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Gene expression profiling leads to discovery
of correlation of matrix metalloproteinase 11
and heparanase 2 in breast cancer progression
Junjie Fu1, Ravil Khaybullin1, Yanping Zhang2, Amy Xia3 and Xin Qi1*

Abstract

Background: In order to identify biomarkers involved in breast cancer, gene expression profiling was conducted
using human breast cancer tissues.

Methods: Total RNAs were extracted from 150 clinical patient tissues covering three breast cancer subtypes (Luminal A,
Luminal B, and Triple negative) as well as normal tissues. The expression profiles of a total of 50,739 genes were
established from a training set of 32 samples using the Agilent Sure Print G3 Human Gene Expression Microarray
technology. Data were analyzed using Agilent Gene Spring GX 12.6 software. The expression of several genes
was validated using real-time RT-qPCR.

Results: Data analysis with Agilent GeneSpring GX 12.6 software showed distinct expression patterns between
cancer and normal tissue samples. A group of 28 promising genes were identified with ≥ 10-fold changes of
expression level and p-values < 0.05. In particular, MMP11 and HPSE2 were closely examined due to the important roles
they play in cancer cell growth and migration. Real-time RT-qPCR analyses of both training and testing sets validated the
gene expression profiles of MMP11 and HPSE2.

Conclusions: Our findings identified these 2 genes as a novel breast cancer biomarker gene set, which may facilitate the
diagnosis and treatment in breast cancer clinical therapies.
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Background
Breast cancer is the second leading cause of death by
cancer in women. It is estimated by the American Cancer
Society that in 2014, approximately 232,670 new cases of
invasive breast cancer will be diagnosed in women and up
to 40,000 women will die from breast cancer in the United
States alone [1].
There has been mounting evidence demonstrating that

breast cancer is not one simple disease, but represents a
heterogeneous group of tumors with different molecular
subtypes, risk factors, clinical behaviors, and responses to
treatments [2, 3]. Cancer biomarkers are increasingly being
utilized for diagnostic, prognostic, and predictive purposes
[4, 5]. Distinct molecular subtypes of breast cancer have

been identified using the presence or absence of bio-
markers, including estrogen receptors (ER+/ER-), proges-
terone receptors (PR+/PR-), and human epidermal growth
factor 2 (HER2+/HER2-) [6–8]. The expression profiles of
these three biomarkers are used to divide breast cancer into
four subtypes: Luminal A, Luminal B, Triple negative
(basal-like), and HER2 type [9, 10]. Among these subtypes,
Luminal A is the most prevalent, accounting for 40 % of all
breast cancers. Examples of biomarker-targeted therapy in-
clude when patients are given tamoxifen [11] for those with
ER+ breast cancer and trastuzumab for those with HER2+
breast cancer, resulting in significantly improved prognosis
[12]. However, these three classic molecular biomarkers are
still insufficient, particularly considering that a significant
portion of breast cancers falls under the triple negative
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breast cancer (TNBC) subtype [13, 14]. Therefore, claudin-
low subtype and new biomarkers such as androgen recep-
tors have been discovered for breast cancer [15, 16].
Gene signature, a group of genes whose combined

expression pattern is uniquely characteristic of a bio-
logical phenotype or medical condition, can be a com-
plement to classic prognostic factors to provide more
accurate prognostic information [17]. During the past
several decades, a number of gene signatures have
been identified for breast cancer. For example, a 70-
gene signature (MammaPrint; Agendia, Amsterdam,
The Netherlands) and a 21-gene signature (OncoType;
Genomic Health, Redwood City, CA) are being used in
selected patients with early ER+ disease [18]. However,
the 10-year results of ongoing clinical trials for testing
the clinical benefit of gene signatures will not be fully
available until 2020 [19]. Therefore, the identification
of novel biomarkers and gene signatures in breast can-
cer remains highly essential, particularly considering
that gene signatures in TNBC have not been fully de-
veloped yet.
Emerging technologies, such as gene expression profiling,

are increasingly valued as powerful tools for new biomarker
identification [20–24]. Data from gene expression profiling
is generated from the analysis of hybridization microarray,
which is a powerful method for high-throughput screening
(HTS) of thousands of genes at one time. Previously, our
group has studied the gene expression pattern of lung can-
cer using Affymetrix human exon array [25]. In this work,
breast cancer gene expression profiling with mRNAs from
clinical patient tissues was examined using the newly devel-
oped Agilent SurePrint G3 Human Gene Expression
Microarray technology. This state-of-the-art high through-
put platform takes advantage of the higher density available
on the SurePrint G3 chip. Compared with other chips, the
one we employed in this study exhibits a remarkably wide
dynamic range (approximately 5 orders of magnitude), pro-
viding reliable detection of both low- and high-expressing
genes. In addition, this technology requires low DNA input
and the whole workflow is simple and straightforward.
Genes of biological significance in breast cancers were
identified via statistical analysis using GeneSpring 12.6 soft-
ware. The expression levels of several selected genes were
further confirmed using real-time reverse transcription
quantitative polymerase chain reaction (RT-qPCR). Taken
together, our gene expression profiling using the Agilent
SurePrint G3 chip will contribute to the clinical diagnosis
and treatment of breast cancer through the identification of
novel breast cancer biomarkers.

