.

3. Obstacles to Parallelization

According to Gupta [1986], the principallimitations to parallelizing production systems are

the following:

1. a small number of affected productions per working memo可 change，

2. a large variation in prωessing time for these productions,

3. a small number of working memory changes p町 cycle.

ln order to address these problems, the anatomy of the production system cycle is described.

The production system execution cycle is often described as match-resolution-ac t. This is a

misleading view; a better description for state-saving production system interpreters is

{act-match}-resolution or, more accurately, {select-join}-resolve. 白1e synchronization point is the

conflict r臼olution: it cannot begin until the match is comple比d The next select phase begins after

resolution ch∞ses an instantiation. Resolution is an operation computationally equiva1ent to

finding the maximurn of a set; parallellog n solutions exist. The {act-match} , on the other hand,

presents sev町al problems for efficient, balanced execution in a massively p缸挝lel environrnent.

The most fundarnentally sequential 臼pect of production system execution is its cyclic nature.

Thus to overcome 由is obstacle to para11elization, the overall nurnber of cycles rnust be reduced,

replacing them with fewer, rnore computation剖1y intensive yet para11elizable cycles. By decreasing

the nurnber of cycles in 由is way , in Gupta's terrns this will result in increasing the nurnber of

changes to working rnemory per cycle，由us addressing point 3. By effectively parallelizing 由is

work, Gupta's point 2 is addressed. The techniques presented w山 also yield a greater number of

affected productions (point 1). Two goals have therefore been identified: reduce the nurnber of

cycles and find solutions for the {act-rnatch} phase which can take advantage of massive

parallelisrn. 古le fU'St goal w山 be addressed by the using the techniques of rule in.depen.dence and

combining rule chains. τne latter has been investigated previously yielding the TREA T match

algorithm [Miranker 1986]. This algorithm provided a better parallel rnatch a1gorithm than par剖lel

Rete. Nevertheless, load among processing elements was not well distributed and the algorithm

alone did not demonstrate the usefuIness of rnassive parallelism in the {act-match}，出us it did not

directly add.ress the second of Gupta's points.

A Me!hodology for Programming Production Systems and ics lmplications on Paralle!ism 5

1n order to determine rule satisfaction, the conditions of a rule are matched against the

assertions in working mernoη. The match can be broken down into two pans. F让st，由e

intracondition (selection) tests (αtests ， in Rete terrninology [Forgy 1982]) coπespond to a

relational selection on the assertions.ηlen，由e intercondition Uoin) tests (ß tests , in Rete

terminology) are join operations on the relations which were selected [Stolfo and Miranker 1986].

The model of parallel match assurned is that a processing element is 臼signed to each rule.

τnus， the set of selection tests for each rule is 严rfo口ned simultaneously, as is the set of join tests.

For a given cycle, the changes to working mernory are pr∞essed by each rule to result in a revised

conflict set of instantiations. There wi1l likely be only a small variation in the number of selection

tests perfo口ned by each rule: rnost rules are approxirnately the same size in tenns of nurnber of

condition elements and number of constants in each. However, the number of join tests per rule

wi1l v缸y much more because it is dependent on how many assertions exÏst which match each

气ondition independently. This can result in poor load balancing arnong processors. The technique

of creating constrained copies 01 cu/prit ru/es wi1l demonstrate the usefulness of massive

para11elisrn by providing a mechanisrn to balance the load during 由e{缸t-match} phase.

4. Rule Independence

Intrinsic to the nature of production systems is 由e concept of rule independence. However,

this characteristic is lost when explicit control knowledge is embedded in the rule-base.

Productions should, ideally , represent independent knowledge chunks: the decision concerning

when to apply 由e actions specified should be dependent on the problem description in working

merno可， not the presence of working mernory elements placed there for control purposes alone.

1n the ideal case，扭y production eligible for frring should be allowed to flre simultaneously

with other eligible productions. Unfortunately, several reasons exist which make indiscrirninate

rnultiple rule frring in current systems difficult:

many current systems were written with the assumption that only one
production would frre per cycle and 由us make use of 由at fact in 白白 pn巾km
solving strategy,

rnany systems implicitly rely on the conf1ict resolution strategy to select the
single mωt specific rule in order to function properly ,

embedded control structures exist in the productions which often result in ve可
few relevant productions eligible to frre in any cycle.

The productions nevertheless could be rewrinen into rule sets which are controlled by 囚

external mechanism. Each individual set can be made of rules which can frre simultaneously 江

A .\1e!hodology for Programming Production Sysrems and its !l7".p lications on Paraflefism 6

they appear toge由er in the conflict set. The productions in a set should be devoid of control

knowledge and should not cause incorrect behavior if flred simultaneously. Existing production

systems can be rewrinen using 由is methodology so 臼 to provide more clarity, more para1lelisrn

during the execution of any rule set, and explicit specification of sequentiality outside the rule

[0口nalism. The additional par剖lelisrn would arise from a larger number of working rnernory

changes per cyc1e and a larger nurnber of affected rules per cyc1e [1shida and Sto1fo 1984]. In
addition, there wou1d be fewer cyc1es overall. The greater degree of parallelism along with fewer

cyc1es would result in much improved perfo口nance.

5. Using Macrorules

1t is often the case 由at a gi ven task requ让es a sequence of ru1e frringsωaccomplish its goal.

-Depending on the state ofworking memo可 before the task begins, a different traversa1 through the

space of rule frrings will take p1ace, yie1ding a correspondingly a1tered working memo可. In this

rnodel, a given execution of a production system segrnent can be replaced by a single macrorule.

