Less Crime May Be Worse

By Brendan O'Flaherty, Columbia University

December 1993
Discussion Paper No. 674
LESS CRIME MAY BE WORSE

Brendan O'Flaherty
Department of Economics
Columbia University
New York, New York 10027
December 1993

ABSTRACT

The probability of being a crime victim, conditional on engaging in risky activity, acts like a tax on the risky activity. The higher the probability, the greater the loss to potential victims in consumer surplus. Higher conditional probabilities, however, do not always increase actual crime; sometimes the decrease in risky activity more than offsets the increase in conditional probability. Under these circumstances, less crime is associated with greater welfare loss.
1. INTRODUCTION

Public perception of crime is often decried as misguided or irrational. Victimization studies, for instance, show that most serious crime has been declining since 1981 [U. S. Bureau of Justice Statistics, 1992], and yet public opinion polls show rising concern about crime. Similarly, experiments show that people like walking patrols even when they do not reduce crime.

This note will argue that public perceptions are probably right. Statistics on crimes actually committed are not the correct measure of the burden of crime. The correct measure is the probability of being a victim, conditional on engaging in risky activity. Increases in conditional victimization probability can lead to fewer actual crimes if they also cause large reductions in risky activity, and for plausible parameter values this relationship will hold. Fewer crimes will be committed, but the burden of crime will be greater.

The best analogy is the Laffer curve in public finance. Think of criminal activity as a tax on risky activity--walking in Morningside Park after dark, leaving your car without an alarm, wearing expensive jewelry, living in the South Bronx. The conditional victimization probability is like the tax rate, and the actual number of crimes is like the revenue that the tax raises. If demand for risky activity is sufficiently elastic, increases in the "tax rate" above a certain level will cause "revenue" to fall.

Why would the "tax rate" ever be set so high as to fall on the wrong side of the Laffer curve? The reason is tragedy of the commons: noncooperative perpetrators can overuse a common
resource—the willingness of victims to engage in risky activities—even though a monopolistic criminal syndicate would not. This part of the story is like the corruption studied by Shleifer and Vishny [1993] or the criminal industrial organization in Schelling [1967].

The next section sets out the model of victim behavior and derives the Laffer curve. Section 3 presents a simple model of perpetrator behavior, and derives the conditions under which increasing crime is associated with a decreasing burden of crime. Section 4 concludes.

2. VICTIMS

A representative potential victim must decide how much of the risky activity to do. Holding her income and the full price of other activities constant, how much of the risky activity she does depends on the full price p:

$$p = p_r + \pi C$$

where p_r is the price of the activity in terms of money and time—Becker's [1965] "full price"—and πC is the expected cost of crime for each unit of the activity: π is the probability of being victimized conditional on engaging in one unit of the risky activity, and C is the cost, in monetary terms, of being victimized.¹

Notice that this formulation presumes that all other activities are safe from crime—just as the usual partial equilibrium analysis of an excise tax assumes that no other commodities are taxed. If other activities has varying degrees of danger attached to them, the algebra would be seriously complicated, but the basic results would not change. We would just have to use the techniques of cost-
benefit analysis for the situation when several markets have distortions.

Let \(D(p) \) denote the demand function for the risky activity. Specifically, let

\[
D(p) = \alpha p^n, \quad \alpha > 0, \quad \eta > 0
\]

and assume that the risky activity constitutes a small enough share of total expenditures that income effects can be ignored.

The burden of crime (for potential victims) \(B \) is the loss in consumer surplus associated with the rise in price from \(p_r \) to \(p_r + \pi C \). Obviously, this burden is a function of \(\pi \):

\[
B(\pi) = \int_{p_r}^{p_r + \pi C} D(p) \, dp.
\]

It is easy to show:

Proposition 1: The burden of crime is a monotonically increasing function of the conditional probability of victimization \(\pi \).

This result does not depend on the particular functional form I have assumed for the demand curve.

The (expected) number of crimes \(A(\pi) \) is the product of \(\pi \) and the level of risky activity \(D \):

\[
A(\pi) = \pi D(p_r + \pi C).
\]

Differentiating (2) gives the Laffer curve result:

Proposition 2: If

\[
\eta > 1 + \frac{p_r}{C},
\]

then for

\[
\pi \geq \pi^* = \frac{p_r}{C(\eta - 1)}
\]

\(A(\pi) \) is a decreasing function of \(\pi \).
Corollary: If (3) holds and $\pi \geq \pi^*$, increases in π increase the burden of crime but decrease crime.

