The geochemical composition of serpentinites in the Mesoarchaean Tartoq Group, SW Greenland: Harzburgitic cumulates or melt-modified mantle?

Kristoffer Szilas a,b,*, Vincent J. Van Hinsberg c, Robert A. Creaser d, Alex F.M. Kisters e

a Lamont-Doherty Earth Observatory, Palisades, NY 10964-8000, USA
b Natural History Museum of Denmark, Copenhagen 1350, Denmark
c Department of Earth & Planetary Sciences, McGill University, Quebec, Canada
d Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton, Canada
e Department of Earth Sciences, Stellenbosch University, Matieland 7602, South Africa

* Corresponding author K. Szilas
E-mail: kszilas@ldeo.columbia.edu

Abstract

Large slivers and enclaves (up to 100 x 2000 meters) of serpentinites form tectonic imbricates within mafic supracrustal rocks of the Mesoarchaean Tartoq Group in SW Greenland. In this study we present new bulk-rock major, trace and platinum-group element data, and preliminary Re-Os isotope data for these serpentinites. Additionally, we present in situ major and trace element data for chromite and magnetite.

Bulk-serpentinite major and trace element compositions allow us to rule out komatiitic, picritic, boninitic or residual mantle origins. Rather, the fractionated platinum-group patterns for the Tartoq Group serpentinites suggest a cumulate origin. The bulk-rock Re-Os isotope data shows Re-depletion ages (T_{RD}) of ca. 2300, 2800 and 2950 Ma for the three analysed samples. These ages are younger than the 2986 ± 4 Ma minimum age of the Tartoq Group, and suggest disturbance of the Re-Os system during metamorphism or post-magmatic metasomatic events. Late resetting and metamorphic overprinting is in agreement with oxide mineral compositions, which are not primary
as indicated by negligible Mg and Al contents and elevated Fe$^{3+}$ ($>$55). Although the major and
trace element data do not provide conclusive evidence for the petrogenesis of these Mesoarchaean
serpentinites, we observe remarkable similarities with ultramafic rocks associated with the lower
crustal cumulates. In particular, ultramafic cumulates of the Kohistan and Talkeetna island arc
sections are compositionally comparable, if we allow for slight loss of MgO and addition of SiO$_2$
during early alteration, serpentinisation and metamorphism. Based on these similarities, we propose
an arc origin for the Tartoq Group serpentinites. Previous geochemical and structural studies of the
enclosing Tartoq Group supracrustal rocks also point to formation in a subduction zone geodynamic
setting. This suggests that this assemblage of imbricated mafic to ultramafic rocks and minor
sediments represents a Mesoarchaean arc-related ophiolite.

Keywords: Archaean; Ultramafic cumulates; Metamorphic spinel; Platinum-group elements;
Olivine fractionation

1. Introduction

Serpentinites, especially those of Archaean age, are commonly difficult to interpret in terms of
their petrogenesis, because relics of their primary mineralogy are rarely preserved and hydration is
assumed to have modified their bulk-rock compositions (e.g., Dechamps et al., 2013; Matchesi et
al., 2013). Here, we present new geochemical data for serpentinites of Mesoarchaean age from the
Tartoq Group of SW Greenland, and show that these ultramafic rocks preserve sufficient
geochemical characteristics to reconstruct their protoliths and their likely geotectonic setting.

Detailed information on the structural geology and the geochemical composition of the
Mesoarchaean Tartoq Group has recently become available (Kisters et al., 2012; Szilas et al.,
2013a). Nevertheless, the petrogenesis of the large serpentinite bodies (up to 100 x 2000 meters)
that are associated with the supracrustal rocks is poorly constrained at present, and several possible
origins can be imagined for these ultramafic rocks, e.g., 1) picritic/komatiitic lava flows, 2)
ultramafic cumulates, 3) mantle residues, 4) melt-mantle reaction products, or 5) tectonised
subcontinental mantle.

The structural analysis of Kisters et al. (2012) concluded that the fabrics of the Tartoq Group are
consistent with burial and subsequent return flow during subduction–accretion along an obliquely
convergent margin. This interpretation is in agreement with the geochemical signatures of the mafic
rocks, which Szilas et al. (2013a) interpreted as being indicative of a fore-arc or back-arc
geodynamic setting. These authors further argued that the Tartoq Group represents a dismembered
arc-related ophiolite (cf., Dilek, 2003), and the associated serpentinites were inferred to represent
the lower crustal ultramafic cumulate/mantle portion of this island arc-related oceanic crust section.
Here, we test this hypothesis in a detailed study of bulk-rock major, trace and platinum-group
element data from these serpentinites, which we compare with published data of ultramafic rocks
from a broad range of geological settings.

2. Regional geology

The Tartoq Group supracrustal rocks are located within Archaean orthogneisses near the
southern margin of the North Atlantic craton (see Windley and Garde, 2009). The Tartoq Group
comprises several km-sized, tectonic and subsequently intruded and brecciated mafic slivers and
enclaves along the Sermiligaarsuk Fjord (Fig. 1). Early work suggested that the Tartoq Group was
deposited onto Archaean basement (Higgins and Bondesen, 1966; Higgins, 1968), whereas later
studies re-interpreted the mafic volcanic sequence as relics of oceanic crust with associated
volcanogenic massive sulfide deposits (e.g., Appel and Secher, 1984; Petersen, 1992; Evans and
It is now well-established that intrusive granitoid sheets of the tonalite-trondhjemite-granodiorite (TTG) suite cut the Tartoq Group and that the supracrustal rocks predate all of the regional orthogneisses. These TTG intrusives yield U-Pb zircon minimum ages of 2944 ± 7 Ma (Nutman and Kalsbeek, 1994) and 2986 ± 4 Ma (Szilas et al., 2013a). The mafic supracrustal rocks themselves yield a Lu-Hf errorchron age of 3189 ± 65 Ma, consistent with the Mesoarchaean minimum age from TTG sheets (Szilas et al., 2013a). Most of the supracrustal slivers display both fault-bounded and intrusive contacts with the TTG gneisses, which have been interpreted to reflect burial and exhumation of the supracrustal rocks along a convergent margin (Kisters et al., 2012). This is consistent with the overall geochemical characteristics of the Tartoq Group mafic tholeiitic rocks, which indicates an island arc-related affinity (Szilas et al., 2013a). The mafic supracrustal rocks record metamorphic conditions ranging from greenschist to lower granulite facies (Van Hinsberg et al., 2010; Kisters et al., 2012). Large parts of the Tartoq Group have undergone variable degrees of retrogression and hydrothermal overprint (Van Hinsberg et al., 2010). Early mylonitic and late cataclastic fabrics are commonly observed in carbonated high strain zones that show evidence of extensive hydrothermal fluid flow and which are associated with Au occurrences (King, 1985; Petersen, 1992; Evans and King, 1993). These high-strain zones are usually marked by mylonitic felsic schists from which detrital zircon with ages as young as 2824 ± 6 Ma have been extracted (Nutman et al., 2004). This age represents the minimum age constraint for the imbrication of the Tartoq Group with younger TTG gneisses. The late thrusting and carbonate alteration postdates the TTG formation, but predates the ca. 1800 Ma Ketilidian orogen based on the structural geology (Van Hinsberg et al., 2010; Kisters et al., 2011, 2012).