Theoretically, if all possible sequences of rule fuings for a given rule set are known (and there 缸穹

a fin Ïte number of these) , one macrorule can repl缸e each traversal 山。ugh the systern，由us

causing the rule set' s execution to complete in one cyc1e. Th is one cycle wυuld consist of

matching large sets of preconditions to the initial working memory and executing a large set of

actions to al臼r it Al1 these operations, however, could be parallelized. Techniques of combining

operations have been investigated in the realms of knowledge representation and Iearning

[Rosenblurn and Newell 1982] , the development of search strategies [Fikes and ~ilsson 1971],

and standard code optimization 仙fcKeeman 1965]. Similar techniques can be used in production

systerns in order to irnprove perfo口nance by increasing the arnount of parallelism and, in addition,

irnproving modularity by combining whole subtasks into one rule.

A set of macrorules would accomplish the same task as the original set of rules. The

macrorule scenario would be su归rior in two res严cts: the rules represen由19 the solution to 由e

task would be inde归ndent of each other, each representing a different complete scenario, and the

macrorule version would be more parallelizable because there would be more working merno可

changes in each of 由e fewer cycles and more rules affected by each of the changes (rules wou1d

contain more conditions 臼 well as actions).

As a methodology for writing production systems，由is technique will be demonstrated to

provide superior systems by a qualitati'-'e argument as well as quantitative empirical perfo口nance

and parallelization m臼sur艺ments.

The technique can also be applie

analysis of their execution behavior.

:xisting systems. The sys出ms can be rewritten after an

; obstacles to be overcome inc1ude the possibility of an

A Me!hodology for programming Production Systems an.d its Implications on ParaJ[elism 7

infmite number of possible executions through a rule set due ωl∞ps in inference，由e likelihood of

an unmanageable number of executions even if no loops exist, and the problem of figuring out all

possible executions even if the number is manageable. One approach to solving these problems

which will be evaluated is the use of execurion expressions. An execution expression is a regular

expression. 白le terminal symbols are rule names and the operators are disjunction (+), sequence
(,), and arbitrary execution (*).ηle form (P l +P2) indicates 由at either Pl or P2 must fire.

(P l .I'2) means 由at Pl must fue and then P2 must frre. (P l)* means 由at zero or more frríngs of

Pl must ∞cur. Al由ough a regular expression is not descriptive enough to precisely define a given

production system execution, it can be used to constrain the possible executions adequately.τbe

interesting execution chunks are those which can be broken down into a finite number of

possibilities; inÎmite sequences cannot be rewritten into a set of macrorules , so a more powerful

description of infmite sets is not necess缸γ.

ιAny production sys臼m can be described by the execution expression (Pl +P2+" ，+Pn)事. If it

is known 由at Pl always fues frrst and then never again, the expression can constrain the execution

as follows Pl ， (P2+P3+" ，+Pn)申. Once a constrained execution expression for the production

system is obtained, the portions of the expressions which do not contain 串 oper~ltI ons can be

extracted. τbe rules 坦白白e pieces can be translated into a set of macrorules.

The derivation of the execution expression for a production system requires 由e specification

of an abstract description of the possible initial working mernory. Frorn 由is and the set of ru1es , a

finite state automaton is constructed where the states are these abstract working rnemory

descriptions and 由e arcs 缸它 labeled wi由由e rule names. 币le execution expression is then derived

frorn the automaton. Other approaches to the derivation of execution expressions have been

studied including the autornatic learning of these control descriptions 仕om sample execution traces

[5tolfo 1979].

The execution expressions for three production systems have been derived. They illustrate

three different scenarios , each of which can be parallelized in a different way. One system,

如伍5GEN (a portion of 由e system ANA developed at the University ofPennsylvania by Kukich in

1983), resulted in an execution expression characterized by large s住ings of rules which could be

combined, occasion

A 几!e!hodology for Programming Production Sysrems an.d irs lmplications on Paral/elism 8

on a parallel machine would require approximately 10 cycles, regar吐less of the size of 由e problern
being solved.

Finally. the execution expression of a production systern to labelline d.rawings using Waltz

constram propagation was derived.τñis represented an intennediary between the two previous

systerns. There were several rule chains to combine and the resulting systern would contain some

new rules and some original ones which could be frred in par剖1el.

Other rnethods for deciding which rules to combine will be discussed as well. A run-由ne

solution involves creating rnacrorules each 由ne two rules fue in sequence. An upper limit on the

total nurnber ofrules in the systern will be rnaintained by discárding the most infrequently (or least

recently) used rules.ηle criteria for the decision of which rules to discard will be cornp缸ed to

those involved in paging decisions in virtual memory operating systems. One of the issues which

arises when dynarnic methods are used is whether a macrorule replace the original rules or ,i mply

-7augrnent the rule set. If the macrorule is generated frorn rules which must frre in thèυrder

specified then 由ey can be replaced. If, however, a heuristic method is used to control macrorule

generation，由e original rules must be maintained and an algorithm (such as least recen t1y used rule

removal) for the control of rule set size must be used. The scenarios requiring differem solutions

w山 be discussed and compared.

6. Table-driven Rules

Production rules and working mernory elements are often categorized as representing long­

arld sho口·出口nmemoηres严ctively; 由e production rules represent 由e knowledge of the problern

dornain whereas the working memory describes the state of the particular problem being solved.

Nevertheless , adherence to 由is distinction is not required. Table-driven rules can be used in

conjunction with tables in working rnemo可 to represent long tenn dornain knowledge [pasik 血d

Schor 1984]. The technique provides knowledge representational and system maintenance

advantages. Often experts org缸1Ìze 由e让 knowledge in categories. Problern solving can involve

由e selection of a category arld its associated information which best fits the current problem

description. Th凶， a table in working rnernory can be built representing a re1ation among various

attributes of a problem. Rules Car1 then select entries from this table according to 0由er relevar1 t

assertions in working rn田nory ， extracting additional needed inforrnation.

In addition to 由e knowledge representational adequacy of table-driven rules, their use

improves the maintenance of the system. Tuples in these tables are easily added and removed and

few. concise rules can be written which are driven by the tables. The altemative is a large

collection of rules which v缸y only according to a small number of paramet町s.