From proposition 2 we can see when the Laffer curve result is likely to hold: when demand is elastic, when the conditional probability of victimization is large, and when crime is very costly relative to the normal activity. This is not a bad picture of violent urban street crime.

3. PERPETRATORS

The equilibrium value of π depends on the actions of perpetrators as well as those of victims. Let there be a large number n of identical perpetrators--large enough so that each takes π and $D(\pi)$ as given. Each perpetrator i chooses a number of crimes A_i to commit, and so the total number of crimes is

$$A = n A_i.$$

Each perpetrator chooses A_i to maximize a quadratic utility function

$$u(A_i) = \tau A_i - \frac{\gamma A_i^2}{2 D(\pi)}, \quad \tau > 0, \gamma > 0.$$

In (4), τ is the benefit from committing a crime (generally $\tau < C$) and γ represents the cost, including the probability of punishment. $D(\pi)$ in the denominator of (4) represents the increased costs that fewer victims cause for perpetrators. Obviously, more sophisticated versions of this relationship are possible; Clotfelter [1978] can be understood as a catalogue of some of the possibilities. These simple functional forms, however, are sufficient for our purposes.
From the first-order conditions for utility-maximization, we can write the number of crimes perpetrators commit as a function of victim behavior \(D(\pi) \):

\[
A(\pi) = \frac{n\pi}{\gamma} D(\pi).
\]

Comparing (2) and (5) gives the necessary and sufficient condition for an internal equilibrium:

Proposition 3: At an internal equilibrium, the conditional victimization probability is

\[
\pi^{**} = \frac{n\pi}{\gamma}.
\]

Figure 1 illustrates the equilibrium: the supply curve of risky behavior given by (2) must intersect with the demand curve given by (5). The demand curve (5) must be a decreasing function of \(\pi \) (negligible income effects imply that the risky activity cannot be a Giffen good), while the supply curve (2) can either increase or decrease. At the intersection, the algebraic slope of (5) must be smaller than the algebraic slope of (2).

Equilibrium will be on the downward slope of the Laffer curve if \(\pi^{**} > \pi^* \). Simple algebraic manipulation yields:

Proposition 4: Decreasing crime will be associated with an increasing burden of crime in the neighborhood of equilibrium if

\[
\eta > 1 + \frac{n\pi}{\gamma} \frac{p_r}{C}.
\]

Hence the perverse relationship between actual crime and the burden of crime is more likely when demand elasticity is large, the crime is horrible relative to the normal cost of the activity, and the rewards of crime are large relative to its cost to the perpetrators.
This argument has restricted welfare analysis to the welfare of potential victims only. Considering the welfare of perpetrators as well would only strengthen it by making the Laffer curve peak at a smaller probability of victimization.

Notice that if (6) holds, anticrime measures like increased incarceration (reducing \(n \) and possibly increasing \(\gamma \)) and increased legitimate employment opportunities can make victims better off even though they increase the amount of crime (more perpetrators may be in prison or working in legitimate jobs, but the ones who are not commit more crimes).

4. CONCLUSION

Anticrime measures should not be judged by their effects on actual crime. Especially for violent street crime, what matters are the conditional probability of victimization and the associated loss in consumer surplus.

This conclusion has an important implication. For most individuals at most times, \(\pi \) is impossible to observe, and doing experiments could be extremely costly. It seems implausible to posit a learning process that could lead people to learn \(\pi \) in any reasonable amount of time. A more natural model would be a multi-armed bandit (no pun intended) process, in which optimal play does not surely lead to finding true probabilities. Whether losses are greater when people are uninformed than when they are informed is a subject for further work.

NOTE
1. There are (at least) two ways that this particular formula can be derived from utility maximization.

 First, suppose utility is of the form
 \[u(x_r, x) - (\pi x_r)G, \]
 where \(x_r \) is the level of the risky activity, \(x \) the level of other activities, and \(G \) is the utility loss from being a crime victim. Let \(\lambda \) denote the marginal utility of (time and money) income and let
 \[C = G/\lambda. \]
 First order conditions include
 \[\frac{\partial u}{\partial x_r} = \lambda (p_r + \pi C), \]
 and so \((p_r + \pi C) \) can be treated as the price of the risky activity.

