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ABSTRACT

Empirical Bayes, Bayes factors and deoxyribonucleic acid fingerprinting

Ruma Basu

The central theme in this thesis is Empirical Bayes. It starts off with application of

Bayes and Empirical Bayes methods to deoxyribonucleic acid fingerprinting. Different

Bayes factors are obtained and an alternative Bayes factor using the method of Savage is

studied both for normal and non normal priors. It then moves on to deeper methodological

aspects of Empirical Bayes theory. A 1983 conjecture by Carl Morris on the parametric

empirical Bayes prediction intervals for the normal regression model is studied and an

improvement suggested. Carlin and Louis’ (1996) parametric empirical Bayes prediction

interval for the same model is also dealt with analytically while their approach had

been primarily numerical. It is seen that both of these intervals have the same coverage

probability up to a certain order of approximation and they have the same expected length

up to the same order of approximation. Both the intervals are equal tailed up to the

same order of approximation. Then the corrected proof of an important published result

by Datta, Ghosh and Mukerjee (2000) is provided using first principles of probability

matching. This result is relevant to our work on parametric empirical Bayes prediction

intervals.
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Chapter 1

A Brief Introduction

1.1 Introduction

This work began as a parametric empirical Bayes approach to DNA fingerprinting, which

was then a novel technology as well as a novel methodology. But very soon it went

deep into questions of testing and model selection in a much more general framework.

From DNA fingerprinting and methodology of testing and model selection, I moved to

two major problems of parametric empirical Bayes methodology which required deep

technicalities. This chapter provides an overview of both problems discussed and results

obtained in the thesis. Each section below deals with one later chapter, but not quite in

the order in which the chapters appear, as briefly explained below.

Empirical Bayes methods have been central to the thesis. Thus instead of starting

with a review of Chapter 2, the DNA fingerprinting problem, I begin with a survey of

some important work in empirical Bayes and a review of our Chapter 3 where we work

out a modified version of Morris’ (1983) parametric empirical Bayes prediction intervals

using a normal regression model and higher order asymptotics. For the same model we

work on the idea of Carlin and Louis (1996) to obtain a second interval. Section 1.3 covers

a history of the DNA fingerprinting problem and the statistical methodologies developed

and reviewed by us in Chapter 2. In Section 1.4 we provide an overview of probability

matching and discuss a corrected proof of an important published result by Datta, Ghosh

and Mukerjee(2000).

1.2 A survey of some important work in empirical Bayes and

a review of Chapter 3.

The journey of empirical Bayes started with the path breaking paper by H.E. Robbins

(1956) and it gained momentum and support with the paper of Neyman (1962). Neyman

(1962) described Robbins’s work as a breakthrough. The name empirical Bayes was

coined by Robbins in his 1956 paper and it seemed like an ‘oxymoron’ in the beginning.

What Robbins did came to be known as General empirical Bayes or Non parametric

empirical Bayes. The 1956 paper dealt with n structurally similar problems of estimating

1



θi from Xi, (i = 1, 2, . . . , n) where Xi has density pθi(xi) and the independent θi’s can

be assumed to have the same prior distribution π. Xi|θi are independent and the form

of the prior density is unknown but assumed to be existent. It is known that with

squared error loss function the Bayes point estimator for θi is E(θi|Xi) which cannot be

calculated though without a known form of the prior. Robbins worked with the following

discrete distributions-Poisson, Geometric and the “Laplacian” and suggested estimating

the marginal densities on the basis of X1, X2, . . . , Xn and replacing them in the expression

for E(θ|X), leading to the empirical Bayes estimator.

The poisson distribution, for instance, gives E(θ|x) to be (x+ 1)f(x+ 1)/f(x) which

he estimated by (x+ 1)(# of observations = x+ 1)/(# of observations = x).

Thus we see that inference about a certain θ involves terms related to the marginal

density at its observed value and the marginal density at x + 1, leading to borrowing of

information from its neighbours. Similar concepts appear in Gini (1911) and mentioned

by both Forcina (1982, pg. 68) and Robbins (1983).

Robbins followed up the 1956 paper with papers on linear empirical Bayes which im-

pose certain conditions on the mean and variance (1983). Post 1956 one saw a burgeoning

of literature in nonparametric empirical Bayes by students and descendants of Robbins,

and their students and so on.

Before we move on to Parametric empirical Bayes let us discuss 2 papers by Stein

(1956) and James and Stein (1961) which belong to the Compound theory in the frequen-

tist domain. Stein(1956) showed that the usual maximum likelihood estimator,
∼
X, for

the mean of a multivariate normal distribution was inadmissible. James and Stein(1961)

showed, for k ≥ 3, the exact form of the estimator, which was doing better than the

usual ML estimator with squared error loss and the estimate for the ith parameter value

depended on all the other observations. This was a shocking revelation at the time

although this was also not admissible as they obtained the positive part James-Stein

estimator which was doing even better than the original James-Stein estimator.

Stein and James-Stein’s work were put into an empirical Bayes context in a series of

papers by Efron and Morris (1971, 1972, 1973, 1975) and Morris (1983). Henceforth, the

work will come under the purview of Parametric empirical Bayes where a parametric form

for the prior is chosen but the prior parameters are unknown and the prior parameters are

estimated from the data using the method of Maximum Likelihood II prior estimation.

In MLII prior estimation one takes the likelihood function to be the marginal density as

a function of the parameter(s) and maximises that with respect to the parameters thus

obtaining the type II maximum likelihood prior or MLII prior in short. In complicated
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situations one takes recourse to the E-M algorithm of Dempster, Laird and Rubin (1977)

but we do not discuss the method here.

Efron and Morris (1973) showed that the James-Stein estimator can be obtained

as a parametric empirical Bayes estimator with the following model : X1, X2, . . . , Xk

follows the normal (θi, 1) distribution and are independent. θi follows the normal (0, A)

distribution and are independent, A is unknown and is estimated from the data leading

to the James-Stein estimator for k ≥ 3.

In Morris (1983), this theory is shown to provide a framework for PEB inference for

a broad class of very interesting practical problems. For example it was shown in Morris

(1983) that the empirical Bayes predictive interval for baseball players, based on data

from the first half of the season was much shorter than usual confidence intervals. Morris

has continued to do such applied work based on the EB methodology, a major application

being in the ranking of hospitals.

Morris (1983) deals with a normal regression model where the observations Yi|θi follow

the normal (θi, V ) distribution and are independent, θi|β,A follows N(z′iβ,A) and are

independent. i = 1, 2, . . . , k, and zi’s are the r dimensional column vectors of regression

variables and β a vector of regression coefficients. 0 ≤ r ≤ k − 3.

Morris works on both the equal variance case and unequal variances case but we shall

discuss in brief only the equal variance case as our work on parametric empirical Bayes

prediction intervals deals only with the equal variance case. The common variance V and

the zi’s are assumed to be known. It is required to estimate the unknown θi’s based on

the observed Yi’s.

The posterior distribution of θi|Yi, β, A is obtained as Normal, the posterior mean

being ((1−B)Yi+Bz
′
iβ), posterior variance V (1−B) where B = V/(V +A). With squared

error loss the estimated posterior mean is taken as the empirical Bayes estimate for θi,

the estimates for β and B being obtained via complete sufficient unbiased estimators (or

MV UEs) of β and B.

β̂ = b = (z′z)−1z′ Y and B̂ = (k − r − 2)V/S where S =
∑

(Yi − z′ib)2

Thus the empirical Bayes estimator for θi equals (1− B̂)Yi + B̂z′ib

This estimator, called the compromise estimator by Morris, is the celebrated James-

Stein estimator also. Stein further improved this estimate by imposing B̂ ≤ 1 and taking

B̂ to be equal to

((k − r − 2)/(k − r))V/(V + Â+) where Â = S/(k − r)− V and Â+ = max(0, Â) (∗)
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Following Morris we define the parametric empirical Bayes prediction interval for θi. Let

ξ = (β′, A)′. Then a PEB prediction interval for θi of size (1 − α) is a random set C,

depending only on Y1, Y2, . . . Yk and satisfying the conservative PEB requirement Pξ(θi

lies in C) ≥ 1− α for all ξ.

In our work we have defined the following :

Zk is the k×r design matrix with rows z′1, z
′
2, . . . z

′
k. As in Morris we assume r ≤ k−3

and that Zk has full column rank. The following assumption is also needed. The sequence

cik = k{z′i(Z ′kZk)−1zi} is bounded.

b = (Z ′kZk)
−1Z ′kY

s2 = (k − r)−1
∑

(Yj − z′jb)2

B = V/(V + A)

B̂ = ((k − r − 2)/(k − r))V/max(V, s2)

ρ = B/(1−B),

ρ̂ = B̂/(1− B̂)

hik(u; ρ) =
1

2
(cik − r)ρ+

(
1

4

)
(u2 + 1)ρ2 (−∞ < u <∞)

θ̂i = (1− B̂)Yi + B̂z′ib

s2
i = V (1− ((k − r)/k)B̂) + {2/(k − r − 2)}B̂2(Yi − z′ib)2

It is known from standard asymptotics that the naive interval given by

(θ̂i − zα/2
√
V (1− B̂), θ̂i + zα/2

√
V (1− B̂))

is an approximate empirical Bayes prediction interval and is of order O(1/k). Morris

points out that the above does not take into consideration the fact that B and β are

estimated from the data. Morris suggests a bigger interval given by

(θ̂i − zα/2si, θ̂i + zα/2si)

and claims that its coverage probability is at least 1 − α. In chapter 3 we provide an

example where this does not hold true and go on to suggest two parametric empirical

Bayes prediction intervals, for the above model, which are o(1/k). The first interval given

by I = [θ̂i ∓ z{1 + k−1hik(z; ρ̂)}si] is a modification of Morris’s interval. Theorem 2.1 of

Chapter 3 is crucial in proving the coverage probability of the above interval. And from

the same theorem we can see that the interval is equal tailed up to the same order of

approximation.
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The second interval is obtained by exploring analytically Carlin and Louis’ (1996)

idea. Let us define

B∗ = V/max(V, (k − r)s2/k), the MLE of B

θ∗i = (1−B∗)Yi +B∗z′ib

h∗ik(u; ρ) =
1

2
(cik + r + 4)ρ+

(
1

4

)
(u2 + 1)ρ2

ρ∗ = B∗/(1 − B∗) if B∗ < 1 and defined arbitrarily if B∗ = 1. Then the second interval

is given by

I∗ = [θ∗i ∓ z{1 + k−1h∗ik(z; ρ∗)}{V (1−B∗)}1/2]

which also has the same coverage probability upto o(1/k) and is equal tailed upto o(1/k).

Theorem 3.1 of Chapter 3 helps us obtain the coverage probability but its proof is omitted

as it is similar to theorem 2.1.