Berthelsen and Henriksen (1975) suggested that sheet-like serpentinites in the Bikuben sliver (Fig. 1) could be intrusive into the Tartoq Group and that they may represent ultramafic sills or dykes. However, Szilas et al. (2013a) noted that there are no crosscutting relationships to
support this claim. Instead the steeper-dipping fabric of some talc-schists, relative to the surrounding mafic amphibolites and greenschists likely resulted from localised strain in the relatively incompetent talc schists. Moreover, talc fabrics commonly postdate the foliation in the enclosing schists and gneisses. Thus, the highly sheared contacts of the serpentinites provide little information about their original contact relationships or protoliths. Furthermore, the geochemical compositions of the serpentinites are not compatible with any known ultramafic magmas (Section 6.2). Nevertheless, it should be noted that the serpentinites invariably occur in areas with strong deformation, and are commonly in contact with TTG gneiss thrust sheets. This suggests at least a local structural control on their position within the Tartoq Group stratigraphy.

Pegmatites and granites of currently unknown ages intrude the Tartoq Group, as well as the TTG orthogneisses. These are themselves cut by several generations of post-tectonic mafic dykes of likely Mesozoic age (Higgins, 1990). The Palaeoproterozoic Ketilidian supracrustal rocks unconformably overly the Tartoq Group and the Archaean orthogneiss terrane to the east (Higgins and Bondesen, 1966; Berthelsen and Henriksen, 1975).

3. Samples and petrography

Serpentinite samples presented in this study were collected from five different mafic slivers in the Tartoq Group (Fig. 1). The serpentinites generally crop out as elongate bodies that can be traced for tens of metres to several kilometres and have thicknesses up to 100 meters (Fig. 2). They always have a margin consisting of talc–carbonate–magnetite schist, but the thickness of this rind varies considerably (Fig. 2d). For example, at Iterlak most outcrops are completely hydrated to carbonated talc schists, whereas at Bikuben talc schists form only thin rinds of a few cm, thereby mimicking the extent of retrogression of their mafic host rocks. The serpentinites consist mainly of serpentine
and disseminated magnetite/chromite, although some samples also contain magnetite segregations and veins. In one locality (Amitsuarsua), chromite forms a boxwork or mesh that outlines relict mineral textures (Fig. 3a). This serpentinite sliver is the least deformed ultramafic body observed in the Tartoq Group, and, together with its metamorphic grade, low-amphibolites facies (van Hinsberg et al., 2010), is the most likely locality to preserve primary textures. Szilas et al. (2013a) interpreted this texture as that of a primary olivine-rich cumulate or mantle rock. In contrast, the magnetite veins in several higher grade metamorphic grade serpentinites in the Bikuben sliver (Fig. 3b), which give the rock a spinifex-like texture, are resulting from later segregation of magnetite, likely during growth of metamorphic amphibole. These magnetites lack chromite cores and are texturally distinct. Transitions from serpentinite to the enclosing talc-schists are abrupt and no gradual change in mineralogy is observed. Although this could be a reaction front, the complete absence of carbonate minerals in the serpentinites, and the difference in foliation generation between serpentinite and talc-schists lead us to conclude that the ultramafic rocks have been subjected to two metasomatic events: 1) initial serpentinisation of primary minerals; and 2) later hydration and carbonation to form the talc-schist rinds.

The serpentinite bodies either occur close to the sheared contacts between the supracrustal rocks and the surrounding TTG gneisses or in the central parts of mafic slivers (Fig. 2). In the latter case, the serpentinites are spatially closely associated with internal shear zones that led to the structural assembly of larger mafic slivers. For example, in the Amitsuarsua sliver a ca. 50 × 200 m serpentinite body is completely enveloped by sheared greenschists that form part of the central, several tens of meter wide strike-slip zone within the supracrustal belt (Kisters et al., 2012). In the eastern part of Iterlak the serpentinites are strongly sheared into a thin linear belt on the thrust plane (Fig. 2). These rocks can be traced into a unit of sheared and finely laminated (mm-scale) magnetite-amphibole rocks that have the appearance of banded iron formation (BIF). This locality
was described as BIF sensu stricto by Appel (1984), but due to the above-mentioned field observations, we re-interpret it as a metasomatic lithology. Such strongly metasomatised rocks are not included in the present study.

4. Methods

We have acquired major and trace element data by ICP methods from ACMELabs, Vancouver. Platinum-group element data were obtained at Université du Québec à Chicoutimi by NiS-FA pre-concentration followed by MC-ICP-MS measurement (Savard et al., 2010). Electron microprobe and LA-ICP-MS trace element analysis of oxide minerals was conducted at McGill University, Montreal. Re-Os isotope analysis was completed at the University of Alberta by carius tube digestion and N-TIMS measurement. The reader is referred to the online Appendix A for a detailed description of the analytical procedures. We present additional geochemical plots and diagrams in Appendix B and give the references to these figures the prefix ‘B’. All geochemical diagrams were made in the GCDKit freeware program of Janosek et al. (2006).

5. Results

5.1. Bulk-rock major and trace element data

We have acquired major and trace element data for six serpentinite samples (Supplementary Table 1), which supplement the fifteen samples that were previously published in Szilas et al. (2013a) and the following presentation of the Tartoq Group serpentinites is based on the combined dataset. These data are fully comparable, because the new analyses were performed at the same
laboratory in a batch that immediately followed the previously published data. All data have been normalised to a volatile free composition. Loss on ignition (LOI) from dehydration and decarbonation range from 9.4 to 23.6 wt.% (median value of 12.2 wt.%). We have divided the serpentinites into a low- and high-Ir group, as explained in Section 5.2. However, these two groups do not appear to have significant major or trace element differences and are thus described together in the following section.

The Tartoq Group serpentinites (n = 21) are MgO-rich (34.94-41.95 wt.%) and have variable Al₂O₃ (0.13-5.51 wt.%), CaO (0.02-2.97 wt.%) and TiO₂ (0.00-0.26 wt.%). They have FeOt of 9.50-17.27 wt.% and SiO₂ ranges between 40.61 and 49.70 wt.%, as seen in Figure 4. Na₂O, K₂O and P₂O₅ are virtually absent in these rocks. Chromium concentrations are between 452 and 5337 ppm and Ni ranges between 229 and 3110 ppm (Fig. 4). Many of the incompatible trace elements are present in abundances that are below the analytical detection limits in our data set. This is the case for Th, Ta, U and W and to some degree for Ba, Cs, Hf and Nd. The serpentinites have variable chondrite-normalised rare earth element (REE) patterns with (La/Sm)CN from 0.70 to 3.64 and Eu/Eu* from 0.41 to 2.00 (Fig. B1). Their primitive mantle-normalised trace element patterns are relatively flat with large positive anomalies for Pb, large negative anomalies for Sr (Fig. 5).

