Academic Commons

Articles

Bridging Past and Future Climate across Paleoclimatic Reconstructions, Observations, and Models: A Hydroclimate Case Study

Smerdon, Jason E.; Cook, Benjamin I.; Cook, Edward R.; Seager, Richard

Potential biases in tree-ring reconstructed Palmer drought severity index (PDSI) are evaluated using Thornthwaite (TH), Penman–Monteith (PM), and self-calibrating Penman–Monteith (SC) PDSI in three diverse regions of the United States and tree-ring chronologies from the North American drought atlas (NADA). Minimal differences are found between the three PDSI reconstructions and all compare favorably to independently reconstructed Thornthwaite-based PDSI from the NADA. Reconstructions are bridged with model-derived PDSI_TH and PDSI_PM, which both closely track modeled soil moisture (near surface and full column) during the twentieth century. Differences between modeled moisture-balance metrics only emerge in twenty-first-century projections. These differences confirm the tendency of PDSI_TH to overestimate drying when temperatures exceed the range of the normalization interval; the more physical accounting of PDSI_PM compares well with modeled soil moisture in the projection interval. Remaining regional differences in the secular behavior of projected soil moisture and PDSI_PM are interpreted in terms of underlying physical processes and temporal sampling. Results demonstrate the continued utility of PDSI as a metric of surface moisture balance while additionally providing two recommendations for future work: 1) PDSI_PM (or similar moisture-balance metrics) compare well to modeled soil moisture and are an appropriate means of representing soil-moisture balance in model simulations and 2) although PDSI_PM is more physically appropriate than PDSI_TH, the latter metric does not bias tree-ring reconstructions of past hydroclimate variability and, as such, reconstructions targeting PDSI_TH can be used with confidence in data–model comparisons. These recommendations and the collective results of this study thus provide a framework for comparing hydroclimate variability within paleoclimatic, observational, and modeled data.

Geographic Areas

Files

  • thumnail for 2015_jclim_smerdonetal.pdf 2015_jclim_smerdonetal.pdf application/pdf 10.8 MB Download File

Also Published In

Title
Journal of Climate
DOI
https://doi.org/10.1175/JCLI-D-14-00417.1

More About This Work

Academic Units
Lamont-Doherty Earth Observatory
Publisher
American Meteorological Society
Published Here
October 5, 2015
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.