Theorem 4.1 shows that the above 2 intervals have the same expected length also up to

the same order of approximation.

1.3 A brief history of the DNA Fingerprinting problem and a

review of Chapter 2:

DNA Fingerprinting was accidentally invented by Sir Alec Jeffreys at the University of

Leicester in 1984.He was looking at the X-Ray film of DNA samples of different members

of his technician’s family and he got to notice some similarities and dissimilarities and the

basic idea of DNA Fingerprinting dawned on him. Around the same time the Polymerase

Chain Reaction (PCR) technique for making copies of DNA samples was being perfected

by Kary Mullis in the USA. Since then DNA fingerprinting coupled with the PCR has

been used to solve many criminal cases involving rape and murder, and immigration as

well as paternity cases. The first such case to be solved by Jeffreys was an immigration

case of a British boy whose family was from Ghana. The DNA Fingerprinting test showed

similarities in the DNA of his family members and that of the boy thus inferring that

he belonged to that family. The next important case was the rape case of two teenagers

in 1983 and 1986 where the prime suspect was exonerated while the real culprit was

convicted based on DNA samples obtained from semen from the two victims. Thus

started the journey of DNA Fingerprinting and has spread worldwide since then.

Points on the DNA which are highly variable are usually measured and compared and
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these points are called hypervariable loci. In the 1990’s work started on micro-satellite

regions on the DNA called Short Tandem Repeat or STR. Peter Gill of the Forensic

Science Service and his team of Scientists perfected the method of STR profiling leading

to the UK National DNA data base (NDNAD) in 1995, where observations on the DNA

samples of all those arrested in UK are collected and stored for future use. A similar

database called CODIS has been developed in the USA based on 13 specific STR loci,

chosen by the FBI. The likelihood that any 2 individuals (except identical twins) will

have the same 13 loci DNA profile can be as high as 1 in billion or greater.

Our work on DNA Fingerprinting was inspired by Don Berry (1991) and we also look

at some Bayesian methods developed by Lindley (1977) in a more general context of

Identification problems and refined by Berry. In the early 1990’s DNA Fingerprinting

had become a hot subject and began to be used in courts. This led to various statistical

issues. Should one analyse the data as a classical statistician with P -values or the method

of match binning or should one be a Bayesian and try to calculate or estimate a posterior

probability of guilt of the suspect? Berry and several other statisticians like Evett,

Pinchin, Roeder, Geisser, Devlin and Risch among others explored several questions

relating to these and we mention those in brief below. In England and France the Bayesian

method became popular whereas the method of match binning was being used in the

US. Our work on the use of parametric empirical Bayes methods in the case of DNA

fingerprinting led us to our work on methodological aspects of parametric empirical Bayes

in Chapters 3 and 4.

In Chapter 2 we first review the classical method of match binning and the method

of evaluating Bayes factors based on Berry’s work. In the Bayesian paradigm choice of

prior becomes an important issue. Berry first works with a simple model where the prior

is assumed to be improper uniform on (−∞,∞) leading to a nice attractive formula.

Next he works on the more realistic model where he estimates the prior in a frequentist

manner based on the reference population. A lot of questions have been raised about his

method of density estimation which we discuss in section 2.3.

In section 2.4 the parametric empirical Bayes formulation of the problem is made

using normal model for the data and the prior, the prior parameters being unknown and

estimated by the method of ML II prior estimation discussed in section 1.2.

In section 2.5 we review Lindley’s (1977) work and proceed to suggest an alternative

Bayes factor for the same model. The prior under the null in the case of Bayes factor

enumeration is usually done by the method of H. Jeffreys. We calculate the Bayes factor

using Savage’s method of enumerating the prior under the null by proper conditioning.
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This helps us to remove a term in the Bayes factor which has a confusing presence. The

alternative Bayes factor is also calculated for a general non-normal prior and we show

how this can be calculated without sophisticated density estimation methods that have

been discussed in section 2.3.

In this context it appears to us that it is still not clear which of the two Bayes Factors

is appropriate in a particular problem. Further research on this is desirable.

1.4 Probability matching priors and a review of Chapter 4 :

A prior is probability matching if it is such that the posterior credibility interval based

on the prior is approximately the same as the frequentist confidence interval based on

the maximum likelihood estimator up to a certain order of approximation. Essentially it

is matching two kinds of probabilities - the classical and the posterior. The credibility

interval based on this prior can be interpreted as a frequentist or classical confidence

interval.

A probability matching prior or PMP is called a first order PMP when the order of

approximation is o(n−1/2) where n is the sample size. Mukerjee and Dey’s (1993) work

narrowed down the class of first order PMP by imposing the condition that the order of

approximation should be o(n−1) thus leading to second order PMPs.

The matching criterion leads to a partial differential equation for the PMP depending

on the order of approximation. Solving the partial differential equation one arrives at the

PMP.

Thus probability matching helps one to obtain a non subjective Bayesian prior and

inference based on a PMP does not give rise to something that is purely subjective.

In this sense the prior, which is found in a purely algorithmic way, may be regarded

as non-subjective, i.e., the prior has no subjective input. Objective Bayesians do not

distinguish between non-subjective and objective priors, so a probability matching prior

may be considered to be an objective prior.

First order probability matching based on posterior quantiles was first investigated by

Welch and Peers (1963).He worked with a scalar parameter θ thus not considering any

nuisance parameters and obtained Jeffrey’s prior as the first order PMP. Peers (1965),

Stein (1985), Tibshirani (1989), Nicolau (1993), Datta and Ghosh (1995a,b), Ghosh, Car-

lin and Srivastava (1995), Ghosh and Yang (1996) and Garvan and Ghosh (1997) among

others pursued the idea of Welch and Peers to work on examples with nuisance param-

eters. Several authors have noted that there are infinitely many first order probability
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matching priors in the presence of nuisance parameters.

Work on second order PMPs was pursued by Sun and Ye (1996), Mukerjee and Ghosh

(1997) and Garvan and Ghosh (1997) among others. Brief reviews of PMPs can be

obtained in Ghosh and Mukerjee (1997), Ghosh and Mukerjee (1992a), Reid (1995) and

Kass and Wasserman (1996).

Datta, Ghosh and Mukerjee (2000) worked on a normal hierarchical Bayes model and

showed that the probability matching prior obtained is different from Morris’s uniform

priors for the mean and variance and the exact form of the prior for the variance is

obtained. But the proof is incorrect - the reasons being mentioned in Section 4.2. We

provide an alternative proof of the above result which relies on first principles and is

obtained starting from the definition of the matching criterion. We see that the result

obtained in Datta et al. (2000) holds true irrespective of the problem in the proof.

For the sake of completeness we mention the model here. Given θ1, θ2 . . . , θn the ran-

dom variables Y1, Y2, . . . , Yn are independent and Yi follows Normal (θi, V ), i = 1, 2, . . . , n.

Also θ1, θ2, . . . θn are i.i.d such that for each i θi is Normal with mean ξ1 and variance

ξ2(−∞ < ξ1 <∞, ξ2 > 0). V is assumed to be known while ξ1, ξ2 are unknown parame-

ters, the distributions of which are obtained through probability matching. They assume

the prior to be of the form π(ξ1, ξ2) = constant. π(ξ2). We work with the same form and

obtain exactly the results obtained in Datta et al., that is, the prior for the mean is the

uniform on (−∞,∞) and is independent of the prior for the variance which is proportional

to ξ2(V +ξ2)−1. Thus we see that the PMP’s for the above model is slightly different from

the Laplacian priors used by Morris (1981) and hence the confidence intervals mentioned

by Morris (1983) cannot be expected to be of the order o(n−1).

The Shrinkage Argument or a Bayesian route to frequentist calculations has been

used in section 4.3 and so we discuss it in brief here. The method was first suggested by

J.K.Ghosh and its early applications can be found in Bickel and Ghosh (1990), Dawid

(1991), Ghosh and Mukerjee (1991) and Ghosh (1994,Chapter 9). The method is pre-

sented in detail in Mukerjee and Reid (2000) and also in section 1.2 of the monograph on

PMPs by Datta and Mukerjee (2004). The name is derived from the fact that a sequence

of priors is chosen in the procedure and it is allowed to converge weakly to a degenerate

prior. This method significantly reduces the algebra underlying frequentist higher order

asymptotic computations.
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Chapter 2

A Bayes and Empirical Bayes approach to DNA Fin-
gerprinting

2.1 Introduction

DNA Fingerprinting has become a major new source of evidence in legal cases, for

both the defence and the prosecution. Very briefly the basic statistical issues may be

formulated as follows :

A crime has been committed. Some biometric evidence has been left at the crime

scene by the criminal. We denote this by a random piece of data Y which can be

discrete or continuous. In problems of DNA Fingerprinting Y is typically a small part

or small parts of the DNA recovered from the body fluids left at the scene of the crime.

Typically, the part of the DNA used as evidence shows a lot of polymorphic variation

in the relevant population of possible suspects. The police have a suspect from whom a

similar biometric evidence, X has been collected. The basic question is whether X = Y

(at least approximately) in which case there is a match. If X 6= Y (even under the above

approximate sense) there is no match.

A match suggests the suspect may be guilty. Absence of a match suggests the suspect

is innocent. Under the usual notions of justice and evidence (in Britain, U.S.A., India

etc.) the suspect is innocent unless the weight of evidence against the suspect is strong.

The evidence against the suspect is considered to be strong if there is a match and the

match is improbable if one chose at random from the population of suspects.

How do we make these things precise ? The answer depends on probabilistic calcula-

tions. Statistics has now two fundamental paradigms, Classical Statistics and Bayesian

Analysis. The calculation of probability depends on the paradigm. We first deal with

the classical method in the next section. The entire chapter is joint work with Prof. J.K.

Ghosh.

2.2 The method of Match Binning

X, Y mentioned in the previous section and all other measurements on the weights

of DNA pieces come with an error in measurement which is small and is proportional to
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the true band weights. Let µ and ν be the true band weights of X and Y respectively.

Distributional assumptions are made on X and Y and both the Normal and Lognormal

distributions seem to give a good fit. Berry (1991) works on the log scale, we have

mostly used the Normal distribution. (Distributional assumptions are not required for

the method of Match Binning).

Another point to note is that the DNA fragment consists of two strands, one from the

father and one from the mother and usually it is not known which is which. So at each

site we have two figures giving two weights.

Readings can come from a single site (single locus probe) or from multiple sites (mul-

tiple locus probe). We have confined our attention to single locus probes.