We have calculated the normative mineralogy of the serpentinites following the procedure of Kelemen et al. (1992, 1998) in order to estimate the mineralogy of their protoliths (Supplementary Table 1). Our calculations suggest that these rocks were originally harzburgites (Fig. B2) with olivine Mg# between 73 and 84. However, we point out that there are large uncertainties in these estimates, and the Mg# in particular, resulting from obvious post-magmatic disturbance to these ultramafic rocks during serpentinisation and metamorphism (see Section 6.1).
We have acquired platinum-group element (PGE) data for all of the 21 serpentinite samples from the Tartoq Group. This data can be found in Supplementary Table 2. We present the PGEs normalised to the chondrite abundances of Fisher-Gödde et al. (2010) and have added Au to complete the incompatible part of the pattern.

In general, two different types of PGE patterns can be distinguished in the Tartoq Group serpentinites (Fig. 6): 1) high-Ir group and 2) low-Ir group, which can be differentiated by having values of above or below 1.5 ppb Ir, respectively (the detection limit of Ir is 0.025 ppb and the 1σ-uncertainty is 0.07 ppb).

We found that the textures of the high-Ir group are commonly of the boxwork/mesh type, whereas the low-Ir group samples are generally of the magnetite-veined type. However, given that these two groups may simply represent a continuum of two end-members, this classification may be rather arbitrary.

The high-Ir group is characterised by relatively high Os and Ir abundances (>2.0 and >1.79 ppb, respectively) and by having negative slopes from Os to Pt. Whereas the serpentinites of the low-Ir group have distinctly positive Ru anomalies with the exception of sample 510777, which has the lowest Ru value of all samples (1.06 ppb). Almost all of the samples display negative Pt anomalies.

5.3. Electron microprobe data

Major element data for oxide minerals in the serpentinite samples show that these are spinels, with most of their compositional variation between the chromite and magnetite end-members (Supplementary Table 3). The highest chromite contents, with up to 85% chromite component, were observed in the cores of large oxide grains and in the least deformed samples. No high-Cr
oxides were observed among small grains or in the minor oxide segregations. One sample from Amitsuarsua (509632) also contained ilmenite, which was intergrown with low-Cr magnetite. Overall the Tartoq Group chromites have very low Mg# (<2), high Cr# (>74) and high Fe$^{3+}$# (>55) as shown in Figures B3-B4.

5.4. In situ spinel trace element data

Trace element concentrations were determined for a subset of oxide grains analysed by electron microprobe (Fig. 7; Supplementary Table 4). Concentrations broadly split the analyses into two groups, and these groups correlate directly to the chromite content of the grains. High-Cr oxides are enriched in V, Mn, Cu, Zn, and U, and depleted in Ni compared to the low-Cr group. The difference is particularly striking for Zn, with the high-Cr group having concentrations up to 1.4 wt.%, whereas the low-Cr group has a Zn content on the order of tens of ppm. The low-Cr group represents a later generation compared to the high-Cr group, as seen from their textural relationships in thin section. There is a consistent decrease in Zn content, as well as in the other elements associated with decreasing Cr-content in the high-Cr group. There are also region-specific compositional features. For examples, oxides from the Iterlak serpentinites are characteristically rich in Ga, but low in Ti and Mn, and this persists when the oxide composition is divided by its host rock bulk composition.

5.5. Re-Os isotope data

We have measured the Re-Os isotope compositions in three serpentinite samples in order to calculate the time when melt was last extracted from them, assuming that they may represent mantle
residues. Alternatively, in the case of a magmatic origin of the serpentinites the Re-depletions ages may represent their final metamorphic resetting and/or interaction with metasomatic fluids. The Re-Os isotope data are presented in Supplementary Table 5. Furthermore, we have recalculated existing Re-Os data from regional subcontinental lithospheric mantle xenoliths (Wittig et al., 2010), by using the same parameters that we use below to make a direct comparison possible.

The Tartoq Group serpentinite samples have γOs ranging from -12.0 to -15.5, using the chondrite values of Shirey and Walker (1998). The model ages (T_{MA}) are ca. 2650, 3650 and 3500 Ma and their corresponding Re-depletion ages (T_{RD}) are ca. 2300, 2800 and 2950 Ma.

6. Discussion

6.1. Alteration and element mobility

The geochemical signatures of the Tartoq Group serpentinites have to be treated with caution to avoid over-interpretation, because the trace element abundances are generally low, with several element concentrations being below their respective detection limits, which makes them susceptible to compositional overprinting. Furthermore, the complex history of these Mesoarchaean rocks, involving metasomatism and metamorphism, will likely have modified their primary compositions, as also documented in other supracrustal belts in SW Greenland (e.g., Polat and Hofmann, 2003; Ordóñez-Calderón et al., 2008; Szilas and Garde, 2013). It is well-established that serpentinisation during seawater interaction results in enrichment in large ion lithophile elements (LILE) and LREE (resulting in positive Eu anomalies), as well as carbonate-hosted trace elements (Pb and Sr) when accompanied by carbonation (Niu, 2004; Paulick et al. 2006; Kodolányi et al., 2012; Marchesi et al., 2013a). We note that Sr is actually lost in these serpentinites, which could either be due to
alteration or because plagioclase phenocrysts retained Sr in the magmas. MgO can show considerable depletion or enrichment depending on the temperature at which the serpentinisation occurs, but commonly MgO-loss is observed during seafloor weathering (Snow and Dick, 1995). Similar element mobility is observed during high-temperature serpentinisation by crustal-derived fluids (Liu et al., 2008; Deschamps et al., 2013; Xie et al., 2013).

SiO$_2$ is generally not affected by serpentinisation, however, given the large chemical gradient between the serpentinites and the surrounding TTG gneisses, it is not unlikely that mobilisation of SiO$_2$ into the serpentinites could have occurred to at least some degree. If this was the case, then it would obviously affect our calculations of the normative mineralogy of the protolith for the serpentinites, and subtraction of silica would result in dunitic rather than harzburgitic compositions.

6.2. Bulk-rock major and trace element signatures

In the following we compare the compositions of the Tartoq Group serpentinites with geochemical data for ultramafic rocks from a broad range of geodynamic settings, with the aim of identifying, or at least narrowing down, the possible origins of these serpentinites.

When considering potential protoliths for the Tartoq Group serpentinites their very high MgO contents (34.94-41.95 wt.%) and their generally low trace element abundances rule out a picritic or komatiitic magma origin (B5-B8). The tight clustering of MgO concentrations in the serpentinites is a first-order argument against an origin as a fractionation series derived from komatiite/picrite magmas, as discussed below. Given our large and representative sample set of the Tartoq Group, the observed bimodal MgO variation is not consistent with continuous evolution of high-Mg magmas and in particular the elevated FeOt in the serpentinites is not similar to any of these ultramafic magmas.
We have compared our serpentinite data with the extensive komatiite data set of Fiorentini et al. (2011) in Figures B5 and B6. Primary komatiite liquids have MgO ranging from 18 to 30 wt.% (Arndt et al., 2008), which is significantly lower than the median value of 39 wt.% for the Tartoq Group serpentinites. Although these serpentinites would fall on the high-MgO cumulate part of the magmatic trend in variation diagrams for komatiites, there are important differences in their FeOt content (Fig. B5). It is also clear that only cumulates derived from komatiites can attain these low incompatible element abundances, but that the geochemical compositions of the corresponding Tartoq Group basalts are not consistent with a komatiitic origin (Fig. B6). The narrow MgO range of the serpentinites and the relatively low MgO (4.2-16.4 wt.%) of the Tartoq Group basalts is therefore not consistent with derivation of either from continuous fractionation of a komatiite magma.

