2018 Theses Doctoral
Metal-modified Transition Metal Carbides for Electrochemical Applications
Proton exchange membrane or anion exchange membrane water electrolyzers and fuel cells are still expensive for large-scale commercialization. It requires more investigation and research on finding more economical and efficient electrocatalysts for reactions in these devices. This thesis investigates the performance of metal-modified transition metal carbides on hydrogen evolution reaction (HER) and ethanol oxidation reaction (EOR). The catalysts screening principles for HER and EOR in acid and alkaline are examined and developed by correlating density functional theory (DFT) calculations with experimental results.
Metal-modified transition metal carbides can reduce the amount of platinum group metals required for HER, but it is unclear what descriptors are relevant for these materials for the HER under alkaline conditions. Several transition metal carbides (Mo2C, NbC, TaC, WC, VC) thin films were synthesized and modified with monolayers of platinum or gold. The experimentally measured HER exchange current densities were compared with DFT calculations of adsorbed hydrogen and hydroxyl binding energies. The plot of HER activity versus hydrogen binding energy showed a volcano shape for catalysts in both acid and alkaline electrolytes, but the hydroxyl binding energy did not form a strong correlation with alkaline HER activity.
Relatively high surface area molybdenum carbide (Mo2C) particles was modified with 5 wt % silver, copper, nickel, platinum, and palladium and subsequently assessed for their HER activity in alkaline and acid electrolytes. DFT‐calculated hydrogen binding energies predicted that Pt–Mo2C and Pd–Mo2C should be most active, which was confirmed with experimental results. Similar activity trends were observed at both high and low pH values, with Cu/Mo2C being the least active. X‐ray photoelectron spectroscopy (XPS) confirmed that metal particles remained on the sample before and after HER testing. Pt‐modified nanocrystalline Mo2C showed superior HER activity compared with Pt‐modified commercial Mo2C, making it a potential replacement for bulk Pt in alkaline membrane electrolyzers. The positive effect on the HER activity of the metal contact with non‐passivated Mo2C surfaces was also demonstrated.
Ethanol is an ideal fuel in low-temperature fuel cells. The EOR on platinum-modified tantalum carbide (TaC) was investigated using both model thin films and powder catalysts. The results demonstrated that the 1.5 wt% Pt-modified TaC catalyst obtained enhanced EOR activity compared to Pt. In-situ infrared reflection absorption spectroscopy (IRRAS) study revealed that the Pt surface was less poisoned by EOR intermediates and a higher CO2 selectivity (7~9%) was achieved on the 1.5 wt% Pt/TaC catalyst, compared to the 40 wt% Pt/C. DFT calculations revealed that the binding energies of EOR intermediates on the Pt/TaC(111) surface a weaker than on Pt(111), suggesting an enhanced poison-tolerance from the adsorption of these intermediates. The combined experimental and theoretical investigations strongly suggested that Pt/TaC should be a promising electrocatalyst for EOR.
Palladium-modified tungsten carbide (Pd/WC) as an efficient catalyst was investigated for EOR through combined DFT, surface science and electrochemical measurements. Compared to the Pd(111) surface, DFT calculations suggested that the Pd/WC(0001) surface should be less poisoned by the ethanol decomposition intermediates, consistent with surface science results that desorption temperatures of the detected intermediates were lower on the Pd/WC surface. Electrochemical evaluation coupled with in-situ IRRAS measurements of 5 wt% Pd/WC/C powder catalysts were then conducted. The EOR activity of the 5 wt% Pd/WC/C-op catalyst synthesized by the one-pot (op) method was noticeably enhanced, compared to the benchmark 40 wt% Pd/C and 5 wt% Pd/WC/C-iwi that was synthesized using a conventional incipient wetness impregnation (iwi) method. The IRRAS results showed that the EOR products were detected at a lower onset potential on 5 wt% Pd-WC/C-op than on 40 wt% Pd/C.
Overall, results from the current thesis demonstrated the feasibility of using metal-modified transition metal carbides as lower-cost and more efficient electrocatalysts for HER and EOR. These results identified descriptors that can be potentially used to design more cost-effective catalysts. Furthermore, results from this thesis also revealed the general similarities and differences of the activity and stability of carbide-based catalysts in acid and alkaline electrolytes.
Files
- Zhang_columbia_0054D_14857.pdf application/pdf 1.78 MB Download File
More About This Work
- Academic Units
- Earth and Environmental Engineering
- Thesis Advisors
- Yip, Ngai Yin
- Degree
- Ph.D., Columbia University
- Published Here
- September 27, 2018