The basic question whether X and Y came from the same person or not can be

formulated as a problem of hypothesis testing, where the null hypothesis is Innocence

(µ 6= ν) and the alternative is Guilt (µ = ν). Thus we have

To Test H0 : µ 6= ν (Innocence)

versus H1 : µ = ν (May be Guilty)

since the status quo is Innocence and one is called guilty only if there is compelling

evidence to the contrary. Standard methods of testing do not work for this non-standard

hypothesis testing problem.

Let us note that a null hypothesis like this also occurs in problems of Bio-equivalence

where it is claimed that a new drug (with mean ν for the variable under consideration)

has same mean as the old drug (with mean µ). Null hypotheses of this kind are not

easy to handle in classical statistics. Usually, in problems of Bio-equivalence a suitable

threshold δ > 0 is chosen and H0 is taken to be |µ− ν| ≥ δ. Under certain conditions it

is known that among tests with probability of error of first kind ≤ α, there is a UMP

test for µ, ν with H1 : |µ− ν| < δ, vide Lehmann (1986).

The problem of Bio-equivalence is actually much simpler than the problem of estab-

lishing Guilt as far as Classical Statistics is concerned. When we try to establish Guilt

we use as known a database of random sample from a population to which the suspect is

supposed to belong. It is difficult to incorporate such knowledge in Classical Statistics.

The method of Match-Binning had been developed to deal with this problem.

The standard deviation, c, of the error in measurement is assumed to be known. It is

estimated from previous experimental data and is generally of the order of .0042.

A match is said to occur if |x − y| < Kc
√

2, K being fixed arbitrarily depending on

the stringency requirement in the test and it usually varies between K = 2/3 to K = 3.

A small value of K indicates that there is a large proportion of guilty individuals being
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set free and receiving the benefit of doubt while a large K involves a higher risk of false

conviction for innocent individuals. To protect innocent individuals we advocate using a

small value of K.

H1 is rejected outright if there is no match. In case there is a match one goes on to

calculate the match proportion. For this a database is required, of similar observations,

from a population of individuals, referred to as the Reference population. A match

proportion is the proportion of individuals in the reference population that would result

in a match when compared with the crime sample, Y .

A high match proportion would tend to cast doubts on the conviction of the suspect

based on the matching criteria while a low match proportion tends to strengthen one’s

belief in favour of conviction as the observed match has a small chance of being termed

as accidental or random. Let us note that the calculation of the match proportion takes

place under the assumption of innocence or the null hypotheses H0, as one would expect

to see in classical statistics. For this reason Berry comments - “A match proportion is

an indirect measure of the suspects guilt ....”

We have noted before that each site contributes 2 readings, one for the mother and

one for the father. Let (x1, x2) denote the suspect’s readings and let (y1, y2) denote the

values from the crime sample. Then (x1, y1) and (x2, y2) are compared separately. Let pi

= match proportion for (xi, yi), i = 1, 2. Then under the assumption of random mating

by the Hardy Weinberg law of population genetics the match proportion for the 2 pairs

together is taken as 2p1p2. In the homozygous case p is taken as p2
1.

Usually matching is done at multiple sites or loci resulting in a match proportion for

each site in question. By the assumption of Linkage equilibrium we have independence

across sites and so the individual match proportions are multiplied together resulting

in the final probability that the Judge gets to see. This P is not a p-value of testing

hypothesis but a genuine probability, though calculated under various strong assumptions

of independence and applicability of random mating.

Thus we see that conceptually match binning is an easy method - easy to use and

understand and explain to others but it has some obvious weaknesses that are discussed

as follows : First, the selection of K is arbitrary and depends solely on the subjective

judgement of the statistician. Second, there is this arbitrary cut off point - within Kc
√

2

denotes a match but (K + ε)c
√

2 is a non match for any ε > 0. Third, there is no way

to discriminate between a perfect match and samples that barely match. Both of these

cases give rise to the same match proportion - something that seems to be a bit odd.

Thus a loss of information takes place in this procedure - the actual observations being
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lost to a zero - one scenario - a match or a non-match.

Berry goes on to state the following - “Match Binning is a reasonable inferential

method in a scientific setting, and other settings that allow for flexibility but it has

several characteristics that make it undesirable for use in court” and goes on to suggest

a Bayesian alternative to this classical Match Binning procedure. We discuss his work in

the next section. The ideas are not new but can be seen as early as 1977 in D.V. Lindley

(1977).

2.3 The Bayesian Formulation as in Berry

We have just seen that in the case of Match Binning probability calculations were

done only under H0. Since no probability is calculated under the alternative H1, to

many people, specially Bayesians, the evidence seems incomplete. A Bayesian treats

both H0 and H1 on the same footing and probability calculations are done under both

H0 and H1. He has priors π(µ, ν|H0) and π(µ|H1) under H0 and H1 respectively. He

calculates the integrated likelihood (also called marginal likelihood) of the data under H0

and H1 integrating out the parameters with respect to the corresponding πi. The ratio of

the (integrated) likelihoods, called the Bayes factor, is taken as a measure of evidential

strength and is the key factor in decision making in the Bayesian paradigm. The database

of fingerprints is used to determine the prior.

Let us define the following :

The Prior Odds of Guilt is the odds of guilt prior to incorporating the DNA evidence.

This falls in the judges’ domain and the statistician makes no contribution to this factor.

The Posterior Odds of Guilt is the odds of guilt after the DNA evidence obtained

from the crime and suspect samples along with the reference samples have been taken

into account. This is the final result that the judge gets to see. The following notations are

used throughout : G denotes guilt, I innocence, X denotes the entire DNA evidence i.e.

(x, y, z1, z2, . . . , zn), E denotes all other evidence combined. From a simple application of

Bayes Theorem we see that the posterior odds of guilt,

P (G|X,E)

P (I|X,E)
=

P (X|G,E)

P (X|I, E)
× P (G|E)

P (I|E)

=
P (X|G)

P (X|I)
× P (G|E)

P (I|E)

(as E does not have a contribution in the calculation of the above likelihoods).

= R× prior odds of Guilt where R is the Bayes factor. The Bayes factor is usually

12



the summary evidence provided by Bayesians rather than the posterior odds, which is

very sensitive to prior odds. Both are the same in objective Bayes Analysis where prior

probabilities of both hypotheses are taken to be half.

For a single locus probe the R’s are combined as

R =
1

2
R11R22 +

1

2
R12R21

∼ 1

2
R11R22 if x1 ∼ y1

and x2 ∼ y2

In case several single locus probes are used the final R is the product of R’s from each

single locus probe.

The following distributional assumptions are made :

log x ∼ N(µ, c2), log y ∼ N(ν, c2), log zi ∼ N(µi, c
2)

where (z1, z2, . . . , zn) is the reference dataset, c is a constant. (x, y, z1, z2, . . . , zn) are all

independent.

Let

m =
log x+ log y

2
, s =

| log x− log y|
2

si =
|logzi − log y|

2

Berry first calculates the Bayes factor for the Hypothesis of Guilty versus the Hypothesis

of Innocence under the following assumptions which are restrictive and unrealistic.

(1) ”I” or Innocence implies that someone in the reference population is Guilty, each

with prob. 1
n
.

(2) The µ’s are independent with improper uniform prior distribution on (−∞,+∞).

R =
p(X|µ = ν)

p(X|I)
as Guilty implies µ = ν.

The numerator is

∫
p(X|µ = ν, µ, µ1, µ2, . . . µn)dF (µ, µ1, . . . , µn)

=
∫ ∞
−∞

1

2πc2xy
exp

{
− 1

2c2

[
(log x− µ)2 + (log y − µ)2

]}
dµ

.
n∏
i=1

∫ ∞
−∞

1

czi
√

2π
exp

{
− 1

2c2
(log zi − µi)2

}
dµi

13



=
1

2πc2xy

∫
exp

{
− 1

c2

[
s2 + (m− µ)2

]}
dµ.

n∏
i=1

(
1

zi
)

=
1

2cxy
√
π

exp
{
−(
s

c
)2
} n∏
i=1

1

zi
= K. exp

{
−
(
s

c

)2
}

where

K =
1

2cxy
√
π
.
n∏
i=1

1

zi

The denominator is p(X|I)

=
n∑
i=1

p(X| person i is guilty).P (person i guilty/I)

=
n∑
i=1

p(X|µi = ν)× 1

n

=
K

n

n∑
i=1

exp

{
−
(
si
c

)2
}

Thus the Bayes factor becomes

R =
exp

{
−
(
s
c

)2
}

1
n

n∑
i=1

exp

{
−
(
si
c

)2
}

It is a nice and simple formula and helps one to gain insight into the problem, but is

based on strong assumptions.

We mention some of the observations that Berry makes based on the above formula.

R is large for x and y close together with respect to c. If x and y are far apart then R

is small, decreasing exponentially as the square of the log of their ratio. The data points

make their contribution through the denominator. If it so happens that x, z1, z2, . . . , zn

are all equidistant from y then the ratio is 1 thus exonerating the suspect. This is

one scenario where the reference population makes a strong contribution and rightly so.

However close x and y may be if all the others exhibit the same closeness to the crime

sample one cannot hold the suspect to be guilty. R is close to zero when x and y are far

apart compared to one or more samples in the population. The above observations are

in agreement with our expectations.

Berry then goes on to work on his second scenario where he assumes the reference

data set is a sample from a reference population whose distribution / density may be

denoted by π(µ). If π(µ) were known the data points would not have played a role but

here they are used to estimate the prior in a frequentist manner.
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Here the Bayes factor R is, as before,
P (X|G)

P (X|I)
.

The numerator equals

∫
. . .
∫
p(X|µ = ν, µ, µ1, µ2, . . . , µn)π(µ, µ1, . . . , µn)dµ.dµ1 . . . dµn

=
∫
. . .
∫
p(X|µ = ν, µ, µ1, µ2, . . . µn)π(µ)π(µ1) . . . π(µn)dµdµ1 . . . dµn.

=
∫
. . .
∫
p(x, y|µ = ν, µ)p(z1|µ1)p(z2|µ2) . . . p(zn|µn).π(µ)π(µ1)

. . . π(µn)dµdµ1 . . . dµn

=
∫
p(x, y|µ = ν, µ)π(µ)dµ×

∫
p(z1|µ1)π(µ1)dµ1 ×

∫
p(z2|µ2)π(µ2)dµ2

× . . .×
∫
p(zn|µn)π(µn)dµn

The denominator equals

∫
. . .
∫
p(X|µ, ν, µ1, µ2, . . . , µn)π(µ, ν, µ1, . . . , µn)dµdνdµ1 . . . dµn

=
∫
. . .
∫
p(x, y|µ, ν)p(z1|µ1) . . . p(zn|µn)π(µ)π(ν)π(µ1) . . . π(µn)

dµdνdµ1 . . . dµn

=
∫
p(x, y|µ, ν)π(µ)π(ν)dµ.dν.