We have also compared the Tartoq Group serpentinites with picrites from the Georoc database (2013), as illustrated in Figures B7-B8. As was observed for the komatiite data, the Tartoq Group serpentinites have significantly lower incompatible element abundances and unusually high MgO in comparison with these data. The low incompatible element abundances cannot represent later compositional overprinting of the serpentinites, because the enclosing rocks all have significantly higher concentrations of these elements, and enrichment rather than depletion should thus occur during overprinting. Given that accompanying (more evolved) picritic/komatiitic rocks are not observed anywhere in the Tartoq Group stratigraphy, and that the serpentinites form a tight cluster at around 40 wt.% MgO, and finally that they have FeOt well above the magmatic trends, leads us to exclude an ultramafic magma origin.

Even if substantial element mobility had affected the Tartoq Group serpentinites, their systematically low incompatible element compositions and their tight MgO range is not consistent with any known ultramafic magma composition. We can additionally rule out a boninitic origin due
to the undepleted trace element patterns and the relatively low SiO\textsubscript{2} of the Tartoq Group basalts. Furthermore, we can rule out that the serpentinites represent cumulates derived from such picritic, komatiitic or boninitic magmas, because none of these rock types are observed in the Tartoq Group, which is instead entirely dominated by tholeiitic basalts (Szilas et al., 2013a).

It is further unlikely that the Tartoq Group serpentinites represent tectonised subcontinental lithospheric mantle (SCLM), because their bulk-rock compositions are significantly different from the regional SCLM data reported by Wittig et al. (2010), as shown in Figure B9. The serpentinites are not as depleted in major elements as SCLM xenoliths, which have significantly higher MgO and lower FeOt. The Tartoq Group serpentinites have flat trace element patterns, whereas SCLM xenoliths generally have enriched patterns due to metasomatism (e.g., Wittig et al., 2008; Maier et al., 2012). We do note that peridotites exposed in the Ussuit area along the northern margin of the North Atlantic craton, which were described by Kalsbeek and Manatschal (1999), have similar major and trace element compositions compared to the Tartoq Group serpentinites, except for lower FeOt in the former rocks (Figs. B10-B11). These authors interpreted the Ussuit rocks as depleted mantle harzburgites that were related to crustal scale tectonic activity of the Archaean basement. Therefore, these rocks could either represent remnants of dismembered ophiolite mantle or parts of the subcontinental lithospheric mantle. The Tartoq Group is located close to the southern margin of the North Atlantic craton, and therefore the serpentinites could in principle have been sheared off from the SCLM during the Ketilidian collisional orogeny at ca. 1800 Ma (Windley, 1991). Such a scenario has been documented in western Norway by Beyer et al. (2004, 2012). However, with the exception of a similar tectonic setting, there is no geochemical evidence to support this, and we find this model difficult to reconcile with the large geochemical differences between the Tartoq Group serpentinites and the regional SCLM xenolith data. More importantly, neither the metamorphic
grades, nor the deformational textures are compatible with those of the Ketilidian orogen in this part of SW Greenland.

The major and trace element compositions of the Tartoq Group serpentinites are also not consistent with these rocks representing hydrated abyssal or forearc mantle residues (e.g., Bodinier and Godard, 2003). When compared to the abyssal peridotite data set of Niu (2004), it is clear that the Tartoq Group serpentinites are too Fe-rich to represent depleted MORB mantle and they also have higher Nb and LREE contents (Figs. B12-B13). In particular, they have nearly flat trace element patterns, whereas abyssal mantle rocks are mostly depleted, although there is some overlap (Figs. B14). An even larger discrepancy is observed when compared to Oman mantle peridotites (Godard et al., 2000; Hanghøj et al., 2010) and Mariana fore-arc mantle peridotites, which are strongly depleted (Parkinson and Pearce, 1998) (Figs. B15-B20). We also note that the normative olivine compositions suggest fosterite-contents ($\text{Mg}^{\#}_{\text{olivine}}$) from 73 to 84, which is far too low compared to mantle values ($\text{Mg}^{\#}_{\text{olivine}} \sim 90-92$). The large proportion of normative orthopyroxene (up to 56%) is also not consistent with a mantle residue origin, which would be expected to be less than 30% in mantle harzburgites.

Although the Tartoq Group serpentinites clearly do not represent serpentinised residual mantle rocks, it should be pointed out that mantle rocks can become modified by reaction with percolating melts (Kelemen et al., 1992) and that this is the case in many ophiolites and lower arc crust sections worldwide (e.g., Takazawa et al., 1992; Bédard et al., 1998; Kelemen et al., 2003; Garrido et al., 2007; Marchesi et al., 2009). Therefore, we can only conclude that a residual mantle origin is not compatible with the Tartoq Group serpentinite data, but the trace element patterns of the Tartoq Group serpentinites could potentially have been modified by trapped or percolating melts in the case of a melt-mantle reaction origin. However, SiO_2 is not significantly elevated despite large amounts of normative orthopyroxene. The Tartoq Group serpentinites does have trace element
abundances in the same range as has been documented for modern melt-modified mantle rocks (Deschamps et al., 2013). However, we cannot distinguish between melt-mantle reaction products and ultramafic cumulates on the basis of the bulk-rock major and trace element data alone. Platinum-group elements may help with discrimination of these two possibilities as explained in the following section.

6.3. Platinum-group element patterns

The previous discussion has allowed us to eliminate several possible origins for the Tartoq Group serpentinites (i.e., picritic/komatiitic/boninitic magmas, mantle residues and tectonised subcontinental mantle), so that only two likely candidates for their protoliths remain: 1) ultramafic cumulates or 2) melt-mantle reaction products. Unfortunately, both of these lithologies share many major and trace element characteristics, as a result of interactions between olivine, orthopyroxene and percolating or trapped melts. It is therefore impossible to differentiate between the two origins based on bulk-rock major and trace element data alone. Ideally, primary mineral compositions would be used, but as we explain in Section 6.4 below, there is good evidence to suggest that the Tartoq Group serpentinites have been completely overprinted by metamorphic and metasomatic processes and no primary minerals remain.

The platinum-groups elements (PGEs) remain largely immobile during alteration and metamorphism (e.g., Barnes et al., 1985; Crocket, 2000; Wang et al., 2008). Only extensive oxidation during soil and gossan formation, not observed in the Tartoq Group, can lead to significant mobility (Suárez et al., 2010), although Pt and Pd can also be lost during serpentinisation (Lorand, 1989; Alard et al., 2000; Guillot et al., 2000; Marchesi et al., 2013b). The PGEs thus provide a robust indicator of serpentinite protolith, and mantle residues and cumulates can
potentially be distinguished on the basis of their Ir abundances and their general PGE patterns (Hattori and Hart, 1997; Hattori and Shirahase, 1997; Guillot et al., 2000; Hattori et al., 2010).

