Theses Doctoral

Mechanisms of Actomyosin Contractility in Cells

Stachowiak, Matthew R.

Many fundamental cellular processes hinge on the ability of cells to exert contractile force. Contractility is used by cells to divide, to migrate, to heal wounds, and to pump the heart and move limbs. Contractility is mediated by the actin and myosin cytoskeleton, a dynamic and responsive meshwork that assembles into various well-defined structures used by the cell to accomplish specific tasks. While muscle contraction is well-characterized, the contraction mechanisms of actomyosin structures in nonmuscle cells are relatively obscure. Here we elucidate the contraction mechanisms of two prominent and related actomyosin structures: the contractile ring, which constricts to divide the cell during cytokinesis, and the stress fiber, which is anchored to the extracellular matrix and allows the cell to exert contractile forces on its surroundings. In the first part of the thesis, we develop a mathematical model to characterize the constriction mechanism of contractile rings in the Schizosaccharomyces pombe model organism. Our collaborators observed that after digesting the cell wall to create protoplasts, contractile rings constricted by sliding along the plasma membrane without cleaving the cell. This novel approach allowed direct comparison of our model predictions for the ring constriction rate and ring shape to the experimental data, and demonstrated that the contractile ring's rate of constriction is determined by a balance between ring tension and external resistance forces. Our results describe a casual relationship between ring organization, actin turnover kinetics, tension, and constriction. Ring tension depends on ring organization through the actin and myosin concentrations and their statistical correlations. These correlations are established and renewed by actin turnover on a timescale much less than the constriction time so that rapid actin turnover sets the tension and provides the mechanism for continuous remodeling during constriction. Thus, we show that the contractile ring is a tension-producing machine regulated by actin turnover whose constriction rate depends on the response of a coupled system to the ring tension. In the second part of the thesis we examine the contraction mechanisms of stress fibers, which have a sarcomeric structure reminiscent of muscle. We developed mathematical models of stress fibers to describe their rapid shortening after severing and to describe how the kinetics of sarcomere contraction and expansion depend on actin turnover. To test these models, we performed quantitative image analysis of stress fibers that spontaneously severed and recoiled. We observed that after spontaneous severing, stress fibers shorten by ~80% over ~15-30 s, during which ~50% of the actin initially present was disassembled. Actin disassembly was delayed by ~50 s relative to fiber recoil, causing a characteristic increase, peak, and decay in the actin density after severing. Model predictions were in excellent agreement with the observations. The model predicts that following breakage, fiber shortening due to myosin contractile force increases actin filament overlap in the center of the sarcomeres, which in turn causes compressive actin-actin elastic stresses. These stresses promote actin disassembly, thereby shortening the actin filaments and allowing further contraction. Thus, the model identifies a mechanism whereby coupling between actin turnover and mechanical stresses allows stress fibers to dynamically adjust actin filament lengths to accommodate contraction.



  • thumnail for Stachowiak_columbia_0054D_10260.pdf Stachowiak_columbia_0054D_10260.pdf application/pdf 3.08 MB Download File

More About This Work

Academic Units
Chemical Engineering
Thesis Advisors
O'Shaughnessy, Ben
Ph.D., Columbia University
Published Here
May 26, 2011