∫
p(z1|µ1)π(µ1)dµ1 . . .

∫
p(zn|µn)π(µn)dµn

=
∫
p(x|µ)π(µ)dµ.

∫
p(y|ν)π(ν)dν.

∫
p(z1|µ1)π(µ1)dµ1 . . .

∫
p(zn|µn)π(µn)dµn.

Thus we see that the integrals involving z1 . . . zn get cancelled from the numerator and

denominator and R equals

∫
p(x, y|µ = ν, µ)π(µ)dµ∫

p(x|µ)π(µ)dµ
∫
p(y|ν)π(ν)dν

The numerator equals

∫ ∞
−∞

1

2πc2xy
exp

{
− 1

2c2

[
(log x− µ)2 + (log y − µ)2

]}
π(µ)dµ

and the denominator equals

∫ ∞
−∞

1

c
√

2πx
exp

{
− 1

2c2
(log x− µ)2

}
π(µ)dµ

·
∫ ∞
−∞

1

c
√

2πy
exp

{
− 1

2c2
(log y − ν)2

}
π(ν)dν

We are reminded of two important facts here. First, the zi’s are a sample from the

actual population of z’s and hence the sample frequencies do not necessarily reflect the
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true population frequencies. And second, z’s are not a sample from the target population

represented by π(µ) for the observed values are carrying a measurement error. So the

empirical distribution of the log zi’s cannot be used to estimate the prior. Berry mentions

that hierarchical Bayesian methods may be used here but he chooses to adopt a “simple

minded density estimation approach”. We briefly say what he does and pursue the

Empirical Bayes method in the following section.

The second point in the previous paragraph makes the present problem different from

standard density estimation. It seems clear that this is a problem of deconvolution and

one of the discussants, Chernoff, mentions this. (Bery does not respond to this issue.) To

err, if necessary, on the conservative side (i.e. favor the suspect) he chooses an estimate

that looks like a kernel estimate and tends to increase the support of the distribution

even more than the error model requires. Berry’s choice of the density estimate is

π̂(µ) =
1

n

∑
N(log zi, bc

2), b ≥ 1.

Regarding the choice of b he says “generally, b should be greater than 1 and it should be

larger for smaller n. If n is so large that the sample frequencies are effectively the same

as the population frequencies, then b could be set to 1.”

With the above estimate of the prior Berry calculates the Bayes factor which comes

out to

R =
Q2(m) exp

{
−
(
s
c

)2
}

Q1(log x)Q1(log y)

where

Qj(u) =
1

n

∑ 1√
1 + jb2

. exp

{
− j

2c2

(u− log zi)
2

1 + jb2

}
j = 1, 2.

This expression is far more complicated and the only way to get a feeling for it is to

examine the values for different sets of x, y, z1, . . . , zn.

Before we end this section we shall see that the match proportion can be looked upon

as a Bayes factor. Let the match proportion at a single locus be p. Now p is approximately

P (match | innocence) and P (match | guilty) is approximately one. So the Bayes factor

P (match|guilty)

P (match|innocence)
=

1

p
(approx).

So inference based on p is really inference based on a Bayes factor. Again, this is essen-

tially due to Berry.
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2.4 Parametric Empirical Bayes formulation of the DNA fin-

gerprinting problem

We have devoted sections 2.2 and 2.3 to a review of Don Berry’s work based on his

1991 paper in Statistical Science. This section onwards we present work that is new.

Here we study the DNA fingerprinting problem using the Parametric Empirical Bayes

formulation. This was suggested by Prof. Shaw Hwa Lo of Columbia University. Section

2.5 deals with an alternative Bayes factor based on Edwards, Lindman and Savage’s

(1963) method of enumerating the prior under the null by proper conditioning. Rest of

the thesis deals with methodological developments in the area of Empirical Bayes.

Coming back to the topic of this section, we notice that the data is amenable to

Empirical Bayes treatment because the database or the reference population consists of

observations which are independent and come from a similar environment. Hence by

the method of MLII prior estimation the prior parameters and hence the prior can be

estimated. We have used the Normal model for the EB development.

The notations used here are as before. The model is as follows :

x|µ ∼ N(µ, c2)

y/ν ∼ N(ν, c2)

zi/µi ∼ N(µi, c
2)

x, y, zi’s are all independent and c2 is assumed known.

µ, ν, µi ∼ N(η, τ 2) independent

η and τ 2 are not known and are to be estimated from the database or reference population.

We calculate the Bayes factor for the hypothesis of Guilty versus the hypothesis of

Innocence.

R =
p(X|µ = ν)

p(X|I)
=
p(x, y|µ = ν)

p(x, y|I)

We have shown in Sec. 2.3 that the z terms cancel out from the numerator and denomi-

nator and hence do not come into the expression directly.

The Bayes factor is calculated as in Lindley (1977), details of which are shown in

Section 2.5. Then the MLII estimates based on the zi’s are plugged into the expression

for the Bayes factor. We note that the estimates for η and τ 2 being based on the zi’s

only, are same for guilt and innocence. The model being a standard one we can use the
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estimates as given in Berger (1985), in the final expression.

R =

∫
p(x|µ)p(y|µ)π(µ)dµ∫

p(x|µ)π(µ)dµ.
∫
p(y|ν)π(ν)dν

=
c2 + τ 2√

[2c2(τ 2 + c2/2)]
exp

(−d2τ 2)

2c2(2c2 + 2τ 2)
× exp

(m− η)2τ 2

2(τ 2 + c2/2)(c2 + τ 2)

where

M =
X + Y

2

and

D = X − Y

We have to replace η and τ 2 by their MLII estimates which are given by

η̂ =

n∑
i=1

zi

n

and

τ̂ 2 = max

(
0,
s2

n
− c2

)

where

s2 =
n∑
i=1

(zi − η̂)2

Taking into consideration the fact that the prior variance τ 2 will usually be much larger

than the error variance c2 we arrive at an approximated R (as in Lindley 1977) which is

τ√
2c

exp

(
− d2

4c2

)
. exp

(
(m− η)2

2τ 2

)
(∗)

The Empirical Bayes Bayes factor is finally obtained by plugging in the EB estimates

of η and τ 2 in (*) and it equals

√
max

(
0, s

2

n
− c2

)
√

2c
exp

(
− d2

4c2

)
exp


(
m−

∑
zi
n

)2

2.max
(
0, s

2

n
− c2

)


Since τ 2 >> c2, we can expect s2

n
− c2 to be positive. Hence the above expression for the
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Table 1: Parametric empirical Bayes Bayes factor
(
s2

n
− c2

)1/2
/(21/2c) ∗ exp(−1

2
λ2) ∗

exp [(m− z)2/ {2 (s2/n− c2)}] as a function of λ = |x − y|/(21/2c) and m = x+y
2

for a
sample of size 100, s2 =

∑
(zi − z)2, c = .0042

λ
x+y
2

0 0.5 1 1.5 2 2.5 3 4 5 6

2 9061.65 7996.88 5496.17 2941.89 1226.36 398.14 100.67 3.04 0.03 .00014
3 1076.24 949.78 652.77 349.40 145.65 47.29 11.96 0.36 0.004 1.64E-05

3.5 506.89 447.33 307.44 164.56 68.60 22.27 5.63 0.17 0.002 7.72E-06
4 294.0 259.46 178.32 95.45 39.79 12.92 3.27 0.099 0.001 4.48E-06

4.5 210.0 185.33 127.37 68.18 28.42 9.23 2.33 0.07 0.0008 3.2E-06
5 184.73 163.02 112.04 59.97 25.0 8.12 2.05 0.06 0.0007 2.81E-06

5.5 200.11 176.60 121.38 64.97 27.08 8.79 2.22 0.07 0.0007 3.05E-06
6 266.97 235.60 161.92 86.67 36.13 11.73 2.96 0.09 0.001 4.07E-06

6.5 438.60 387.07 266.03 142.39 59.36 19.27 4.87 0.15 0.0016 6.68E-06
7 887.40 783.13 538.24 288.1 120.1 38.99 9.86 0.298 0.003 1.35E-05
8 6784.56 5987.35 4115.04 2202.62 918.19 298.09 75.37 2.28 0.02 .000103

PEB Bayes factor reduces to

√(
s2

n
− c2

)
√

2c
exp

(
− d2

4c2

)
exp


(
m− Σzi

n

)2

2
(
s2

n
− c2

)
 .

A fully Bayesian method of inference would require putting a hierarchical prior on

η and τ 2 say π(η, τ 2/φ) where φ is a known hyperparameter (or a vector of known

hyperparameters). This method is referred to as Hierarchical Bayes (HB). This kind

of modelling has become very popular since Markov Chain Monte Carlo (MCMC) was

introduced in Bayesian computation.

It is also known, see e.g. Ghosh, Delampady and Samanta (2006, Ch. 9) that in

estimation problems both Empirical Bayes and Hierarchical Bayes give very close answers.

Usually EB is easier to implement but does not take into account the uncertainty due to

the estimation of the parameters η and τ 2. The HB method takes care of such problems.

How do the two methods compare for testing problems ? This has received attention

only very recently, Scott and Berger (Ann. Statistics, 2010) and elsewhere, e.g. Bogdan,

Ghosh and Tokdar (IMS collection vol. 1, 2008). It appears that in testing problems EB

and HB will provide very different answers and HB will generally do much better.
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2.5 The alternative Bayes factor

In this section we explore the work done by D.V. Lindley (1977) and go on to suggest

an alternative Bayes factor. Berry’s method, explained in Section 2.3, is in fact based on

Lindley’s ideas.

Lindley works on the Forensic Identification problem with pieces of glass as his ex-

perimental objects and the measurements were taken on the refractive indices of glass

pieces. The ideas carry forth to the case of DNA fingerprinting when matching is done

at a single locus and for a single pair of observations. He assumes a Normal model for

the measurement error and a Normal prior with known parameters. So here the data set

z1, z2, . . . , zn or the reference population does not play any role.

We stick to the notations used in previous sections. Thus X denotes the suspect

sample and Y the crime sample, the true values of which are µ and ν respectively. X/µ

follows the Normal (µ, c2) distribution and Y/ν follows the Normal (ν, c2) distribution

and are independent. The variance of the measurement error, c2, is assumed to be known.

µ and ν are assumed to have the normal (η, τ 2) distribution to be denoted by π(µ) and

π(ν) respectively and are independent. Then the likelihood Ratio of guilt to innocence

can be calculated as follows :

R =
p(x, y|G)

p(x, y|I)

The numerator is calculated as

∫
p(x|µ)p(y|µ)π(µ)dµ

where µ is the common value of the observation under guilt. The denominator is given

by ∫
p(x|µ)π(µ)dµ.