PGEs are highly compatible in the mantle, where they are controlled by monosulfide solid solutions (MSS) and sulfide liquids (Li et al., 1996; Alard et al., 2000; Ballhaus et al., 2006; Luguet et al., 2007; Lorand et al., 2008). As shown in these studies, alloys and MSS determines the abundances of iridium-type PGEs (IPGEs: Os, Ir and Ru), whereas platinum-type PGEs (PPGEs: Pt, Pd, Rd) are highly compatible in Cu-Ni-rich sulfides. In general, mantle peridotites have flat chondrite-normalised PGE patterns at about 0.01 times chondritic values, but can also have minor loss of Pt and Pd, depending on the geological setting in which they formed, their degree of melt depletion and if they were later modified by metasomatism (Rehkämper et al., 1997; Lorand et al., 2008; Hanghøj et al., 2010).

During mantle melting, however, PPGEs behave moderately incompatible, so that the derived melts will have positively fractionated PGE patterns (e.g., Barnes and Picard, 1993). Furthermore, evolution of the magmas during fractional crystallisation will tend to increase Pd/Ir ratios of the melts (Maier and Barnes, 2004), and thus the corresponding cumulates will have low Pd/Ir due to precipitation of compatible IPGE-rich phases. Therefore, mantle melts and their derived cumulates have characteristic positively fractionated PGE patterns due to the strongly compatible nature of IPGEs and the moderately incompatible behaviour of PPGEs (Momme et al., 2002; Woodland et al., 2002; Bézos et al., 2005; Fiorentini et al., 2011; Peucker-Ehrenbrink et al., 2012). Cumulate PGE patterns can additionally become fractionated by accumulation of PGE-rich phases.

The positive Ru anomalies that we observe for the low-Ir group could potentially be explained by accumulation of chromite, which has high partition coefficients for Ru (Capobianco and Drake, 1990; Economou-Eliopoulos and Vacondios, 1995; Ballhaus et al., 2006; Locmelis et al., 2011). We note a strong correlation between the occurrence of magnetite/chromite boxwork/mesh textures (as
seen in the Amitsuarsua sliver) and flattish PGE patterns (high-Ir group), in contrast to the presence of magnetite/chromite veining and fractionated PGE patterns (low-Ir group). It would appear that the textures and distribution of chromite is directly responsible for the PGE patterns and in particular the abundances of Os and Ir, which are mainly responsible for the two different patterns (Fig. 6). This could in part, be due to differences in IPGE-rich alloys included in chromite.

The PGE patterns of the Tartoq Group serpentinites are significantly different from the Oman mantle peridotites of Hanghøj et al. (2010), which are generally flat at about 0.01 times chondritic values (Fig. B21). However, there is some resemblance between the PGE patterns from the local SCLM xenoliths of Pyramidefjeld (Wittig et al., 2010) and the high-Ir samples as seen in Figure B22. Similar PGE patterns are also observed for some of the SCLM xenolith data from South Africa and Finland reported by Maier et al. (2012). Although the PGE patterns of the Tartoq Group serpentinite have some resemblance to those observed for SCLM, we have already ruled out a SCLM origin based on the highly dissimilar major and trace element abundances.

Overall, the PGE patterns of the high-Ir group are compatible with a mantle origin for their protoliths (e.g., Hattori and Hart, 1997; Hattori and Shirahase, 1997; Guillot et al., 2000; Hattori et al., 2010). Thus a melt-mantle reaction origin cannot be completely rejected. However, high degree melting (>30%) of mantle can also lead to PGE abundances in the range observed for the high-Ir group, as for example, for komatiite cumulates in the database of Fiorentini et al. (2011), although komatiites do not have as fractioned PGE patterns as the Tartoq Group serpentinites (Fig. B23). We consider that the high degrees of mantle melting, that were achieved during the Archaean (Herzberg et al., 2010), would likely result in elevated IPGE abundances in cumulates derived from mantle melts. The high Os-Ir contents of the high-Ir group could imply cumulate precipitation of IPGE-alloys, likely included in chromite. A cumulate origin is thus consistent with PGE concentrations and patterns observed in the Tartoq Group serpentinites. The PGE data for the low-Ir group
conclusively indicates a cumulate origin based on the lower Os and Ir and the positive Ru anomaly. The latter suggests accumulation of either chromite or orthopyroxene in which Ru is compatible (Ballhaus et al., 2006, Luguet et al., 2007).

6.4. Mineral compositions

As mentioned in Section 1, petrogenetic studies of serpentinites are made difficult by the obliteration of primary minerals due to hydration and breakdown of mafic minerals, as well as oxides such as spinel. Bernstein et al. (2013) found that Fe$^{3+}$# can be used as a guide to identify primary spinel compositions in mantle xenoliths by having Fe$^{3+}$# < 10. A similar value of Fe$^{3+}$# < 12 was used by Hattori and Guillot (2007) for identification of primary spinel in Himalayan serpentinised mantle chromites. However, as seen by the elevated Fe$^{3+}$# of the Tartoq Group chromites (>55), metasomatic disturbance and oxidation has affected these minerals significantly (Fig. B4). This is also indicated by the very low Mg# (<2) in combination with high Cr# (>74) as seen in Figure B3, which are unlike primary magmatic or mantle-related chromites (e.g., Arai et al., 1992; Parkinson and Pearce, 1998; Barnes and Roedder, 2001; Matsukage and Kubo, 2003). We interpret grains with low chromite content as late-stage growth and replacement, although none of these grains represent primary compositions, as metamorphism generally shifts magmatic compositions to high Cr# and Mg# (Evans and Frost, 1974; Barnes and Roedder, 2001). Thus, we consider that metasomatic disturbance has completely reset the major element compositions of spinel in the Tartoq Group serpentinites, which is also supported by the very low Al and Mg content measured with LA-ICP-MS (Section 6.5).

Similar resetting of chromites is reported by Bazylev et al. (2013) in lower crustal ultramafic rocks and by O’Hanley (1996) and Säntti et al. (2006) for serpentinites metamorphosed at
amphibolite facies conditions. Even more relevant for our serpentinites is the study of the Isua supercrustal rocks by Rollinson (2007), who found similar Mg# and Cr# for spinels in serpentinites associated with those rocks. The geological setting and metamorphic conditions of these two different supracrustal associations are indeed very similar (Kisters et al., 2012; Rollinson, 2002). These results therefore suggest that primary magmatic chromite is unlikely to survive serpentinisation followed by amphibolite facies metamorphism.