A .He!hodology for Programming Prod.uction Sys!ems and irs 1"ψlications on Parallelism 9

The disadvantage of using tables and table-d.riven rules is realized when a忧ernpts are rnade to

parallelize 由e sys也瓜 A table-driven rule will generate large selection relations to be pr∞εssed in

the join ph出e.ηtis implies 由挝、 in non-shared rnernory architectures，由e processor handling 由e

table-d.riven rule will require rnuch rnore rnemory 由an an average rule. In addition , the tirne

requ让e to rnatch the rule will be substantially above average, thus slowing down the entire

execution. However, the advantages provided are sufficient to warrant an investigation to

deterrnine rnethods of parallelizing 由is pr∞ess. These same rnethods will be useful in general

whenever a load balancing problern occurs in production systern execution. The tech旧que of

creatmg constrained copies of culprit rules addresses 由is issue fonnidably.

7. Creating Constrained Copies of Rules

·二 Whereas rnaintaining rule independence and using rnacrorules both irnprove parallel

perforrnance by reducing the nurnber of cycles by creating rnore parallel work, neither technique

addresses the issue of balancing the load over the processing elernents. The problern is further

accentuated when table-d.riven rules are used ωencode tabular knowledge in production systerns.

Table-driven rules , however, are encouraged in the rnethodology due to their c1ear and

rnaintainable representation of the knowledge. 币le technique of creating consrrained copies 01

cuiprir ruies [Pasik and Stolfo 1987, Stolfo et ai. 1985] addresses the load balance problern

elegantly and sufficiently bo出 Wl由 and without table-driven rules.

Working mernory elernents are rnatched hy the productions' conditions and created or

removed by 由e actions of selected rules upon fi丘ng.τbe conditions of a given production rule

match zero or rnore working rnemory elernents on each cycle. If each condition is either not

ma比hed by an existing working rnemory elernent or is only rnatched by a single one, then the time

required to rnatch the production is proportional to the number of conditions, c, and working

memory elernents , w: O(cxw). on the 0由er hand, if multiple working memory elements match a

single condi ti.on , each creates a tuple in the selected relation which must be joined with the relations

forrned by 阳 rernaining conditions, requiring many more join tests: O(wc). Rules that are

particularly plagued in 由is way generate a cross product of instantiations between two or more

large sets of elements being joined.τbese culprit rules slow down the execution of the entire

system: in parallel implementations 由is is even more detrimental because conflict resolution must

occur after all instantiations 缸-e created and 由山 a single culprit rule will cause the other processors

to idle during the match phase. Th is situation tends to occur frequently in prograrns which

represent a po口ion of the knowledge base as large tables in working memory as well as in

programs which analyze large arnounts of data in working memoη [Vesonder et ai. 1983].

A ,Hethodology for Programming Producnon Systems ar.d irs!nψlications on Paralleiism 10

Certain wor垣ngmemo巧I elep1ent types can be identified which are likely to appear in greater

numbers than others. For example, it may be known a priori that very few working memory

elements of 可pe arirhmetic-resulr will exist whereas many elements of 可pe rable-enrry are likely to

reside in working memory at a given time.τbus ， rules which match on rable-enrrγworking
memo可 elements will require more join tests to detennine rule satisfaction than rules which match

only on arirhmeric-resu /r elernents. Each of the fo口ner rules should be rewritten as a set of

constrained copies of the original.: Each copy would match on a subset of the rable-enrry elements

during the selection test phase, reducing the nurnber of instantiations overall for join 能S由19. Also,

each of the copies can be 臼lection- and join也sted sirnuItaneously.

Suppose, for ex缸nple，由at the following rule is wri口en in order ωidenti句I two jigsaw puzzle

piec臼 of the sarne color and fit them ωge由er (OPS5 s严ltax is used):

(p join-pieces
-号 e (piece ^color <X>

^:.d <!>)
(piece 局 color <X>

州 id (<J> <> <二> })
(goal ^type -:.r 'l-~oιn

‘二dl 〈工〉

^:.d2 <J>)
-->
(:na i<e goal ^-:. ype -:'::'1- ;0:'"

^idl 〈丁〉

^id2 <.;>))

There may exist many (say n = 1∞) elements of type piece. 节le frrst two conditions would
2 each create selected relations containing n tuples. Then, nL- = 10 ，0∞ join tests would be required

to create tuples (possibly very many of them) in the joined relation (all sets of two pieces wi由出e

sarne c%r), which would in turn be matched in 阳 remaining join tes岱 h 由e rule. The rule can

be copied, say m = 5 由nes ， each copy constrained to match only a subset of the elements. For

example, the dornain of the color attribute may be known to be {red, blue, yellow , green，旧l}.

One of the five copies would include the following conditions:

(piece 街 color RED
^id

(piece ^color RED
^id

〈工>)

(<.;> <> <: > })

The other copies would only match one of the other four possible values. Assurning 由at

there is an even distribution of 由e c%rs 缸nong 由e pieces in working merno巧， each condition

would create its selection relation with approxirnately (n/m) 阳p1es. Each of the m rules would

require (n/m l join tests: a factor of m fewer comparisons overall even on a sequential

irnplernentation. These m rules , however, could be pr∞essed in paralle l. In this ex缸nple ，

由erefore，由e pr∞ess would be sped up by a factor of m" = 25.

A 儿fe:hoåology for Programming Production Sysrems an.d irs Inψlications on Parallelism 11

The method described requires knowledge of the domains of the attributes in order to

constrain 由e copies.η泣s assumption can be 陀moved by employing a hashing scheme; each copy

of the rule would be constrained to match only those working memory elements with a particular

hash value. Once an attribute with enough variability is selected, a new attribute is defined for the

working memory element type. lts value will be the result of a hash function perfonned on the

selected attribute. Thus, even if 由e colors of the pieces were unknown, the copies could still be

created, constrained by differing values of the hash attribute. The copies which would be

generated if pieces' colors were hashed into four buckets are shown below.