∫
p(y|ν)π(ν)dν

as µ and ν can be assumed to be independent under innocence.

The denominator is the product of the unconditional distributions of X and Y and

they are both N(η, c2 + τ 2). The numerator is the joint unconditional distribution of

X and Y which is Bivariate Normal with means η, variances c2 + τ 2 and covariance τ 2.

Transforming to

S = X − Y

and

M =
X + Y

2
,

20



the Jacobian of the transformation being 1, the numerator reduces to the product of the

densities of S and M which are N(0, 2c2) and N(η, τ 2 + c2/2) respectively.

Similarly the denominator can be written as the product of the densities of S and M

which are N(0, 2c2 + 2τ 2) and N(η, (c2 + τ 2)/2) respectively.

The required Likelihood Ratio or the Bayes factor reduces to the following:

c2 + τ 2√
[2c2(τ 2 + c2/2)]

exp
(−s2τ 2)

2c2(2c2 + 2τ 2)
exp

(m− η)2τ 2

2(τ 2 + c2/2)(c2 + τ 2)

Thus evidence in Lindley’s and Berry’s Bayes factor consists of two parts-one coming

from comparing density of X − Y under guilt and innocence and another coming from

comparing density of X+Y
2

under guilt and innocence.

The prior variance τ 2 will usually be much larger than the error variance c2. So the

above Bayes factor can be approximated by the following expression :

τ√
2.c

exp

(
− s2

4c2

)
. exp

(
(m− η)2

2τ 2

)

Table 2. Lindley’s Bayes factor τ(21/2c)−1 exp
(
−1

2
λ2 + 1

2
δ2
)

as a function

of λ = |x− y|/(21/2c) and δ =
∣∣∣x+y

2
− η

∣∣∣ /τ for τ = 1, c = .0042 and η = 5.

δ

λ 0 0.5 1.0 1.5 2.0 2.5 3.0

0 168.36 190.77 277.58 518.58 1244.01 3831.83 15155.17

0.5 148.58 168.36 244.96 457.65 1097.84 3381.58 13374.39

1 102.11 115.71 168.36 314.54 754.53 2324.12 9192.08

1.5 54.66 61.94 90.12 168.36 403.87 1244.01 4920.16

2 22.78 25.82 37.57 70.18 168.36 518.58 2051.03

2.5 7.40 8.38 12.20 22.78 54.66 168.36 665.87

3 1.87 2.11 3.08 5.76 13.82 42.57 168.36

4 0.05 0.06 0.09 0.17 0.42 1.28 5.08

5 .00063 .00071 .001 .002 .005 .014 .056

6 2.56E-06 2.91E-06 4.23E-06 7.9E-06 1.89E-05 5.84E-05 .000231

It may be noticed that the first part of the expression is easy to comprehend as it

involves the difference of the crime sample and the suspect sample, s.

Larger the difference smaller is the contribution of this term to the Bayes factor and

the evidence shifts towards Innocence. Small values of s with respect to c make this

21



term large thus indicating Guilt. This fits in with our intuitive understanding of the

problem as viewed from a classical standpoint. But the significance of the second term

is not easy to understand even though we can see that this is the contribution from the

prior information and τ being much larger than c it has a much smaller influence on

the Bayes factor than does the first term. Some effort at explaining the term would run

along the following lines - If x and y are close together then m may be looked upon

as the common value of the observations and m close to η would indicate that x and y

come from a region with the highest possible density and the contribution to the Bayes

factor is small, it being equal to 1 when m exactly equals η. As we move more and more

towards unusual values i.e. m is farther away from η the contribution to the Bayes factor

increases exponentially. Thus uncommon values of X and Y provide a greater evidence

of guilt than does commonly occuring values. But the interpretation is not at all clear

when the crime sample and the suspect sample are quite different. In that case m or

(x+y
2

) does not have a proper interpretation nor can the contribution to the Bayes factor

be explained. In fact we see that in the case of Innocence the Bayes factor is increased in

the direction of guilt - something that we certainly do not want. Our procedure should

be such that it gives maximum protection to the innocent but here the M term acts in

the opposite direction, however small its impact may be in the case of Innocence. We

may notice though that in that case the first term would dominate and the contribution

from the second term would be small in comparison.

Thus one may search for an alternative Bayes factor - One that is free of the term

involving m, at least in the Normal setup.

We define the prior for µ under guilt, or, equivalently under µ = ν by a suitable

conditioning on the distribution of µ, ν i.e. as π(µ|µ − ν = 0). The calculations for the

case of Innocence are the same as in Berry and Lindley’s case. Given these priors, the

Bayes Factor is calculated as before.

The alternative Bayes factor for a Normal prior :

Model : Same as before

Let U = µ− ν
And V = (µ+ ν)/2

⇒ µ = V + U/2

ν = V − U/2

U and V are also independent and Normally distributed.
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Then
P (a ≤ µ ≤ b | µ− ν)

= P (a ≤ V + U/2 ≤ b|U)

= P (a− U/2 ≤ V ≤ b− U/2|U)

= P (a− U/2 ≤ V ≤ b− U/2)

by the independence of U and V .

This is the unique continuous version of the conditional density of µ given µ − ν.

Setting U = 0 in the above leads to P (a ≤ V ≤ b) which is in fact the distribution of

(µ+ ν)/2.

Thus the required prior density in the case of guilt is Normal (η, τ 2/2) instead of the

Normal (η, τ 2) density that we were using before. We use the above prior to calculate

our alternative Bayes factor. The calculations proceed exactly as before.

R =
p(x, y|G)

p(x, y|I)

The numerator is calculated as
∫
p(x/µ)p(y/µ)π(µ/G)dµ. The denominator is given by

∫
p(x|µ)π(µ)dµ.

∫
p(y|ν)π(ν)dν

The numerator is the joint unconditional distribution of X and Y which is Bivariate

Normal with means η, variances c2 + τ 2/2 and covariance τ 2/2. The denominator is the

product of the unconditional distributions of X and Y , the prior distribution being the

N(η, τ 2) distribution as before, and they are both N(η, c2 + τ 2).

Transforming to S = X − Y and M =
X + Y

2
, the Jacobian of the transformation

being 1, the numerator reduces to the product of the densities of S and M which are

N(0, 2c2) and N(η, (c2 + τ 2)/2) respectively. The denominator is the product of the

density of S which is N(0, 2c2 + 2τ 2) and the density of M which is N(η, (c2 + τ 2)/2).

Thus the term containing m gets cancelled and we are left with a Bayes factor that

involves only s, the difference of the crime sample and the suspect sample. After some

simplification we obtain the following expression for the alternative Bayes factor :

R =
√

(1 + τ 2/c2) ∗ exp

(
−s2τ 2

4c2(c2 + τ 2)

)

Considering the fact that τ >> c we can approximate the above by

√
(1 + τ 2/c2) ∗ exp(−s2/4c2).
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This formula is much easier to understand and appreciate compared to the existing Bayes

factor and we were able to get rid of the confusing presence of the exponential term in

M .

We now consider a general non normal prior and proceed in the same way.

Table 3. Alternative Bayes factor (c2 + τ 2)1/2/c ∗ exp(−1
2
λ2)

as a function of λ = |x− y|/(21/2c) for τ = 1 and c = .0042.

λ Alt. Bayes factor

0 238.0973

0.5 210.1202

1 144.4133

1.5 77.2989

2 32.223

2.5 10.4613

3 2.645

4 0.0799

5 0.0009

6 3.63E-06

The alternative Bayes factor for a general non normal prior :

We follow the same method as before but extend those ideas to non-normal priors.

Model : X|µ follows the Normal (µ, c2) distribution and Y |ν follows the Normal (ν, c2)

distribution and are independent. The variance of the measurement error, c2, is assumed

to be known. Under assumption of independence µ and ν are assumed to have general

densities to be denoted by π(µ) and π(ν) respectively.

Let

U = µ− ν

and

V = (µ+ ν)2

as before.

As before we will take π(µ|Guilt) as the conditional distribution of µ given U = 0.

Let us notice that given Guilt i.e. given U = 0 we have µ = ν and thus the conditional

distribution of (µ+ν)/2 given Guilt is the same as the conditional distribution of µ given

Guilt.
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Thus the numerator of the Likelihood Ratio of guilt to innocence which is

∫
f(x|µ)f(y|µ)π(µ|Guilt)dµ

can be expressed as follows :

g1(x− y)
∫
g2

(
x+ y

2
|v
)
π(v|U = 0)dv

where g1 is the density of X − Y which under guilt is Normal (0, 2c2), g2 is the density

of X+Y
2

given V = v and is Normal (v, c2/2).

The denominator in the Bayes factor can be written as

∫
g1(x− y − u).h1(u)

[∫
g2

(
x+ y

2
− v

)
π(v|u)dv

]
du

where h1 is the marginal density of U or µ − ν and πV |U(v|u) denotes the conditional

density of V given U .

In case of independence of U and V , which is true in the case of Normal priors, the

Bayes factor reduces to the following :

g1(x− y)∫
g1(x− y − u).h1(u)du

(∗∗)

Even if the above independence of U and V does not hold good we may still use (∗∗) as

a possible candidate for the Bayes factor because it is easy to communicate as it depends

only on the difference between the crime specimen and the suspect specimen. Second, in

the case of unknown prior density, one can compute this without sophisticated density

estimation methods that have been discussed in section 2.3. In fact the denominator may

be estimated by repeatedly sampling Z1, Z2 from the database or the reference population

and calculating the empirical distribution of Z1−Z2. The required estimate is the density

of the smoothed empirical distribution of Z1−Z2 at (x− y). The numerator requires no

density estimation whatsoever - it is simply the Normal (0, 2c2) density at (x− y).
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Chapter 3

Settling a Conjecture of Morris

3.1 Introduction

This chapter deals with Empirical Bayes Prediction Intervals in a Normal Regression

model, using higher order asymptotics. This is joint work with Prof. J.K. Ghosh and

Prof. R. Mukerjee.

We consider observable random variables Y1, Y2, . . . , Yk such that given θ1, θ2, . . . , θk,

they are independent and Yj is Normal with mean θj and variance V (1 ≤ j ≤ k). Also

θ1, θ2, . . . , θk are themselves independent and θj is normal with mean z′jβ and variance

A(1 ≤ j ≤ k). Here V (> 0) is assumed to be known, z′j is a known 1 × r vector

(1 ≤ j ≤ k), β is an r × 1 vector of unknown parameters and A(> 0) is an unknown

parameter.