6.5. In situ chromite trace element compositions

As stated above, the major element compositions of the oxides have experienced complete resetting. The question is then whether or not any of the trace elements in these chromites have preserved their primary compositions. Figure 7 shows the Tartoq Group chromites normalised to MORB chromites. These chromites have likely experienced very reducing conditions due to release of H$_2$ during serpentinisation. This would have had a strong effect on the compatibility of the transition metals (Ti, V, Co, Zn and Cr), which indeed show large total variability. Zinc is positively correlated with Cr, and so are Co and V to some degree, whereas Fe and Cr are negatively correlated. These relations among the transition metals suggest consistent partitioning behaviour. But because there are no systematic variations between cores and rims, and the fact that the major element compositions of the chromite are certainly disturbed by metasomatism, it appears unlikely that any of the trace element variation records primary compositions. The specific trace element abundances are likely a function of the local composition of the metamorphic fluids and the compositions of the mineral phases that were in immediate contact with the chromites. Thus, for lack of preservation, we are unable to use the major or trace element composition of Tartoq oxides to determine the origin of their ultramafic host rocks. In particular the very low Al and Mg contents
of the Tartoq Group chromites is unlike those found in MORB or boninites, which suggests that these are not primary magmatic compositions (Fig. 7).

6.6. Isotope constraints

The observation that the calculated Re-depletion ages (T_{RD}) are younger than the minimum age of 2986 Ma for the Tartoq Group (Szilas et al., 2013a), strongly suggest that the Re-Os isotope compositions of the serpentinites were overprinted after extrusion of the Tartoq Group volcanic sequence. Metamorphism and metasomatism have indeed recently been shown to have the ability to disturb the Re-Os isotope system (Gonzáles-Jiménez et al., 2012; Lorand et al., 2012). Bulk-rock Re-depletion ages thus only represent minimum ages. However, the true magmatic age may be preserved within single minerals (Bragagni et al., 2013; González-Jiménez et al., 2013). Therefore it is possible that our bulk-rock Re-depletion ages record the final terrane assembly/metamorphism if Re was introduced by early melt-rock reactions and was lost during later metamorphism. Alternatively, metasomatic fluids could have brought in Os with a different isotope composition, which overprinted the primary magmatic depletion ages.

When we compare our new Re-Os isotope data with those published for regional SCLM xenoliths it is apparent that the Tartoq Group serpentinites preserve some of the oldest Re-depletion ages in SW Greenland (Supplementary Table 5). Although the geochemical compositions of the serpentinites are very different from those of the SCLM xenoliths, it is possible that they originally formed in a similar geological setting and that their differences simply reflect dissimilar evolution in terms of initial melt depletion, metamorphism and metasomatic history.

Szilas et al. (2013a) reported εNd$_{3190\text{Ma}}$ of $+3.0 \pm 0.4$ and εHf$_{3190\text{Ma}}$ of $+2.1 \pm 0.5$ for one serpentinite sample (510766). This result plots right on the depleted mantle (DM) evolution of the
Sm-Nd system, but about 4 ε-units below the Lu-Hf evolution of the DM (Griffin et al., 2000). The large discrepancy between these two isotope systems is best interpreted as resulting from disturbance of the Lu-Hf systematics due to lack of an appropriate mineral host for Hf in the serpentinites. This is consistent with their extremely low Hf abundances, so they would be prone to crustal contamination and overprinting of their Hf-isotope compositions. However, the fact that εNd3190Ma does indeed plot on the DM evolution line, is not robust evidence for derivation from this source, but could equally well reflect interaction with percolating melts from this source. The latter interpretation would indeed be consistent with the relatively flat melt-like trace element patterns that are observed for the serpentinites, as discussed in Section 6.2. On the other hand these observations are also consistent with a cumulate origin, if they were in equilibrium with the Tartoq Group volcanic rocks. In conclusion, the possibility of younger metasomatism and melt percolation in these rocks, limits the usefulness of the Re-Os, Sm-Nd and Lu-Hf isotope systems with regards to the discrimination between a cumulate and a mantle origin of the Tartoq Group serpentinites.

6.7. Petrogenetic implications

There is mounting consensus that the Mesoarchaean supracrustal belts of SW Greenland represent formation in subduction zone settings (e.g., Klausen et al., 2011; Ordóñez-Calderón et al., 2011; Polat et al., 2011; Szilas et al., 2012a, 2012b, 2013b, in press; Furnes et al., 2013). The overall island arc-like geochemical features of the Tartoq Group mafic tholeiitic rocks (Szilas et al., 2013a), are consistent with such an origin, and this is further supported by the Tartoq Group structures (Kisters et al., 2012). In the following, we therefore explicitly compare the Tartoq Group lithologies to published arc sequences.
The geochemical data for the Tartoq Group displays a good overlap with data from the Mesozoic Kohistan Island Arc (Figs. B24-B25). Interestingly, the ultramafic lithologies of the Kohistan sequence show similar ranges in both major and trace elements, as the Tartoq Group serpentinites. In particular, we find that the similarities that are observed in the ranges of MgO, FeOt, Al$_2$O$_3$, Ni and Cr between the Tartoq Group serpentinites and the ultramafic section of the Kohistan Arc Complex provides the best fit of all rocks with which we have compared our data. This suggests that similar magmatic processes could explain these rock assemblages (Fig. 8).

Unfortunately, the petrogenetic interpretation of the Kohistan ultramafic rocks is ambiguous and explanations include origins as ultramafic cumulates, as well as melt-modified mantle rocks (Jagoutz et al., 2006; Garrido et al., 2007; Jagoutz et al., 2011; Jagoutz and Schmidt, 2012). No detailed discussion of platinum-group element data is available for the Kohistan Island Arc, and the data are limited to two abstracts (Hattori and Hart, 1997; Hattori and Shirahase, 1997). The fact that controversy still surrounds the origin of the ultramafic rocks of the relatively fresh and well-studied Kohistan Arc Complex, shows that this geological problem is difficult to solve. In fact, it has only recently been possible to discriminate between peridotitic melt-mantle reaction products and cumulates in the extremely well-preserved peridotites of the Massif du Sud Ophiolite in New Caledonia (Pirard et al., 2013) and the Oman Ophiolite (Abily and Ceuleneer, 2013). Detailed PGE data, which could have suggested a clear discriminant applicable to the overprinted Tartoq Group serpentinites, are lacking for both of these occurrences.

Geochemical and lithological similarities are also seen between the Talkeetna arc section and the Tartoq Group (Fig. B26-B27). The slightly higher SiO$_2$ in the Tartoq Group serpentinites relative to the dunites of the Kohistan and Talkeetna Arc Complexes could be explained if the protoliths of the Tartoq Group serpentinites were not dunites, but harzburgites as indeed suggested by their normative mineralogy (Fig. B2). However, SiO$_2$ and MgO are notoriously mobile in
metamorphosed Archaean supracrustal rocks (e.g., Polat and Hofmann, 2003; Szilas and Garde, 2013), and the small discrepancies between fresh ultramafic rocks and the Tartoq Group serpentinites are inconsequential considering the tectonic and metamorphic history of the latter. As is the case for the Kohistan section, it is difficult to pinpoint where the actual contact between ultramafic cumulates and the mantle occurs in the Talkeetna arc, which is made additionally difficult because it is unknown how much of the cumulate section has delaminated from the base of the arc (DeBari and Coleman, 1989; Greene et al., 2006; Hacker et al., 2008; DeBari and Greene, 2011). Thus, it seems that at the present there is no consensus regarding the exact petrological origin of the lowermost ultramafic portion of island arc complexes, i.e. mantle vs. magmatic cumulate.