Methods
Tissue samples
Tissue samples from clinical patients were acquired from
the Clinical and Translational Science Institute (CTSI)

Biorepository at University of Florida with all necessary eth-
ical approval of collection and usage. All patients provided
written informed consent for their tissue samples to be ar-
chived and used for research purposes. This study was ap-
proved by the University of Florida Institutional Review
Board (IRB201200353) for breast cancer samples usage
through UF CTSI Biorepository. A total of 150 tissue sam-
ples were included in this study, covering 3 subtypes of
breast cancer (Luminal A, Lumina B, Triple negative) as
well as normal tissue samples. All the human tissue samples
were stored at −80 °C before RNA extraction.

RNA preparation
Total RNA was isolated and purified from frozen tissue
samples using Qiagen RNeasy Mini Kit, QIAshredder kit
and RNase-Free DNase Set kit (Qiagen, Valencia, CA) fol-
lowing manufacturer's recommendations. The protocol in-
cludes: 1) homogenizing tissue by grinding in mortar with
liquid nitrogen; 2) binding the homogenized tissue to the
RNeasy Mini spin column; and 3) eliminating any trace
amount of DNA using the DNase kit. The qualities of total
RNA were strictly controlled by several parameters. The
RNA extracts were first analyzed by Nanodrop 2000
(Thermo Fisher Scientific, Waltham, MA) and gel electro-
phoresis. RNA quality was determined by the ratios of
A260/A280 (close to 2) and A260/A230 (close to 2), and
the presence of 2 distinct ribosomal bands on gel electro-
phoresis. Qualified RNAs were further tested using Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA),
and samples with 28S/18S RNA ratio > 1 were selected for
gene expression profiling [26]. Thirty-two samples were fi-
nally tested, among which 2 samples C501 (Luminal A) and
N513 (normal) were from the same patient, others are
unmatched samples.

Gene expression microarrays
Cyanine-3 (Cy3) labeled cRNA was prepared from
100 ng RNA using the One-Color Low Input Quick
Amp labeling kit (Agilent, Valencia, CA) according to
the manufacturer's instructions, and then purified by
RNeasy Mini Kit (Qiagen, Valencia, CA) purification. Dye
incorporation and cRNA yield were checked with the
Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA).
For hybridization, 0.6 μg of Cy3-labelled cRNA (specific
activity > 8 pmol Cy3/μg cRNA) was fragmented at 60 °C
for 30 min in a reaction volume of 25 μL containing 1X
Agilent fragmentation buffer and 2X Agilent blocking
agent following the manufacturers’ instructions. On
completion of the fragmentation reaction, 25 μL of 2X
Agilent hybridization buffer was added to the fragmen-
tation mixture and hybridized to Agilent Whole Hu-
man Genome Oligo Microarrays (GPL17077) for 17 h
at 65 °C in a rotating Agilent hybridization oven. After
hybridization, microarrays were washed for 1 min at
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room temperature with GE Wash Buffer 1 (Agilent)
and 1 min with 37 °C GE Wash buffer 2 (Agilent), then
dried using Agilent stabilization and drying solution.
Immediately after washing, slides were scanned on the
Agilent DNA Microarray Scanner (G2505C) using1
color scan setting for 1x60k array slides (Scan Area
61 × 21 mm, Scan resolution 3 μM, Dye channel set to
Green and Green PMT set to 100 %).

Data normalization and quality control
This gene expression microarray data is deposited to
the GEO repository and available via the accession
number GSE57297 at http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE57297. The data were analyzed
by GeneSpring 12.6 software (Agilent) and initial pro-
cessing method was reported earlier [27]. The raw sig-
nals were log transformed and normalized using the
Percentile shift normalization method, the value was
set at 75th percentile. For each probe, the median of
the log summarized values from all the samples was
calculated and subtracted from each of the samples to
get transformed baseline. The parameter values for ex-
perimental grouping were set as Luminal A, Luminal B,
Triple negative, and Normal. Probes with intensity
values below 20th percentile were filtered out using the
“Filter Probesets by Expression” option.

Differential expression analysis
Moderated t-test with Benjamin-Hochberg multiple
testing corrections was used to calculate the p-value for
the volcano plots. One-way ANOVA with asymptotic
computation and Benjamin-Hochberg multiple testing
corrections were used to calculate the p-value for the
heat map. A p-value cutoff of 0.05 and a change of 2
fold or more were selected for gene analysis.

Real-time RT-qPCR validation
cDNA was generated using SuperScript® VILO™ Mas-
terMix (Invitrogen). All primers required were designed
using Primer Premiere 6 software, and purchased from
Integrated DNA Technologies (IDT). The real-time RT-
qPCR reactions were prepared using SYBR® Select Master
Mix (Life Technologies), and performed using BioRad
CXF96 Real-Time PCR Detection System. The following
conditions were used: 95 °C for 2 min, 40 cycles of 95 °C
for 10 s and 60 °C for 1 min. Fold change of gene expres-
sion was calculated with the 2-ΔΔCT method, using β-actin as
the house keeping gene [28].