(p join-pieces-l
(p~ece ^color <x>

(piece

(goal

-->
(:na :.ce

‘二d <工〉

^!'!ash-color 1)

^color <X>
绚 id { <J> <> <I>}
禽 hash-color 1)

^:ype :ry-join
^i ::11 <二〉

^ id2 <J>)

goal ^:ype
^idl
禽 id2

t 士y-~oin

<:::>
<J>))

{p :0 i:l -pieces-3
(piece ^::o工古 r <X>

内 id <!>
^hash-color 3)

(piece ^co1or <X>
':d (<J> <> <!>!
^hash-color 3)

(goal ‘ :ype t 士y-]o l. n

"'idl <I>
^id2 <..j>)

-->
(maice goal ^:ype try-join

街 idl <I>
^id2 <J>))

(p join-pieces-2
(piece ^color <X>

^id <工〉

^~ash-colo~ 2)
(piece ^color <X>

^i ::1 (<J> <> <工 >1

^hash-color 2)
(goal ^:ype :ry-join

街 idl <I>

-->
(:na l< e

^id2 <J>)

goal 现工ype t:y-join
^idl <I>
^i ::1 2 <.:>))

(p join-pieces-4
(piece ^color <X>

^id <二〉

^hash-color 4)
(piece 衡 color <X>

确二d { <J> <> <!>}
^hash-color 4)

(goal ^:ype 己 :y-join

^idl C>
^id2 <J>)

-->
(mal< e goal ^:ype t 士y-join

^idl <I>
^ià2 <.;>))

The generated copies result in an increase in the number of rules active during selection

testing. More work is perfo口ned in 由1S phase resulting in more selection operations in parallel,

each of which would result in a smaller relation during join testing. According to Gupta [1985] ,

the average affect set size is 30 productions 防r cycle. This was presented in order to suppo口出e

conjecrure 由at massive parallelism was inappropriate for production system execution: no more

白白 30 pr∞essors would be needed if 由e productions were dis国buted intelligently. These few

pr∞essors would, however, have to deal with the occasional culprit rule which would slow the

execution of the entire system. By creating constrained copies of culprit rules and distributing

them to many more processors. each will be working on a sma11er subset of the changes to

A Jfe:hodology for Programming Production Systems and its Implications on Parallelism 12

working memoηyield.ing an improved perfoπnance. Much of the work is shifted from the join

test phase ωthe easily parallelizable selection 臼5t phase.

In addition to 由e speedup obtained，出is technique also provides the advantage of smaller

memoηrequirements for each rule to store its joined relations. on frne-grained paralle1 sys出ms

without shared memory (such as DADO), the nurnber of tuples in the selection-generated relations

created by certain conditions can becorne large and thus overflow the limited memory of the

processing element Upon crea由19 constrained copies of the rules and assigning each to its own

pr∞essing elernent, the number of tuples for each is dramatically de口eased.

The selection of which at国butes within which c1asses to constrain requires knowledge of the

domain. 古le sirnple directive of selecting the classes of which there will be many working

rnemory elements and the at红ibutes of those clas5es with high variability w山 provide good results.

Nevertheless, it may often be difficult to 臼sess these par缸neters.

lnitial tests have been perfo口ned estirna由19 the arnount of parallelism and speedup of three

systems by crea由19 constrained copies of culprit ru1es. They have demonstrated 由at as more

copies of culprit rules 缸e created, greater parallelisrn and faster execution tirne is achieved (see

Figure 1).

旦. tE

,3. '

2
主"
-。

E ‘。

z 3

。

• • 2监)00

\……
ooc盼。 • 2Ø∞

翼翼X国

1$000

汉阳曲------ 10000

10000 ~曲

•
' 。目崎，。圃'曲 t剖'咽 110 1回羽田 '回崎幅画 100 120 1崎 160 '10 2'∞ q 回崎刨圃'国 120 '40 110 110 200

Numoer 01 阳启圄

Flgure 1. As more ∞pi8S ot culprit rules are created , the sum ot the maximum
number 01 intercondition tests per 町cle during thehole execution is
d时reas创. This indicates an overall speed improvement.

8. Conventional Coda Optimization

A broa.d definition of conventional code optirnization is the detection of certain pattems in

code fo l1owed by 由e replacement of this code wi由 more efficient constructs (Aho and Ullman

1977). Whereas op由世zation of conventional prograrns can yield up to a factor of 2 or 3 improved

speed, optirnization is more necessary in AI languages and can yield order of magnitude speed

improvemen臼但arley 1975, Schwartz 1975a, Schwartz 1975b). The methodology described can

be interpreted as a set of code optimization techniques; many conventional code optimizations

were , after all, derived from programrning guidelines. However, the techniques are specifica11y

designed for production systems , and 由e scope of the code irnprovement includes bo由 efficiency

A Merhodology for programming Produ.ction Systems and its lrnplications on ParaIlelism 13

and maintainability. Conventional code optimization deals with automatic detection and

replacement strategies applied to intermediate code produced by compi1ers. 币le production system

me出ods are pre臼n出d 臼 code writing guidelines along with , in the case of copy and constr缸血吨，
an automatic t∞1 for the application of the method. For the sake of comparing conventiona1 code

optímization to the methodology described, however, these fundamenta1 differences can be
overlookeι

Lρop Optimization.

According to 由e 90-10 由eory (90% of a PI吨ram's execution time is spent in 10% of its

code) [Knuth 1975], the most important code optimization techniques are concemed wi由 the

improvement of inner 1∞ps. 白1Ïs 1∞p optimization includes repositioning of 1∞p-invariant code,

elimination of induction variables (often accompanied by a reduction in operator strength), loop

-unrolling, and 1∞pjamming.

币le movement of 1∞p-invariant computations in conventiona1 code op由nization improves

the efficiency of c创e by reducing the amount of work being done in each iteration of the 1∞p.

Loop- invariant code is repositioned so as to be executed once before the bvdy of 1∞P is entered.