One key-feature of the Tartoq Group serpentinites, in addition to the PGE argument presented above, that makes us propose a cumulate origin, rather than a melt-modified mantle origin, is their high FeOt (9.5-17.3 wt.%) leading to bulk Mg# of 80-88. If we assume that these Mg#’s reflect those of the primary rock and that serpentinisation and metamorphism did not significantly affect MgO and FeOt, then the Mg# is much too low to be of mantle origin. Although minor Fe-mobility is observed in the Tartoq Group serpentinites, it appears restricted to segregation of magnetite, rather than significant Fe-metasomatism. This is supported by the global serpentinite database of Deschamps et al. (2013), which is dominated by mantle-derived rocks in which Fe-rich serpentinites are relatively rare. In contrast cumulate peridotites are commonly Fe-rich (e.g., Nielsen, 1981; Johnson et al., 2004; Liu et al., 2008; Thakurta et al., 2008). Our preferred interpretation of the Tartoq Group serpentinites is thus that they represent harzburgitic cumulates derived from magmas that formed by variable degrees of partial melting of an arc-related mantle source. Large degree melts resulted in the high-Ir group, whereas lower degrees of melting formed
the low-Ir group. However, it is also possible that these two groups simply represent early and late cumulates, respectively.

Given that a harzburgitic normative composition dominates the protoliths of the Tartoq Group serpentinites, we can rule out a cumulate origin derived from anhydrous magmas, because these would crystallise plagioclase after olivine, whereas H\textsubscript{2}O depresses the crystallisation of plagioclase and additionally pushes resulting cumulates to harzburgitic compositions (Müntener et al., 2001; Feig et al., 2006; Müntener and Ulmer, 2006). Furthermore, the apparent absence of clinopyroxene, evidenced by low CaO and Al\textsubscript{2}O\textsubscript{3} content, and hence the potential crystallisation of orthopyroxene indicates that the mantle source was either depleted harzburgite or that the primary magma was relatively silicious (e.g., Tatsumi, 1981; Umino and Kushiro, 1989; Wood and Turner, 2003). One alternative possibility, which cannot be ruled out from the present data, is that the normative orthopyroxene could be a result of reaction between dunite cumulates and trapped inter-cumulus melt (see below), which would also explain the relatively elevated incompatible trace element abundances of the Tartoq Group serpentinites.

All of the above considerations are consistent with the arc-affinity of the Tartoq Group volcanic sequence and thus an origin of the protoliths of the serpentinites as harzburgitic cumulates. Finally, our trace element modelling of the evolution of the tholeiitic basalt during fractional crystallisation of olivine (69%), orthopyroxene (30%) and chromite (1%), fit reasonably well with the observed ranges for the more compatible trace elements (e.g., Ni, Cr, Co, Sc) and suggests about 30% melt crystallisation from least to most evolved sample (Fig. B28). The incompatible trace element ratios are largely unaffected by crystallisation of this ultramafic cumulate as would be expected, and the residual enrichment in the magmas also fit well with the observed evolution of the Tartoq Group mafic sequence (Fig. B29). The major element variation is also compatible with fractional crystallisation of olivine and orthopyroxene from the mafic sequence in the Tartoq Group (Fig.
However, it should be noted that this model would not be significantly different if only olivine and chromite crystallised.

Finally, we have tested the cumulate model by calculating the liquid line of descent of our data set using the Melts software (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998). We used one of the least evolved samples (510687) that we considered to represent a primitive liquid, as the starting composition. Oxygen fugacity was buffered at QFM, pressure was kept constant at 2 Kb, initial H_2O was arbitrarily assumed to be 0.5 wt.% and we used a fractional model from 1310°C to 1150°C at 10°C intervals. **Figure 9** shows that the model is able to reproduce much of the major element variation, although the match is obviously not perfect. The corresponding bulk cumulate is even more depleted than the Tartoq Group serpentinites and variable degrees of trapped inter-cumulus liquid would be able to explain the major element compositions, as well as the elevated incompatible trace element abundances of the serpentinite protolith. A rough mass balance suggests that these cumulate rocks consisted of up to 25% trapped liquids. Most importantly, the modelled cumulates would have up to 13 wt.% FeOt, which support a primary cumulate origin of the serpentinites. SiO$_2$ is also elevated in the serpentinites relative to the calculated cumulate. This could either be due to reaction with trapped inter-cumulus melts or silica metasomatism during metamorphism/alteration. Both of these scenarios would explain the normative orthopyroxene in these rocks without a need for fractional crystallisation of this particular mineral. The model does not take into account that sulfide liquids may also have precipitated with these cumulates and this may explain why Ni is too low in our model (not shown), or alternatively the partition coefficient was incorrect for the given conditions. Likewise, chromitite formation in other parts of the cumulate pile or within the delaminated mantle section could potentially explain the observed lower Cr contents in the serpentinites. In summary, we find that an olivine-dominated cumulate, which
reacted with trapped inter-cumulus melts, would indeed be able to produce the observed bulk compositions of the Tartoq Group serpentinites.

Regardless of whether we can conclusively distinguish between a melt-modified mantle or a cumulate origin for the Tartoq Group serpentinite protoliths, a likely geological setting for these rocks would be at the ultramafic crust-mantle interface, i.e., the petrological Moho. This is entirely compatible with the previous interpretation of the Tartoq Group as remnants of arc-related oceanic fore-arc or back-arc crust (Szilas et al., 2013a). Therefore, the Tartoq Group essentially represents an arc-related ophiolite section (cf., Dilek and Polat, 2008; Dilek and Furnes, 2011; Furnes et al., 2013). Moreover, Kisters et al. (2012) proposed that the Tartoq Group accreted in a convergent margin based on the structural characteristics of these rocks. This would be consistent with the observation that serpentinisation in fore-arcs has an important role in the development of shear zones, thrusting and obduction of arc-related oceanic crust (e.g., Bostock et al., 2002; Lee et al., 2008). The serpentinites were thrust from the base of the Tartoq Group (regardless of their origin) and are now found along structural features, as observed in the Amitsuarsua, Bikuben and Iterlak slivers (Figs. 1 and 2).

Overall, the broad suite of geological and geochemical evidence from the Tartoq Group points to its formation in an arc-related environment. This has important implications for understanding Archaean geodynamics, because it indicates that subduction-zone processes were operating in the Mesoarchaean. This conclusion adds to a growing body of evidence from a diverse range of studies, which all suggest that modern-style tectonic processes began before 3 Ga (e.g., Shirey and Richardson, 2011; Dhuime et al., 2012; Næraa et al., 2012; Hynes, 2013; Szilas et al., 2013b; Gerya, 2014).

7. Conclusions
The Tartoq Group serpentinites have bulk-rock geochemical compositions, which are significantly different from ultramafic magmas (picrites/boninites/komatiites), as well as from mantle residues (both abyssal and arc-related) or subcontinental lithospheric mantle (SCLM) xenoliths. In particular, the bimodal rather than a continuous variation, does not support an ultramafic magma origin.