 Alternatively, let the utility function be standard, without crime entering into it directly, but let crime reduce income by \(C \). Then if the potential victim is sufficiently insured that she faces an expected income constraint, (1) also follows.

REFERENCES

The following papers are published in the 1992-93 Columbia University Discussion Paper Series which runs from July 1 to June 30. Individual discussion papers are available for purchase at $5.00 (U.S.) each for domestic orders and $8.00 (U.S.) for foreign orders. Subscriptions to the Series are available at a cost of $185.00 (U.S.) per foreign subscription and $140.00 (U.S.) per domestic subscription. To order discussion papers, please send your check or money order payable to Department of Economics, Columbia University to the above address. Please make sure to include the series number of the paper when you place an order.

612. Irreversible Choice of Uncertain Technologies with Network Externalities
 Jay Pil Choi

 Richard H. Clarida

614. Cointegration, Aggregate Consumption, and the Demand for Imports: A structural Econometric Investigation
 Richard H. Clarida

615. Projecting the Number of New AIDS Cases in the U.S.
 David E. Bloom and Sherry Glied

616. Financial Markets for Unknown Risks
 Graciela Chichilnisky and Geoffrey M. Heal

617. Financial Innovation and Endogenous Uncertainty in Incomplete Asset Markets
 Graciela Chichilnisky and Ho-Mou Wu

618. Arbitrage and Equilibrium in Economies with Infinitely Many Securities and Commodities
 Graciela Chichilnisky and Geoffrey M. Heal

619. Market Innovation and the Global Environment
 Graciela Chichilnisky

620. Option and Non-Use Values of Environmental Assets
 Andrea Beltratti, Graciela Chichilnisky and Geoffrey Heal
621. Competition among Institutions
Andrew Caplin and Barry Nalebuff

622. Speculation on Primary Commodities: The Effects of Restricted Entry
John McLaren

623. Why did Big Coffee seek regulation? A theory of dynamic monopsony pricing without commitment
John McLaren

624. Speculative Equilibria of "Managed" Primary Commodity Markets
John McLaren

625. Income Distribution, Political Instability, and Investment
Alberto Alesina and Roberto Perotti

626. The Political Economy of Growth: A Critical Survey of the Recent Literature and Some New Results
Alberto Alesina and Roberto Perotti

627. The Term Structure of Forward Exchange Rates and the Forecastability of Spot Exchange Rates: Correcting the Errors
Richard H. Clarida and Mark P. Taylor

628. Why Homelessness? Some Theory
Brendan O'Flaherty

629. A Note on Heteroskedasticity Issues
Phoebus J. Dhrymes

630. Who Is Bearing the Cost of the AIDS Epidemic in Asia?
David E. Bloom and Sherry Glied

631. Optimal Tariffs and the Choice of Technology: Discriminatory Tariffs vs. the "Most Favored Nation" clause
Jay Pil Choi

632. A Useful Lemma
Phoebus Dhrymes

633. The New Homelessness in North America: Histories of Four Cities
Brendan O'Flaherty

634. Burn-Outs: Fire Victims in North Jersey, the Red Cross, and the Housing Market
Brendan O'Flaherty
635. Labor and the Emerging World Economy
 David E. Bloom and Adi Brender

636. Fiscal Policy, Income Distribution, and Growth
 Roberto Perotti

637. The Political Economy of Redistribution in a Federal System
 Roberto Perotti

638. A Note on Identification Test Procedures
 Phoebus Dhrymes

639. The Optimal Income Tax Schedule
 Kelvin Lancaster

640. Strategies for Trade Liberalization in the Americas: A Report to ECLAC
 Graciela Chichilnisky

641. Robustly Efficient Equilibria in Non-Convex Economies
 Graciela Chichilnisky and Geoffrey Heal

642. Financial Markets for Unknown Risks
 Graciela Chichilnisky and Geoffrey Heal

643. Price Uncertainty and Derivative Securities in a General Equilibrium Model
 Graciela Chichilnisky, Jayasri Dutta and Geoffrey Heal

644. North-South Trade and the Dynamics of Renewable Resources
 Graciela Chichilnisky

645. Global Environmental Risks
 Graciela Chichilnisky and Geoffrey Heal

646. Chaotic Price Dynamics, Increasing Returns & the Phillips Curve
 Graciela Chichilnisky, Geoffrey Heal and Yun Lin

647. Notes on the Political Economy of Nationalism
 Ronald Findlay

648. After Maastricht: Public Investment, Economic Integration, and International Capital Mobility
 Richard Clarida and Ronald Findlay