A distant ana10gy can be made between this pr∞ess and crea由19 constrained copies of cu1prit

rules. Just as the most compu国-in臼nsive portion of conventiona1 programs is their inner 1∞ps ，

由e intercondition test phase is the correspondingly intensive code in the production system

execution cycle. Creating constrained copies of culprit rules involves identifying patterns in

potentia1 working memory configurations and adding constraints to copied rules so as to

redistribute the work out of the intensive intercondition test phase and into the intracondition test

phase. Al由ough 由is "code movement" is not 1∞p-invariant code，由e pr∞ess common to both

optimization techniques is 由e offloading of work from an intensive region by adding work into a

previous, less intensive prograrn section.

白le elimination of induction variables is a technique specific to conventiona1 prograrn's loop

structures. A loose interpretation of 由e process is the de出ction of two (or more) variables which

can be combined inω 。ne serving both (or all) purposes. In this sense , it is related to 由e local

optimization technique of elimination of common subexpressions.ηlere ， an expression calculated

twice is only ev剖uated once and the result used in bo由∞currences. Both of these optimizations

result in a single operation replacing severa1. Using macrorules accomplishes a similar result by

eliminating changes to working memory which would have been done and undone by the chain of

rules being replaced. For example,

A .Hethod% gy for Programming Producnon Systems a."Ui its ["ψlicanons on Para//e/ism 14

A, B, and C

makeDandE

If
Then

and

BandD If

make F and remove D Then

cou1d be replaced by

A, B, andC If

makeE and F.

Thus, the operations of make D and remove D are eliminated. Although 由is process has

nothing to do with induction variables , removing a data item and making one rule serve the

pu币。se of both original rules is distantly related to 由e conventional code optimization pr∞ess.

This same ex缸nple is more closely related to 由e peephole optimization pr∞ess of removing

redundant loads and stores.

Then

-

Conventional loop unrolling is used to reduce the number of exit tests required in a loop' s

execution. 1ts is best explained by refe时ng to 由e small ex缸nple below. If a 1∞p is known to

execute a fued number of times，由e body of 由e 1∞p can be duplicated so that the loop wi11
perfo口n its exit test 50% fewer times.

(i=1:i<-100:)
a(i] z b(i]
i i+1

z
。

a-

becomes

(i-1:i<-100:) {
a(i] - b[i]
i - i +1
a[i] - b[i]
i - i+l

for

In e仔ect， loop unrolling achieves the reduction in exit tests by repIacing many sma1l i臼rations

with fewer large iterations. 节le process is similar to using macrorules and multiple rule frring in

that these techniques also replace many small cycles with fewer large cycles. Both the

conventionall∞p unrolling and the production system techniques reduce the overhead associated

with the cycling: the number of exit tests and the number of conflict resolutions respectively. The

15 A ,l-te:hodology for Programming Production Sysrems and irs Imp /ications on Para1lelism

-

production systern techniques are also used to irnprove perforrnance via increasing the available

parallelisrn. It is interesting to note that conventional loop unrol1ing rnay also increase the

parallelisrn in conventional code.

S面ùlar to loop unrolling , 1∞p jamrning also replaces srnallloops with larger ones. Loop

jamming refers to 由e combination of two separate 1∞ps into one. The analogy described above is

even rnore appropriate for loop jamming. Macrorules represent the combination of two distinct

pieces of code into one unit as opposed to the repetition of the sarne piece. The benefits of

reducing overhead and increased potential p缸allelisrn are the same as those discussed for 1∞P
U盯olling.

In conventional code, 1∞ps are easily detected because of the high level control constructs.

Loops in production systerns are hard or impossible to detec t. The idiom corresponding to

conventional code's loop constructs is

1. initialize working memory,

2. repeatedl~ fire a rule (or set of rules) over a number of matching working
mernory elemems,

3. frre a 1∞p exiting rule.

Th is is accomplished by a number of independent rules. Syntax provides little guidance

since rules can be placed far apart in the production system program 臼xt. Indeed, the detection of

such 1∞ps requ出s sernantic knowledge applied to an analysis of 由e potential behavior of the rule

base. Furtherrnore, there are no guarantees 由at a 1∞P will be executed in its entirety. Since any

rule can frre during the course of executing the body of a production systern 1∞p，也e loop may be

executed at unpredictable points in the computation. 白le conflict resolution strategies ernployed by

OPS5 programs depend prirnarily on run由ne behavior 由at cannot be determined at compile 出ne.*

Hence, the sharp control knowledge available at the compile time of conventional prograrns is only

fuzzy or nonexistant in the prcxiuction system c剖e. This same argurnent holds when atternp由19 to

use other op由nizati∞ t配hniques requiring data flow analysis.

The meth创.ology proposed here puts the burden on the knowledge engineer to write code

more efficiently in 由e f1I'St place in the absence of a very smart optimizing compiler. Production

systems, after all. are declarative program.ming languages. The clairned advantages of production

systern prograrnming of mcxiularity and expressiveness afford pe由aps 由ee臼y representation of

huπ1aI1 knowledge but at 出e expense of generally inefficient machine execution. There is need,

* OPSS's conflict r古solution strategy favors instantiations of rules matching worXing memo町 elements assened
more recent1 y 白血。由ers. The order in which elements lre assened is not Imown at compile time since the
initialization of w。而ng memoηor 由e interactive behavior wi由 the program falls victim to 由e vagaries of the
us巳r.

A Methodology for Programming Producrion Systems and its Implicarions on ParaJleiism 16

therefore, for a well structured programming methodology to balance the benefits of expre~ 、n
with the requ让ement of efficiency.

PeepJwle Oprimization.