Here we study two popular proposals one due to Morris (1983) and the other discussed

in Carlin and Louis (1996, p. 98) for obtaining Empirical Bayes prediction intervals for

θi on the basis of the observational vector Y = (Y1, . . . , Yk)
′. This is done by developing

the higher order asymptotics on the coverage and expected lengths of these intervals,

as k → ∞ keeping i and r fixed. The prediction interval proposed by Morris (1983) is

considered in section 3.2, where it is seen that the interval may not attain the target

coverage probability in all cases but that a simple modification thereof can achieve this

with margin of error o(k−1). The intricacies underlying this result are presented in the

Appendix. Next, in section 3.3 the idea of Carlin and Louis (1996) is explored analytically

to obtain an explicit expression for another prediction interval with the same asymptotic

coverage property as the modified version of Morris’ interval. In Section 3.4 it is seen that

these two intervals, both of which attain the target coverage probability with margin of

error o(k−1), have the same expected length too up to that order of approximation. It may

be emphasized that our implementation of Carlin and Louis (1996) idea in Section 2.3

for the normal regression model is analytic while their discussion seems to be motivated

towards numerical derivation of intervals. We refer to Datta et al. (2000) for a related

result on the choice of noninformative priors in a special case of the setup considered

here.

Let Zk be the k×r design matrix with rows z′1, . . . , z
′
k. As in Morris (1983), we assume
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that r ≤ k− 3 and that Zk has full column rank. The following additional assumption is

needed.

Assumption. Let cik = k{z′i(Z ′kZk)−1zi}. For fixed i, the sequence {cik) is bounded.

The above assumption holds quite commonly e.g., it holds if the smallest eigenvalue

of k−1Z ′kZk is bounded away from zero.

3.2 Morris’ interval and modification thereof

Let ξ = (β′, A)′ be the vector of unknown parameters and define

b = (Z ′kZk)
−1Z ′kY,

s2 = (k − r)−1
k∑
j=1

(Yj − z′jb)2,

 (2.1)

B = V/(V + A), B̂ =
k − r − 2

k − r
.

V

max(V, s2)
, (2.2)

ρ = B/(1−B), ρ̂ = B̂/(1− B̂), (2.3)

hik(u; ρ) =
1

2
(cik − r)ρ+

1

4
(u2 + 1)ρ2 (−∞ < u <∞) (2.4)

θ̂i = (1− B̂)Yi + B̂z′ib, (2.5)

s2
i = V (1− k − r

k
B̂) +

2

k − r − 2
B̂2(Yi − z′ib)2. (2.6)

With a target coverage probability of at least 1−α, Morris (1983) proposed the prediction

interval θ̂i ± zsi for θi, where z is the upper α/2 point of a standard normal variate. We

quote from Morris (1983, pp. 51-52). “Does (4.3) have confidence coefficient at least

1−α for every K ≥ r+ 3 and all β ∈ Rr, A ≥ 0 ? There is mathematical and numerical

evidence (Morris 1981, and unpublished) that this is so for the usual levels of 1− α. No

formal proof has yet been given, but if the coverage probability of (4.3) ever is less than

1− α, it could be only by a negligible amount.”

The following theorem, proved in the appendix, is crucial in studying this interval.

Theorem 2.1. For any convergent non stochastic sequence {tk} of real numbers,

Pξ{(θi − θ̂i)/si ≤ tk} = Φ(tk)− k−1tkφ(tk)hik(tk; ρ) + o(k−1),

where φ(·) and Φ(·) are the standard normal density and distribution functions, respec-

tively.

27



For Morris’ (1983) interval θ̂i ± zsi, by (2.4) and Theorem 2.1,

Pξ(θ̂i − zsi ≤ θi ≤ θ̂i + zsi) = 1− α− 2k−1zφ(z)hik(z; ρ) + o(k−1). (2.7)

Interestingly, hik(z; ρ) can be positive and hence the term of order O(k−1) in (2.7) can

be negative. This happens, for example if r = 1 and Zk equals the k × 1 vector of 1′s (cf

Datta et al. 2000). Then cik = 1 and by (2.4), hik(z; ρ) = 1
4
(z2 + 1)ρ2. Thus the coverage

probability of the interval θ̂i ± zsi, as it stands, can fall short of 1 − α upto the order

of approximation considered in (2.7), i.e., Morris’ interval is not only not probability

matching (as pointed out in the next chapter) but is also not conservative upto o( 1
k
).

We now indicate a simple modification of Morris’ (1983) interval that attains a cov-

erage probability 1− α with margin of error o(k−1). This is given by

I =
[
θ̂i − z{1 + k−1hik(z; ρ̂)}si, θ̂i + z

{
1 + k−1hik(z, ρ̂)

}
si
]
. (2.8)

By Eq. (A.7) in the appendix, B̂ = B + o(1) and hence ρ̂ = ρ + o(1), on a set with

Pξ-probability 1 + o(k−1) uniformly over compact ξ-sets. Hence by (2.8) and Theorem

2.1,

Pξ(θi ∈ I) = Pξ
[
−z

{
1 + k−1hik(z; ρ)

}
≤ (θi − θ̂i)/si ≤ z

{
1 + k−1hik(z; ρ)

}]
+ o(k−1)

= 2Φ(z)− 1 + o(k−1) = 1− α + o(k−1).

In fact, by Theorem 2.1, it can similarly be seen that

Pξ
[
θi > θ̂i + z{1 + k−1hik(z; ρ̂)}si

]
= α/2 + o(k−1),

Pξ
[
θi < θ̂i − z{1 + k−1hik(z; ρ̂)}si

]
= α/2 + o(k−1).

Hence, in addition to attaining a coverage probability 1−α with margin of error o(k−1),

the interval I is equal tailed up to the same order of approximation.

3.3 Another interval

We now explore analytically the idea of Carlin and Louis (1996) to get another pre-

diction interval for θi. Observe that given Y conditionally θi is normal N((1 − B)Yi +

28



Bz′iβ, V (1−B)). Hence defining θ∗i = (1−B∗)Yi +B∗z′ib, where

B∗ = V/max

(
V,
k − r
k

s2

)

is the maximum likelihood estimator (MLE) of B, one can check that this approach yields

a prediction interval for θi, of the form

[
θ∗i + t(1)(ξ∗){V (1−B∗)}1/2, θ∗i + t(2)(ξ∗){V (1−B∗)}1/2

]
.

In the above, ξ∗ is the MLE of ξ and t(1)(·) and t(2)(·) are such that

Pξ
[
(θi − θ∗i )/{V (1−B∗)}1/2 < t(1)(ξ)

]
= α/2, (3.1)

Pξ
[
(θi − θ∗i )/{V (1−B∗)}1/2 > t(2)(ξ)

]
= α/2. (3.2)

The following theorem helps in the approximate determination of t(1)(·) and t(2)(·)
so that (3.1) and (3.2) hold with margin of error o(k−1). Its proof is similar to that of

Theorem 2.1 and hence omitted. In what follows, for any real u,

h∗ik(u; ρ) =
1

2
(cik + r + 4)ρ+

1

4
(u2 + 1)ρ2. (3.3)

Theorem 3.1. For any convergent nonstochastic sequence {tk} of real numbers,

Pξ{(θi − θ∗i )/{V (1−B∗)}1/2 ≤ tk} = Φ(tk)− k−1tkφ(tk)h
∗
ik(tk; ρ) + o(k−1).

By Theorem 3.1, with

t(1)(ξ) = −z{1 + k−1h∗ik(z; ρ)}, t(2)(ξ) = z{1 + k−1h∗ik(z; ρ)},

conditions (3.1) and (3.2) hold with margin of error o(k−1). Hence the idea of Carlin and

Louis (1996) yields the prediction interval

I∗ =
[
θ∗i − z{1 + k−1h∗ik(z; ρ∗)}{V (1−B∗)}1/2, θ∗i

+z{1 + k−1h∗ik(z; ρ∗)}{V (1−B∗)}1/2
]

for θi, where ρ∗ equals B∗/(1 − B∗) if B∗ < 1, and is defined arbitrarily if B∗ = 1. As

in Section 3.2, by Theorem 3.1, this interval is equal tailed up to o(k−1) in addition to

attaining a coverage probability 1− α up to the same order of approximation.
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3.4 Expected lengths

Let L and L∗ be the lengths of the intervals I and I∗, respectively. Define

Qik(z; ρ) =
(

1

2
cik + 1

)
ρ+

1

4
z2ρ2.

Then the following theorem holds.

Theorem 4.1. (a) Eξ(L) = 2z{V (1−B)}1/2{1 + k−1Qik(z; ρ)}+ o(k−1).

(b) Eξ(L
∗) = 2z{V (1−B)}1/2{1 + k−1Qik(z; ρ)}+ o(k−1).

Thus the two prediction intervals I and I∗, based respectively on modification of

Morris’ (1983) proposal and analytic implementation of Carlin and Louis’ (1996) idea,

are at par with respect to both coverage probability and expected length, even under

higher order asymptotics retaining terms of order O(k−1).
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Chapter 4

Rigorous Justification of the Prior of Datta et al. (2000)

4.1 Introduction

In the previous chapter we have examined a conjectured inequality in Morris (1983).

Here we will study the choice of prior in the manner of Datta et al. (2000). Our main

contribution is to point out an error in their derivation and indicate how this can be

rectified. Actually it amounts to a different proof of their interesting result.

In the next section we provide a background and overview as well as summarize

the main facts in Datta et al. (2000). We point out why it has what seems to be a

nonrectifiable error and in Section 4.3 rederive their result. This is joint work with Prof.

J.K. Ghosh and Prof. Rahul Mukerjee.

4.2 Review and Main result of Datta et al. (2000).

We use a simplified version of the Model used in Chapter 3. The notations have to

be changed slightly for computational convenience.

Given θ1, θ2, . . . , θn, the random variables Y1, Y2, . . . , Yn are independent and Yi follows

Normal (θi, V ), i = 1, 2, . . . , n. Also θ1, . . . , θn are iid such that for each i, θi is Normal

with mean ξ1 and variance ξ2 (−∞ < ξ1 <∞, ξ2 > 0). Here V is known while ξ1, ξ2 are

unknown parameters. Assuming V to be known is not unrealistic as a good estimate of

V based on many degrees of freedom is usually available.

The PEB estimates of ξ1, B = V
V+ξ2

and θi are

ξ̂1 = y

B̂ = (n− 3)
V

S
with S =

∑
(yi − y)2

θ̂i = (1− B̂)yi + B̂y

and estimate of posterior variance of θi, namely, V (1−B) is V (1− B̂).

The main interest is in PEB confidence intervals for θi, of size 1−α, i.e. random sets
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CI depending on y1, y2, . . . , yn only and satisfying the conservative PEB requirement

Pξ1,ξ2(θi ∈ CI) ≥ 1− α ∀ ξ1, ξ2 (2.1)

It is known from standard asymptotics that for CI = θ̂i ± zα/2
√
V (1− B̂), the naive

confidence interval,

Pξ1,ξ2(θi ∈ CI) = 1− α +O(n−1) ∀ ξ1, ξ2 (2.2)

This is true for virtually any prior satisfying certain regularity conditions. For reasons

explained later the naive interval is not expected to satisfy (2.1) but does satisfy (2.2).