649. Markets, Arbitrage and Social Choices
 Graciela Chichilnisky
650. Limited Arbitrage is Necessary and Sufficient for the Existence of a Competitive Equilibrium
Graciela Chichilnisky

651. Existence of a General Equilibrium with Price Uncertainty
Graciela Chichilnisky

652. Existence of an Optimal Path in a Growth Model with Endogenous Technical Change
Graciela Chichilnisky and Paul F. Gruenwald

653. Explaining Economic Growth
David Canning

654. The Effects of Sectoral Decline on the Employment Relationship
Todd L. Idson and Robert G. Valletta

655. Unemployment and the Economic of Gradualist Policy Reform
Michael Gavin

656. Commodity-Price-Destabilizing: Commodity Price Stabilization
John McLaren

657. Executive Compensation and Agency Effects
Todd L. Idson and Lawrence G. Goldberg

658. Will Free Trade With Political Science Put Normative Economists Out of Work?
Brendan O'Flaherty and Jagdish Bhagwati

659. A characterization of Cointegration
Phoebus J. Dhrymes

660. The Production of Human Capital and the Lifecycles of Earnings
Jacob Mincer

661. Price Continuity Rules and Insider Trading
Prajit K. Dutta

662. On Specifying the Parameters of a Development Plan
Prajit K. Dutta

663. Bankruptcy and Expected Utility Maximization
Prajit K. Dutta

664. Moral Hazard
Prajit K. Dutta
665. Information Aggregation and Strategic Trading in Speculation
Prajit K. Dutta

666. Optimal Management of an R&D Budget
Prajit K. Dutta

667. Identification and Kullback Information in the GLSEM
Phoebus J. Dhrymes

668. The Influence of Nonmarital Childbearing on the Formation of First Marriages
Neil G. Bennett, David Bloom and Cynthia K. Miller

669. A Revealed Preference Approach For Ranking City Quality of Life
Matthew Kahn

670. Free Trade: Old and New Challenges
The 1993 Harry Johnson Lecture
Jagdish Bhagwati
The following papers are published in the 1993-94 Columbia University Discussion Paper series which runs from November 1 to October 31. Domestic orders for discussion papers are available for purchase at $5.00 (U.S.) each and $140.00 (U.S.) for the series. Foreign orders cost $8.00 (U.S.) for individual paper and $185.00 for the series. To order discussion papers, please send your check or money order payable to Department of Economics, Columbia University to the above address. Please be sure to include the series number for the paper when you place an order.

671. Investment in U.S. Education and Training
Jacob Mincer (Nov. 1993)

672. Freer Trade and the Wages of the Unskilled: Is Marx Striking Again?
Jagdish Bhagwati and Vivek Dehejia

673. Employer Size and Labor Turnover
Todd Idson

674. Less Crime May Be Worse
Brendan O’Flaherty

675. Team Production Effects on Earnings
Todd Idson

David Bloom and Gilles Grenier

677. The Impact of Performance Incentives on Providing Job Training to the Poor: The Job Training Partnership Act (JTPA)
Michael Cragg

678. The Demands to Reduce Domestic Diversity among Trading Nations
Jagdish Bhagwati

679. Mass Layoffs and Unemployment
Andrew Caplin and John Leahy
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>680.</td>
<td>The Economics of Adjustment</td>
<td>Andrew Caplin and John Leahy</td>
</tr>
<tr>
<td>681.</td>
<td>Miracle on Sixth Avenue: Information Externalities and Search</td>
<td>Andrew Caplin and John Leahy</td>
</tr>
<tr>
<td>682.</td>
<td>Arbitrage, Gains from Trade and Social Diversity: A Unified Perspective on Resource Allocation</td>
<td>Graciela Chichilnisky</td>
</tr>
<tr>
<td>683.</td>
<td>Who should abate carbon emissions?</td>
<td>Graciela Chichilnisky, Geoffrey Heal</td>
</tr>
<tr>
<td>684.</td>
<td>Believing in Multiple Equilibria</td>
<td>Graciela Chichilnisky</td>
</tr>
<tr>
<td>685.</td>
<td>Limited Arbitrage, Gains from Trade and Arrow's Theorem</td>
<td>Graciela Chichilnisky</td>
</tr>
</tbody>
</table>