Peephole optimization refers to code optimizations resulting from an analysis of a small range

of instructions (McK臼man 1985). An important characteristic of peephole op也nizations is 由atan

application of one such optimization often leads to one or more additiona1 possibilities for further

optimization.ηle construction of macroru1es and the creation of constrained copi臼 of culprit rules

share 由is attribute of peephole op白nization. When a macrorule is created, the set of possible

sequences of rule fuings changes.ηlÌs may provide opportunities for further combination of rule

chains. Also, the new macrorule may turn out to be a culprit rule requiring many intercondition

tests.η让s would provide an opportunity for fur由er parallelization and perfonnance improvement

-.by crea由19 constrained copies of the macrorule. Creating cons位ained copies of one culprit rule

may illuminate 出e presence of another culprit rule previously masked by 由e "worse culprit". In

出is case，由e frrst constrained copy creation leads to a second.

Specific peephole optimization techniques can be compared to the production system

techniques described.τñey are redundant loads and stores, jumps over jumps, unreachable code,

and multiple jumps. Other peephole optimizations such 臼 algebraic simplification, reduction in

strength, and use of machine idioms are specifically related 10 conventional code optimization and

have no apparent meaningful analogy to the production system environrnent. Production systems ,

after all, execute a relatively simple sequence of operators: test a set of symbolic structures, then

add or remove a symbolic structure to or 丘ommemory.

As previously discussed in the context of induction variables , the elimination of redundant

loads and stores is directly related to the elirnination of temporarily used working m白n。可 elements

during 由e creation of macrorules. Redundant loads and stores occur when conventional code

generators naively 口回te code such as

MOVE RO, A

MOVE A, RO.

Here, the second instruction can be removed because there is no label (由us it wil1 only be

executed immediately af即由e previous instruction) and RO is guaranteed to already contain the

value of A. The redundant instruction is analogous to the make followed by remove in two

consecutive rules which can be combined. τñis combination allows for the removal of the actions.

Jumps over jumps, elimination of unreachable code, and rewriting multiple jumps (由at is a

jump to a jump should be replaced by a jump straight to the second jump's des出ation) are all

examples of peephole optimization involving the removal of dead code which results from a naive

A JferJwdology for Programming Producrion Systems and irs lmplicarions on Paralleiism 17

ccx:ie generation or the result of a previous application of another peephole optimization. Tlùs dea.d

ccx:ie removal is demonstrated in the prcx:iuction system environment by the ex缸口ple provided in

the d.iscussion of the elimination of induction variables. Creating macrorules results in dead ccx:ie

when a working memoηelement is made and removed in the sequence of rule fuings being

combined into one rule. The elimination of these actions provides an add.itional advantage to using

macrorules: not only does 由e resul出g system have more parallelism and better performance due

to its fewer cycles and more effective work per cycle to be parallelized, unnecessary work is

extracted 仕om 由e system as well.

Optimizing Convenriona/ Code for Para//e/ Execution.

Many c创e optimization techniques have been adapted for the improved implementation of

ccx:ie on parallel processors. Unfortunately, most of these optimization techniques rely heavily on

-= data f10w analysis which can be read.ily perfo口ned on convention code but which would be

difficult or impossible on prcx:iuction sys出ms [Kuck et a/. 1980]. Data flow analyses have been

applied to production systems [Moldovan 1984, Ishida and Stolfo 1984], but these studies have

been used to determine the data dependency between a p出r of rules. This is useful for detennining

whether two rules can be fired in parallel, but it cannot provide information about the overall

sequence of rule fuings necessary for the application of the ccx:ie optimizations described. An

impo口ant area of future research is the design of a knowledge engineering túυ1 which would

provide a mechanism for the representation of the data flow of a production system. 古lis external

data flow representation could be used to apply more optimization techniques to production

systems. In add.ition, the techniques presented in 血is methodology could be automatically applied

gi ven the data flow description , instead of relying on the knowledge engineer to perfo口n these

prograrnming tech旧ques by hand.

Two methods of optimizing conventional code for p缸allel execution are fora /l

tran.物rmations and pipe/in.ing [padua et a/. 1980]. These techniques are illustrative of 由e need

for data flow analysis for the app月cation of these automatic optimizations. Both these techniques

are applied to detected for-l∞ps in the source code. Forall transfonnations parallelize the ccx:ie by

me由od similarω 由ecr臼tion of constrained copies of rules. A copy is made for each iteration of

the for 1∞p constrained wi由 its index variable being set ωthe value for one of the iterations. One

copy is all∞ated to each pr∞essor. Code is inserted to synchronize the pr∞essors s。由at no

statement is executed before another upon which it is dependen t. Certain loops with little

dependency within their b创ies execute extremely quickly , achieving a linear speedup on the

number of processors used. Others can achieve no speed up at all. For example. the following

l∞p would require synchronization between the two statements and 由us its parallel execution time

would be 由es缸时出 its sequential 由ne.

A Jlerhod% gy for Programming Production Systems an.d ics JfTψlicarior.s on Paralle!ism 18

for (i=l;i<=n;i++l {
a[土] = b[i-l] + 2;
b[土 c[i] + 1;

However, if the two statements are reversed (yielding the same functionality) distribu由19 由e

n iterations over n pr∞essors ， using the forall tr丑nsfo口nation would result in an execution time of

2 units (each statement requ让扫g 1 unit tirne) thus achie叫ng a linear speedup.

Pipelining for loops distributes 由e m individua1 statements of 也e body of a 1∞p over m

pr∞essors ， placing synchronization code where appropriate. Using the above ex缸nple ， the two

statements are not dependent on each other within one iteration. However, the frrst statement is

dependent on the second statement of the previous iteration. Thus, pipelining 由is code into two

pr∞essors would result in a speedup of slightly less than linear (due to the first cycle only

executing the second statement and every subsequent cycle executing both the frrst statement of one

ïteration and the second statement of the previous iteration). However, this linear speedup is

proportional to 由e number of statements in 由e 1∞p (only 2) where部由e forall transformation with

the statements reordered would result in a linear speedup proportional to the number of iterations

(possibly ve可 large). Pipelining is vaguely reminiscent of using macrorules in 由at operations

from a set of distinct cycles are combined into one cycle. If these macrorules were themselves

distributed, the analogy would be stronger.