One of the goals in the previous chapter and here is to strengthen (2.2) to

Pξ1,ξ2(θi ∈ CI) = 1− α + o(n−1) (2.3)

The o(n−1) term is actually O(n−2). Though we have not checked, we believe it is not

hard to show that (2.3) fails for the naive PEB interval. We showed in the previous

chapter (2.3) fails for Morris’s interval also.

Morris points out, what is now well known, but not so in 1983, that the naive PEB

variance estimate, V (1 − B̂), is too small because it does not take into account the

variability of ξ1 and B = V
V+ξ2

, which are treated as constants even though they are

actually estimated by y, B̂.

Morris (1981) then uses Bayesian theory “to obtain a more complete analysis”. He

puts priors on ξ1, ξ2 - both uniform - and wished to study the frequentist properties of

his credibility intervals. Morris proposes a confidence interval θ̂i ± zα/2.si where, as in

Chapter 3, with r = 1,

s2
i = V

(
1− n− 1

n
B̂
)

+
2

n− 3
B̂2(yi − y)2

Morris probably does this with the expectation that some probability matching will take

place and (2.1) may hold, even though he never mentions anything about probability

matching.

There has been a lot of recent work on the choice of priors which has some frequentist

validation in the sense that a posterior quantile of the parameter of interest should equal

the corresponding frequentist probability up to a suitable order. This condition leads to

a differential equation for the prior. Such work dates back to Welch and Peers (1963),
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Stein (1985), Tibshirani (1989), J.K. Ghosh (1994), Diciccio and Stern (1993, 94), J.K.

Ghosh and Mukerjee (1991, 92, 93a, b, 94a, b, 95a, b), Datta and M. Ghosh (1995a, b)

etc. A recent Monograph with a review and many new results in this area is Datta and

Mukerjee (2004).

Datta, M. Ghosh and Mukerjee (2000) showed that Morris’s priors are not probability

matching. They find a correct probability matching prior - but the proof is incorrect. We

provide a corrected proof in the next section.

We end this section with a brief discussion of why the proof of Datta et al. has an

error.

Datta et al. confine attention to a prior of the form

π(ξ1, ξ2) = const.π(ξ2)

i.e. ξ1 and ξ2 are independent and the prior for ξ1 is taken to be the Lebesgue measure.

Morris’s prior is of this form.

Since the prior for ξ1 is already chosen, ξ1 is integrated and the resulting density is

denoted by Pξ2 . Then the probability matching equation is written as

Pξ2
{
θi ∈

(
θ̂α/2,i, θ̂1−α/2,i

)}
= 1− α + o(n−1) ∀ ξ2 (2.4)

where θ̂α/2,i, θ̂1−α/2,i are the posterior quantiles i.e.

π
{
θi ∈

(
θ̂α/2,i, θ̂1−α/2,i

)
|y
∼

}
= 1− α (2.5)

They then get a differential equation for π(ξ2) using a “Bayesian route to Frequentist

calculations” discussed in Datta and Mukerjee (2004). Unfortunately neither (2.4) nor

the Bayesian Route can be justified because the prior for ξ1 is improper. This implies

the L.H.S. of (2.4) is infinity.

In the next section a correct proof is presented briefly.

4.3 Modified derivation of the result in Section 3 of Datta,

Ghosh and Mukerjee (2000)

The normal hierarchical Bayes model has been stated before but we mention it here

again.

Yi|θi, V
indep∼ N(θi, V ), i = 1, 2, . . . , n
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θi|ξ1, ξ2
iid∼N(ξ1, ξ2), i = 1, 2, . . . , n −∞ < ξ1 <∞, ξ2 > 0.

V is assumed known.

We observe that marginally (i.e. integrating θ1, θ2, . . . , θn out) Y1, . . . , Yn are iid, each

normal with mean ξ1 and variance V + ξ2. Thus the joint density of Y1, . . . , Yn is enl(ξ)

where ξ = (ξ1, ξ2)′ and

l(ξ) = −1

2
log 2π − 1

2
log(V + ξ2)− 1

2n(V + ξ2)

n∑
j=1

(yj − ξ1)2

Let ξ̂ = (ξ̂1, ξ̂2) be the MLE of ξ based on l(ξ). Define

Dj = ∂/∂ξj, ajr = DjDrl(ξ)|ξ̂, cjr = −ajr

ajrs = DjDrDsl(ξ)|ξ̂, C = ((cjr)), C
−1 = ((cjr))

The formal expansions considered below are valid over a set S having Pξ-probability

1 + o(n−1) uniformly over compact sets of ξ. The matrix C is positive definite over S.

The joint density of θi and Y1, . . . , Yn is (n+1)-variate normal with mean vector ξ11n+1

and dispersion matrix (
ξ2 ξ2e

′
i

ξ2ei (V + ξ2)In

)

where 1n+1 is the (n+1)×1 vector with all elements unity, In is the n×n identity matrix

and ei is the n × 1 vector with 1 at ith position and 0 elsewhere. Hence for fixed ξ, the

conditional distribution of θi given Y1, . . . , Yn is normal with mean

µ(ξ) = ξ1 +
ξ2

V + ξ2

(Yi − ξ1) =
V ξ1

V + ξ2

+
ξ2Yi
V + ξ2

and variance λ(ξ) =
V ξ2

V + ξ2

.

Therefore, the joint density of θi and Y1, . . . , Yn is f(θi, µ(ξ), λ(ξ)) exp{nl(ξ)} where

f(., µ(ξ), λ(ξ)) is the univariate normal density with mean µ(ξ) and variance λ(ξ).

Posterior predictive density of θi

Let us consider a prior density π(ξ) which is positive and thrice continuously differ-

entiable. The posterior predictive density of θi, given Y = (Y1, . . . , Yn)′, under the prior
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π(ξ) is

π(θi|Y ) =

∫
b(ξ)enl(ξ)π(ξ)dξ∫
enl(ξ)π(ξ)dξ

=

∫
b(ξ)en{l(ξ)−l(ξ̂)}π(ξ)dξ∫
en{l(ξ)−l(ξ̂)}π(ξ)dξ

where

b(ξ) = f(θi, µ(ξ), λ(ξ)).

We write

h = (h1, h2)′ =
√
n(ξ − ξ̂).

Then the above yields

π(θi|Y ) =

∫
b
(
ξ̂ + h√

n

)
exp

[
n
{
l
(
ξ̂ + h√

n

)
− l(ξ̂)

}]
π
(
ξ̂ + h√

n

)
dh∫

exp
[
n
{
l
(
ξ̂ + h√

n

)
− l(ξ̂)

}]
π
(
ξ̂ + h√

n

)
dh

We write

b̂ = b(ξ̂), b̂j = Djb(ξ)|ξ̂, b̂jr = DjDrb(ξ)|ξ̂,

π̂ = π(ξ̂), π̂j = Djπ(ξ)|
ξ̂
, π̂jr = DjDrπ(ξ)|

ξ̂
,

Using summation convention,

b

(
ξ̂ +

h√
n

)
= b̂+ n−1/2hj b̂j +

1

2
n−1hjhrb̂jr + o(n−1)

Since ∫
e
n

{
l

(
ξ̂+ h√

n

)
−l(ξ̂)

}
π

(
ξ̂ +

h√
n

)
dh

=
π̂(2Pi)

|C|1/2
+ o(n−1/2)

[Vide Ghosh and Mukerjee (1991); here Pi means the number π.] it follows that

π(θi|Y ) =

∫ [
b̂+ n−1/2hj b̂j + n−1

2
hjhrb̂jr

]
e
n

{
l

(
ξ̂+ h√

n

)
−l(ξ̂)

}
π
(
ξ̂ + h√

n

)
dh

∫
e
n

{
l

(
ξ̂+ h√

n

)
−l(ξ̂)

}
π
(
ξ̂ + h√

n

)
dh

+ o(n−1)

= b̂+

∫ [
n−1/2hj b̂j + 1

2
n−1hjhrb̂jr

]
e
n

{
l

(
ξ̂+ h√

n

)
−l(ξ̂)

}
π
(
ξ̂ + h√

n

)
dh

π̂(2Pi)/|C|1/2
+ o(n−1)
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Now

π

(
ξ̂ +

h√
n

)
= π̂ +

1√
n
hjπ̂j + o(n−1/2),

n

{
l

(
ξ̂ +

h√
n

)
− l(ξ̂)

}
= −1

2
h′Ch+

1

6
√
n
hjhrhsajrs + o(n−1/2),

exp

[
n

{
l

(
ξ̂ +

h√
n

)
− l(ξ̂)

}]
= e−

1
2
h′Ch

[
1 +

1

6
√
n
hjhrhsajrs

]
+ o(n−1/2),[

n−1/2hj b̂j +
1

2
n−1hjhrb̂jr

] [
exp

(
n

{
l

(
ξ̂ +

h√
n

)
− l(ξ̂)

})]
π

(
ξ̂ +

h√
n

)

=
1√
n
π̂e−

1
2
h′Ch

[
hj b̂j +

1

2
√
n
hjhrb̂jr

] [
1 +

1

6
√
n
hjhrhsajrs

] [
1 +

1√
n
hj.

π̂j
π̂

]
+o(n−1)

=
1√
n
π̂e−

1
2
h′Ch

[
hj b̂j +

1√
n

(
1

2
hjhrb̂jr +

1

6
hjhrhshtajrsb̂t + hjhr

π̂j
π̂
b̂r

)]
+ o(n−1)

Hence writing φ2(·;C−1) for the bivariate normal density with null mean vector and

dispersion matrix C−1.

π(θi|Y ) = b̂+
1√
n

∫
φ2(h;C

−1)

[
hj b̂j +

1√
n

(
1

2
hjhrb̂jr +

1

6
hjhrhshtajrsb̂t

+
hjhrπ̂j b̂r

π̂

)]
dh+ o(n−1)

(3.1)

The last step follows as ajrs is invariant under permutation of its subscripts.

Frequentist validity of the posterior quantiles of θi

By (3.1), the (1− α)th posterior quantile of θi is

Q(π) = q(ξ̂) +
u

n

where

q(ξ̂) = µ(ξ̂) + z
√
λ(ξ̂)

z is the (1− α)th quantile of a standard normal variate, and u may depend on the prior

π, in addition to α and Y , and is at most of order O(1).