Based on the bulk-rock geochemical data and their normative harzburgitic composition, we find that the Tartoq Group serpentinites share many similarities with peridotitic cumulates or melt-modified mantle rocks.

The chondrite-normalised platinum-group element (PGE) patterns are compatible with both cumulate and melt-modified mantle origins for the high-Ir group Tartoq Group serpentinites, whereas the low-Ir group is best interpreted as of magmatic cumulate origin.

Although it proves challenging to conclusively distinguish between a cumulate and a melt-modified mantle origin for these serpentinites, we prefer the former model owing to the fractionated PGE patterns and the elevated FeOt content (9.5-17.3 wt.%), which is much higher than what is found in mantle rocks, but within the range of peridotitic cumulates. The Cr and Ni ranges are also more compatible with a cumulate than a mantle origin.

A cumulate origin is also supported by modelling using the MELTS software (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998). In particular, the model results in FeOt up to 13 wt.%, which is unique to ultramafic cumulates relative to magmas and mantle residues.

Laser ablation and electron microprobe analysis of magnetite and chromite in the serpentinites indicates significant metasomatic overprint of these minerals. Thus, they do not preserve any primary petrogenetic information.
Re-Os isotope data suggests that the serpentinites have experienced post-magmatic disturbance, although not to the same degree as the regional SCLM (Wittig et al., 2010) and thus record the oldest Re-depletion events (T_{RD}) in this region with ages up to ca. 2950 Ma.

Overall, we interpret the bulk-rock geochemical data for the Tartoq Group serpentinites as being consistent with an origin as lower crustal ultramafic cumulates, which formed by fractional crystallisation of olivine and chromite, only joined by plagioclase at late stages. The negligible normative plagioclase and clinopyroxene in these cumulates, suggest hydrous melting conditions of the mantle source, possibly in combination with contamination with silica to displace the melt evolution to crystallise early orthopyroxene instead of clinopyroxene. Alternatively, the normative orthopyroxene could reflect reaction between dunite cumulates and trapped inter-cumulus melt, which is indeed suggested by the elevated incompatible trace element abundances in the serpentinites.

Acknowledgements

We thank the Geological Survey of Denmark and Greenland (GEUS) and the Bureau of Minerals and Petroleum (BMP) for funding the fieldwork and for permission to publish these results. K. Szilas acknowledges support from The Danish Council for Independent Research - Natural Sciences (FNU) via grant no. 12-125873. V.J. van Hinsberg acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC). This paper is a contribution to IGCP Project 599. We acknowledge Marco Scambelluri for the editorial handling of the manuscript. We are grateful for critical comments provided by Claudio Marchesi, Hugh Rollinson and one anonymous reviewer, which significantly improved this paper.

References
Abily, B., Ceuleneer, G., 2013. The dunitic mantle-crust transition zone in the Oman ophiolite: Residue of melt-rock interaction, cumulates from high-MgO melts, or both? Geology 41, 67-70.

Higgins, A.K., 1990. Descriptive text to 1:100000 sheets Neria 61 V.1 N and Midternæs 61 V.2 N.

Savard, D., Barnes, S-J., Meisel, T., 2010. Comparison between Ni-fire assay Te co-precipitation and isotope dilution with high pressure asher acid digestion for the determination of platinum-group elements, rhenium and gold. Geostandards and Geoanalytical Research 34, 281-291.

from Re–Os isotope and PGE data of peridotite xenoliths from SW Greenland. Chemical Geology 276, 166-187.

Figure captions

Figure 1. Geological map of the Mesoarchaean Tartoq Group (dark green) and the Palaeoproterozoic Ketilidian supracrustal rocks (light green), which unconformably overlie the former. Based on mapping by GEUS.

Figure 2. Detailed geological maps of the serpentinite localities of the Tartoq Group. Overview maps modified after van Hinsberg et al. (2010). Detailed maps based on 2010 mapping by the authors. Figure 2d is a close-up of the box on the Iterlak map (Fig. 2a). Figure 2e is a close-up of the box on the Amitsuarsua map (Fig. 2b).
Figure 3. Microphotographs of the Tartoq Group serpentinites. a) Typical serpentinite showing distinct boxwork/mesh texture. Serpentine patches seem to pseudomorph original minerals (olivine and/or orthopyroxene) and are surrounded by a mesh of chromite. Note the alignment of the elongated mineral-pseudomorphs. b) Serpentinite from Bikuben, showing an example of the characteristic veined texture type, containing abundant magnetite. The width of both microphotographs is 5 mm.

Figure 4. Element variation of the Tartoq Group serpentinites plotted against MgO. Note the general lack of correlations and the tight compositional ranges. Major elements are in wt.% and trace elements in ppm. Although there are no obvious correlations in the major element variation diagrams (Fig. 4), there is a tendency for elevated Cr and V in the low-Ir group of serpentinites, which are commonly veined by magnetite and chromite (see Section 5.2).

Figure 5. Primitive mantle-normalised trace element diagram for the Tartoq Group serpentinites. There are no significant differences between these two groups and both are generally parallel with the Tartoq Group mafic volcanic sequence (Szilas et al., 2013a). Primitive mantle abundances are from Palme and O’Neill (2003).

Figure 6. Chondrite-normalised platinum-group element (PGE) patterns for the Tartoq Group serpentinites. Chondrite abundances from Fisher-Gödde et al. (2010). The low-Ir group serpentinites have distinctly positive Ru anomalies, which are possibly related to accumulation of chromite. The high-Ir serpentinites have flattish PGE patterns, but also negative Pt anomalies.
Figure 7. In situ laser ablation element patterns for the Tartq Group spinels. Normalised to chromites from MORB (Pagé and Barnes, 2009). Circles represent chromite core analyses, triangles are from rims and squares are from massive grains. The shaded area marks the total range of the samples.

Figure 8. Comparison between the Tartq Group and the Kohistan arc complex. Data of the Kohistan arc complex from Jagoutz and Schmidt (2012). Note the broad overlap of the ultramafic lithologies, which covers the same ranges in compatible elements and in particular the similar range in FeOt, which is a diagnostic feature of these ultramafic rocks.

Figure 9. Comparison between the Tartq Group assemblage and the calculated liquid evolution and corresponding bulk cumulates. Oxygen fugacity is buffered at QFM and the pressure is constant at 2 Kb with an initial H₂O content of 0.5 wt.%. The initial cumulate is dominated by olivine (98%) and chromite (2%), which are joined by plagioclase below 1180°C (the most evolved cumulates are not shown).

Supplementary online material

Appendix A: Detailed methods description

Appendix B: Supplementary diagrams

Supplementary Table 1. Bulk-rock major and trace element data and normative mineralogy.
Supplementary Table 2. Bulk-rock platinum-group element data.

Supplementary Table 3. Electron microprobe data.

Supplementary Table 4. In situ laser ablation ICP-MS spinel data

Supplementary Table 5. Bulk-rock Re-Os isotope data.
Figure 6

Low-Ir group serpentinates

High-Ir group serpentinates