Research on the parallelization of conventiona1 code has provided a set of measurements

which can be used to detennine speedup, efficiency , utilization, and redundancy in par剖lel

versions of programs [Kuck et al. 1974]. These techniques wi1l be used and adapted in the

measu口nents of parallelism in production systems.

Algorichm Oprimizacion.

白le conventioanl c创e opùmization technique with the most impact is algorithm optimization.

U sing a better algorithm can provide improvements much greater than those achievable by a

compiler. The replacement of an n2 sorting routine with an n log n one provides a speed

improvement far beyond 由at available from the conventiona1 code optimization techniques

described so far.ηle methodo1ogy for writing production systems and the t∞ls for creating

constrained copies of culprit rules can have effects on perfonnance which are dramatic. This is

mostly due to the techniques being more closely related to algorithm optimization than other code

optmuzanons.
The algorithmic changes are the introduction of hash partitioning when using constrained

copies of cu1prit ru1es , the use of para11e1ism to hand1e more matching concu.rrently , and the

provision of more concurrently availab1e matching by the co l1apse of the match of several cycles

A Methodologyfor Programming Produccion Syscems an.d ics Inψlicacions on Parallelism 19

into one by multiple rule flIÌng and using macrorules. These benefits provide substantia1

perfonnance improvements and increased paralleLism in production system execution.

9. Measurements

In addition to 出e qualitative discussions on the merits of the methodology and techniques ,

empirical studies will be perfo口ned in order ωvalidate the techniques' effects on p町foπnance and

par剖lelism. A series of measurements will be applied to 由e execution of several expert systems to

assess the improvements due to the use of the techniques. Five systems written without the benefit

of the methodology wi1l be rewritten semi-automatically (see Figure 2) using the techniques

described. Also, two large commercia1 systems written according to the guidelines for rule

independence and external control structures w山 be tested with and without the additional use of

~copy/constraining and using macrorul臼.

Each of the above systems will be run in an OPS5 environment altered so as to co l1ect

information on the number of tests (selection and join) perfonned per rule in each cycle. From 由is

data, assuming one processor per rule, measurements will be taken to determine overall

perfonnance and amount of parallelism. Several measurements will be applied including the

following two in order ωsuppo口出e desired results.

The ratio of the maximum nurnber of tests over all the rules in each cycle to 由e
average nurnber of tests per rule will provide insight on the degree of
parallelis瓜古le closer the value isω1，由e more b剖anced 由.e execution is.

The sum over all the cycles of the time required to perfoπn the maximum
number of tests over all the rules in 由e cycle plus conflict resolution time of the
cycle will be an indicator of overa11 perfonnance. Smaller values will indicate
irnproved 严rfonnance.

白lere are no existing standar吐s for rneasuring 由e quantities described. A r白白πhωpic itself

is the development of set of measures for evaluating and comparing par挝lelism in progr臼ns. This

issue will be addressed by providing several alternative measures and discussing the implications

of each. Other measurements which will provide insight on parallelism and perfo口nance w山 be

in ves tigated, especi剖ly those which have been demonstrated as useful in determining the

effectiven臼s ofpar剖le1izing conventional code.

A .'4è!hodology for Programming Production Systems and its lnψlications on Paraifelism 20

Manual determination of rules. classes. and attribules 10
copy/constrain followed by automatic creation of constrained copies.

Flgure 2. Rewriting existing systems is aα刀mplished by manual anafysis and
the application ot automatic tools.

10. Case Study: Homex

Homex is 姐 expe口 system developed by Alexander Pasik and Andrew Lowry at Fifth

Generation Computer Coq刀ration for Home Insurance Company. Homex underwrites (evaluates

risk) of new home owner insur叫ce policies specifying whether the company should insure the

home and, if so，咄咄町 ceπain additional criteria are required. 节le system was written using the

methodology descr忱d: rule independence was maintained when possible, table~ven rules were

used, explicit control knowledge ar口ong rule sets was represented separately (albeit still in OPS匀，

但d rules which could be combined into macrorules or copy/constrained have been identified. The

architecture of Homex , the experiences which conc1 uded in its completion, and the empirical

A MerJwdology for Programming Production Systerns an.d irs 1fTψlications on Parallelism 21

analysis of its perfonnance will be discussed. Homex will also be compared to other systems built

with and without the methodology described.

11. Conclusions

Although production systems were originally introduced for artificial intelligence

programming because of the f1exibility 由ey provide for incremental developmen t, many systems

have spec诅cally voided this advantage by embedding explicit control knowledge. 白白 has yielded

systems which are very difficult to maintain and debug because of the extensive interdependency of

the rules. No longer can a developer add new rules at will without completely understand.ing all of

the embedded control structures in these interdependent rule systems. In addition , this style has

contributed greatly to the apparent minimal amount of p缸剖lelism in the systems. The

-methodology which will be described and evaluated will provide a mechanism for the construction

of better production sys臼ms. Also, methods and tools will be developed which will help in the

construction of these systems as well as 由e rewriting of existing systems.

The substantial pessimism concerning the pa;.-aIlelization of production systems will be

addressed by providing solutions to 由e problems of few affected rules, poor load balance, and few

changes in working memory per cyc1e. The copy and constrain method se凹es to load balance as

well as extract aωition剖 parallelism 仕om eXlS出g， sequenti剖ly written production systems. 白e

speed improvements obtained using 由is method alone were measured over eight-fold. The

advantages of this technique stem from 由e reduction in bo由 total number of join tests performed,

max.imum number of join tests per cyc1e, and the decrease in the variability between rules of the

number of join tests required. Overall, many more selection 阳ts are performed because of 阳

proliferation of new rules , but each can be processed in p缸a1lel. ηlÍs parallelization reduces 由e

selection test overhead. Even on sequential implementations, however, systems plagued wi由1arge

numbers of required join tests exhibit improved 严rfo口nance in spite of the added selection tests.