We now consider an auxiliary prior π(ξ) and from (3.1) we note that

π(θi|Y ) = π(θi|Y ) +
1

n

(
π̂j
π̂
− π̂j
π̂

)
cjrb̂r + o(n−1)
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Hence writing P π{.|Y )} for the posterior probability measure under the prior π(·)

P π {θi ≤ Q(π)|Y } = 1− α +
1

n

(
π̂j
π̂
− π̂j
π̂

)
cjr
∫ q(ξ̂)

−∞
b̂rdθi + o(n−1)

We next note that

log b(ξ) = log f(θi, µ(ξ), λ(ξ))

= −1

2
log(2π)− 1

2
log λ(ξ)− 1

2λ(ξ)
{θi − µ(ξ)}2

D1b(ξ)

b(ξ)
=

1

2λ(ξ)
2 {θi − µ(ξ)} {D1µ(ξ)} =

θi − µ(ξ)

λ(ξ)

(
V

V + ξ2

)
D2b(ξ)

b(ξ)
= −D2λ(ξ)

2λ(ξ)
+

D2λ(ξ)

2 {λ(ξ)}2 {θi − µ(ξ)}2

+
1

2λ(ξ)
2 {θi − µ(ξ)} {D2µ(ξ)}

=

(
D2λ(ξ)

2λ(ξ)

)[
{θi − µ(ξ)}2

λ(ξ)
− 1

]
+
θi − µ(ξ)

λ(ξ)

V

(V + ξ2)2
(Yi − ξ1)

=
V

2ξ2(V + ξ2)

[
{θi − µ(ξ)}2

λ(ξ)
− 1

]
+
θi − µ(ξ)

λ(ξ)
.
V (Yi − ξ1)

(V + ξ2)2

Therefore, writing φ(·) for the standard univariate normal density, we have

∫ q(ξ̂)

−∞
b̂1dθi =

∫ z

−∞

w√
λ(ξ̂)

(
V

V + ξ̂2

)
φ(w)dw

= −
√√√√ V

ξ̂2

(
V + ξ̂2

)φ(z),

∫ q(ξ̂)

−∞
b̂2dθi =

∫ z

−∞

 V

2ξ̂2(V + ξ̂2)
(w2 − 1) +

V (Yi − ξ̂1)

(V + ξ̂2)2
√
λ(ξ̂)

w

φ(w)dw

= − V

2ξ̂2(V + ξ̂2)
zφ(z)− V (Yi − ξ̂1)

(V + ξ̂2)2
√
λ(ξ̂)

φ(z).

Also, it is easy to see that

c11 = V + ξ̂2, c
12 = c21 = 0,

c22 =

 1

n(V + ξ̂2)3

n∑
j=1

(Yj − ξ̂1
2
)− 1

2(V + ξ̂2)2

−1
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Since ξ̂1 = Y = 1
n

n∑
j=1

Yj and

ξ̂2 = max

 1

n

n∑
j=1

(Yj − Y )2 − V, 0

 ,
from the above it follows that

Eξ
[
P π {θi ≤ Q(π)|Y }

]
= 1− α− 1

n

[{
π1(ξ)

π(ξ)
− π1(ξ)

π(ξ)

}
(V + ξ2)A1(ξ)

+

{
π2(ξ)

π(ξ)
− π2(ξ)

π(ξ)

}{
2(V + ξ2)2

}
A2(ξ)

]
+ o(n−1)

where

A1(ξ) =

√
V

ξ2(V + ξ2)
φ(z),

A2(ξ) =
V

2ξ2(V + ξ2)
zφ(z).

Hence, using the shrinkage argument,

Pξ(θi ≤ Q(π)) = 1− α +
1

n

[
π1(ξ)

π(ξ)
(V + ξ2)A1(ξ) +D1 {(V + ξ2)A1(ξ)}

+
π2(ξ)

π(ξ)

{
2(V + ξ2)2

}
A2(ξ) +D2

{
2(V + ξ2)2A2(ξ)

}]
+ o(n−1)

= 1− α +
1

nπ(ξ)

[
D1 {π(ξ)(V + ξ2)A1(ξ)}

+D2

{
π(ξ)(2(V + ξ2)2)A2(ξ)

} ]
+ o(n−1)

Hence, the matching condition becomes

D1 [π(ξ)(V + ξ2)A1(ξ)] +D2

[
π(ξ)

{
2(V + ξ2)2

}
A2(ξ)

]
= 0

suppose π(ξ) = π(ξ2) i.e. π(ξ) depends on ξ only through ξ2. Then π(ξ) satisfies the

above matching condition if and only if

D2

[
π(ξ)

{
2(V + ξ2)2

}
A2(ξ)

]
= 0

i.e. iff

D2

[
π(ξ)(V + ξ2)2 1

ξ2(V + ξ2)

]
= 0
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i.e. iff

π(ξ) ∝ ξ2

V + ξ2

,

which is the same as the prior reported in page 188 of Datta et al. (2000).
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Appendix

The proofs of Theorems 2.1 and 4.1 of Chapter 3 are presented here. Equation num-

bers refer to equations / expressions in Chapter 3.

The following preliminaries will facilitate the presentation of the proofs. Let

δ = (V + A)1/2, X1 = k1/2(z′ib− z′iβ)/δ, X2 = (Yi − z′iβ)/δ, (A.1)

X3 = k1/2(δ−2s2 − 1), X4 = X3 − k−1/2(X2
3 − 2). (A.2)

By (2.1), c
−1/2
ik X1 is standard normal and hence the assumption made in Section 3.1

implies that X1 is stochastically bounded. It is easy to see that so are X2, X3 and X4; cf.

(2.1).

Lemma. (i) Eξ(X1) = 0, (ii) Eξ(X4) = o(k−1), (iii) Eξ(X
2
1 ) = cik, (iv) Eξ(X

2
2 ) = 1, (v)

Eξ(X
2
4 ) = 2 + o(1), (vi) Eξ(X1X4) = 0, (vii) Eξ(X2X4) = 0, (viii) Eξ(X2X

2
4 ) = 0, (ix)

Eξ(X1X2X4) = o(1), (x) Eξ(X
2
2X

2
4 ) = 2 + o(1).

Proof. The proofs of parts (i) - (v) are either obvious or straightforward. To prove the

remaining parts, let us define

U = (U1, . . . , Uk)
′ = δ−1(Y − Zkβ), wi = Zk(Z

′
kZk)

−1zi

and let M be the orthogonal projector on the orthocomplement of the column space of

Zk. Then

tr(M) = k − r, Mwi = 0 (A.3)

and by (2.2), (A.1) and (A.2)

X1 = k1/2w′iU, X2 = Ui, X3 = k1/2{(k − r)−1U ′MU − 1}. (A.4)

By (A.2) and (A.4), each of X1X4, X2X4 and X2X
2
4 is an odd polynomial in U . Hence

parts (vi) - (viii) follow noting that the elements of U are independently standard normal,

a fact that is also used in the rest of the proof whenever necessary.

Next, by (A.2) and (A.4)

Eξ(X1X2X4) = kEξ
[
(w′iU)Ui{(k − r)−1U ′MU − 1}

]
+ o(1). (A.5)

48



Write wii for the ith element of wi and mi for the ith column of M . Then by (A.3),

Eξ{(w′iU)Ui(U
′MU)} = wiitr(M) + 2w′imi = wii(k − r).

Since Eξ{(w′iU)Ui} = wii, part (ix) is now evident from (A.5).

Finally, in order to prove (x), we note that by (A.2) and (A.4)

Eξ(X
2
2X

2
4 ) = kEξ

[
U2
i {(k − r)−1U ′MU − 1}2

]
+ o(1). (A.6)

Now, M is idempotent with (i, i)th element 1− z′i(Z ′kZk)−1zi = (1− k−1cik). Hence after

some algebraic manipulation,

Eξ{U2
i (U ′MU)} = k − r + 2(1− k−1cik),

Eξ{U2
i (U ′MU)2} = (k − r)2 + 2(k − r) + 4(k − r + 2)(1− k−1cik).

Using the above in (A.6) and recalling the assumption on the boundedness of {cik}, part

(x) of the lemma follows.

We are now in a position to present the proofs. All stochastic expansions considered

below are on a set with Pξ-probability 1 + o(k−1) (uniformly over compact ξ-sets). In

particular, s2 > V on this set, so that by (2.2), (A.1) and (A.2),

B̂ =
k − r − 2

k − r
(1 + k−1/2X3)−1B = B(1− k−1/2X4) + o(k−1). (A.7)

Proof of Theorem 2.1. Given Y , conditionally θi is N((1 − B)Yi + Bz′iβ, V (1 − B)).

Hence

Pξ{(θi − θ̂i)/si ≤ tk} = Eξ{Φ(T )}, (A.8)

where

T = {θ̂i + tksi − (1−B)Yi −Bz′iβ}/{V (1−B)}1/2. (A.9)

Recalling the definitions of B, δ and ρ, by (2.5), (2.6), (A.1) and (A.7), after some algebra,

θ̂i − (1−B)Yi −Bz′iβ = δB{k−1/2(X1 +X2X4)− k−1X1X4}+ o(k−1), (A.10)

si = {V (1−B)}1/2
[
1 +

1

2
k−1/2ρX4 +

1

2
k−1{(r + 2X2

2 )ρ

−1

4
ρ2X2

4}
]

+ o(k−1).
(A.11)
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By (A.9) - (A.11),

T = tk + k−1/2g1 + k−1g2 + o(k−1), (A.12)

where

g1 =
1

2
tkρX4 + ρ1/2(X1 +X2X4), (A.13)

g2 =
1

2
tk{(r + 2X2

2 )ρ− 1

4
ρ2X2

4} − ρ1/2X1X4. (A.14)

By (A.12),

Φ(T ) = Φ(tk) + k−1/2φ(tk)g1 + k−1φ(tk)(g2 −
1

2
tkg

2
1) + o(k−1). (A.15)

Using the lemma, from (A.13) and (A.14),

Eξ(g1) = o(k−1/2), Eξ(g2) =
1

2
tk{(r + 2)ρ− 1

2
ρ2}+ o(1), (A.16)

Eξ(g
2
1) =

1

2
t2kρ

2 + (cik + 2)ρ+ o(1). (A.17)

If one substitutes (A.15) in (A.8) and then employs (A.16) and (A.17) then the result

follows.

Proof of Theorem 4.1. By (2.3), (2.8) and (A.7), the length L of the interval I satisfies

L = 2z{1 + k−1hik(z; ρ)}si + o(k−1). Hence by (A.11),

L = 2z{V (1−B)}1/2
[
1 +

1

2
k−1/2ρX4 + k−1

{(
1

2
r +X2

2

)
ρ− 1

8
ρ2X2

4

+hik(z; ρ)}] + o(k−1).

Part (a) now follows using (2.4) and the lemma. The proof of (b) is similar.
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