The low-level par剖lelism provided by match algorithms and enhanced by creating

cons位ained copies of culprit rules is the frrst step in extracting more p缸alielism 仕om production

systems. The techniques of multiple rule firing of independent rules enables even more work to be

perfo口ned in par剖lel. Also, by analyzing possible execution pa由s of production systems , rules

c::m be rewritten into macrorules which provide an even gr臼ter degree of parallelism by reducing

由enumb町 ofex民ution cycl臼 while increasing the amount of parallelism available in each cy

A Merr..odology for Prograr.uning Produc:ion Sysrems and its Implications on Para1lefism 22

copy/cons位ain and increasing the number of se1ection tests by using macroru1es: balancing the 10ad

among pr∞essors is add.ressed by crearing constrained copies of culprit rules.

A .Herhodofogy for Programming Producâon Systems and its Implicaâo ltS on ParaLlelism 23

References

Aho_A.V. and ~ J.D. (1 977) Principles ofComp i/er Design. Addison-Wesley Publishing
Company: Reading, Massachusetts.

Earley J. (1 975) High Leve门terators and a Method of Data Structure Choice. J ournal of
Computer Languages 1(4): 321-342.

Fik~s R.E. and_Nilsson N.J. (1971) STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. A~万ciallnte//igence 2: 189-208.

Forgy c.L. (1982) Rete: A Fast Algorithm for the Many PatternlMany Object Pattern Match
Problem. Arri万ciallntelligence 19(1): 17-37.

Georgeff M.P. (1 982) Procedural Control in Production Systems. Artificiallnte//与ence 18(2):
175-201.

Gupta A. (1985) Parallelism in Production Systems: The Sources and Expecred Speed-up. Fifth
International Workshop on Expert Systems and Applications.

Gupta A. (1986) Paral/elism in Production Systems. Ph.D. Thesis, Department of Computer
Science, Carnegie-Mellon University.

Ishida T. and Stolfo S.1. (1 984) Simultaneous Firing of Production Rules on Tree-srructured
Machines. Technical Report, Department of Computer Science, Columbia University.

Knuth

Kuck D .J., Budnik P.P. , Chen 丘， Lawrie D.且， Towle R.A. , Strebendt R.E. , Davis E.W. , Han
J. , Kraska P.W. , and Muraoka Y. (1 974) Measurements of Paral1elism in Ordinary
FORTRA1'1' Programs. Conψuter 7(1): 37-46.

Kuck D.J. , Kuhn R.且， Leasure 且， and Wolfe M. (1980) The Structure of an Advanced
Retargerable Vecωrizer. The Proceedings ofCOMPSAC '80.

McKeeman W.M. (1 965) P民phole op由四zation. Communications of the ACM 8(7): 443-444.

Miranker D.P. (1986) TREAT: A New and Efficient Match Algorithm for Al Production
Systems. Ph.D. Thesis, Department of Computer Science, Columbia Universi可·

Moldovan

Newell A. (1973) pr创uction Systems: Models of Control Sructure. In W. G. Chase (ed.) ,
Visuall，庐rmarion Proc臼sing. Academic Press: New York.

N ewell A. and S出lon H.A. (1 972) Hwnan Problem Solving. Prentice-Hall: Englewood Cliffs,
New Jersey.

Nilsson N.J. (1 971) Problem-solving Methods in Artificial Intelligence. McGraw Hill: New
York.

~iIsson N.J.. (1980) Principles of Artzficial Intelligence. Tioga Publishing Company: PaIo Alto,
CaIifornia.

Pad~a D.A. , Kuck D.J., and Lawrie D.Ii. (1 980) High ~peed Multiprocessors and Compilation
Techniques. IEEE Transactions on C01叩uters C-29(9): 763-766.

Pasik A.J. and Schor M.L (1984) Table-driven Rules in Expert Systems. SIGART Newsleuer
87: 31-33.

Pasik A.J. and Stolfo S.J. (1 987) Improving Production System Performance on Parallel
Architectures by Creating Constrained Copies of Rules. TechnicaI Report, Department of
Computer Science, Columbia University.

Post E.L. (1943) Fo口nal Reductions of the GeneraI CombinatoriaI Decision Problem. American
Journal of Marhematics 65.

Rosenblum P. and Newell A. (1 982) Learning 句 Chunldng: Summaη of a Task and a Model.
AAAI-82.

-Rychener M.D. (1 976) Production Systems as a Programming Languagefor Artificial Intelligence
Applications. Ph.D. Thesis，民panment of Computer Science, Carnegie-Mellon U niversity.

Schwartz J.T. (1975a) Optimization ofVery High Level Languages. Part 1: Va1ue Transmission
and its Corollaries. Journal ofCompurer Languages l(刀， 161-194.

Schwartz J.T. (1975b) Optimization of Very High Level Languages. Part II: Deducing
Relationships of Inclusion and Membership. Journai ofComputer Languages 1(坷， 197-218.

Stolfo S.J. (1979) Auromatic Discovery of Heurisrics for Nondeterministic Programs from
Sample Execurion Traces. Ph.D. Thesis , Courant Institute ofMathematical Sciences Computer
Science Deparunen t, New York University.

5tolfo 5.J. and Miranker D.P. (1 986) DADO: A Tree-Structured Architecture for Artificia1
Intelligence Computation. Annuai Revierν ofCompurer Science 1: 1-18.

5tolfo 5.J. , Miranker D.P. , and MilIs R.C. (1 985) A Simple Preprocessing Scheme to Extract
and Balance Implicit Paralielism in the Concurrent Match of Production Rules. IFIP
Conference on F江由 Generation Compu由19.

Vesonder G.T. , Stolfo S.J., Zielinski J., Miller F., and Copp D. (1983) ACE: An Experr System
for Telephone Cable Maintenance. Eighth Intemationa1 Joint Conference on Artificial
Intelligence.