Results
Microarray gene expression profiling
The 150 tissue samples in the study included all three
subtypes of breast cancer (Luminal A, Lumina B, Triple
negative) as well as normal tissue samples. After RNA

extraction and purification, 32 RNA samples (19 from
Luminal A, 3 from Luminal B, 3 from Triple negative,
and 7 normal samples) were selected as the training set
for microarray gene expression profiling. The remaining
118 samples were used as a testing set to validate the
gene expression results from the training set (Fig. 1). In
the training set, 2 samples C501 (Luminal A) and N513
(normal) were from the same patient, others are un-
matched samples.
As many as 50,739 probes were used to detect mRNA ex-

pression levels for each RNA sample using SurePrint G3
Human Gene Expression 8 × 60 K v2 Microarray Kit, and
the data were analyzed using Gene Spring 12.6 (Agilent).
Probes with intensity values below 20th percentile were fil-
tered out, resulting in 38,432 genes, which were used for
differential expression analysis. Out of the 38,432 genes, the
expressions of 4569 genes were found to be statistically sig-
nificantly different after One-way ANOVA test [29] with a
corrected p-value less than 0.05. Furthermore, 1061 genes
showed fold changes of expression (compared with normal
control) larger than 2 in all three breast cancer subtypes

Fig. 1 Schematic representation of the breast cancer gene expression
profiling study. A total number of 150 tissue samples were examined.
After RNA extraction and purification, 32 RNA samples were selected as
the training set for microarray gene expression profiling. The remaining
118 samples were used as a testing set to validate the gene expression
results by real-time RT-qPCR
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(Luminal A, Luminal B, and Triple negative) [30]. Among
these 1061 genes, most of them were consistently up-
regulated (217 genes) or down-regulated (720 genes) in all
three subtypes, while the other 124 genes showed different
expression patterns among different breast cancer subtypes
(Table 1). It is notable that in most cases, the gene regula-
tion patterns were the same between Luminal A and
Luminal B subtype samples, as only 9 genes displayed dif-
ferent regulation between these 2 subtypes. This is consist-
ent with the report that Luminal A and Luminal B share a
significant number of characteristics [9, 10]. For example,
both Luminal A and Luminal B subtype are characterized
by expression of ER, PR, and other genes associated with
ER activation.
Next, the gene expression fold changes were further

constrained to be ≥ 10 while still keeping the corrected
p-value < 0.05. The distributions of the fold changes and
p-values of genes in each subgroup were shown in Fig. 2
as volcano plots. Moreover, 28 genes were identified to

show fold changes ≥ 10 in all three breast cancer sub-
types. Figure 3 shows the heat map [31] representing the
gene expression profiling of these 28 genes. Cancer sam-
ples are shown on the left grouped by breast cancer sub-
types, while normal controls are displayed on the right.
The detailed fold change values of these 28 genes are
listed in Table 2. The gene regulation patterns of all 28
genes were consistent among the three breast cancer
subtypes. Interestingly, most of these genes (25 genes)
were down-regulated, and only 3 genes (COL10A1,
MMP11, and TUBB3) were up-regulated in cancer
tissues.

Real-time RT-qPCR validation
Gene selection in real-time RT-qPCR validation is based
on the selection criteria of corrected p-value < 0.05 and
fold changes ≥ 10 and the relevance of genes to breast
cancer progression. It is interesting to notice that both
MMP11 and HPSE2 appear in the 28 top genes list in
Table 2. As illustrated in Fig. 6, MMPs, HPSE, HPSE2
are closely involved in cancer cells’ invasion and metas-
tasis. It has been previously documented that MMPs and
HPSE play essential roles in breast cancer [32, 33]. How-
ever, the close relationship between MMP11 and HPSE2
has not been reported, which brings new insight into the
breast cancer field. From our gene microarray data,
MMP11 was found to be up-regulated while HPSE2 was
down-regulated in breast cancer compared with normal
control (Fig. 7). Therefore, MMP11 and HPSE2 were se-
lected for real-time RT-qPCR validation to investigate
their potential roles as a gene set in breast cancer
progression.
Four tissue samples were first picked from the training

set, C282, C421, C734, and N114, representing Luminal

Table 1 The regulation pattern of the 1061 genesa among
three breast cancer subtypes

Number
of genes

Gene regulation

Luminal A Luminal B Triple negative

217 upb up up

720 downb down down

60 up up down

55 down down up

2 down up up

7 down up down
aGenes with corrected p < 0.05 and fold changes ≥ 2 in all three breast cancer
subtypes were selected
bThe classification as “up” or “down” refers to fold changes with respect to
normal tissues

Fig. 2 Volcano plots. The distribution of the gene expression fold changes and corrected p-values in each subgroup a Luminal A, b Luminal B,
and c Triple negative compared with normal controls were shown. A total number of 4569 genes with p-value < 0.05 were used for the analysis.
Genes with absolute fold change≥ 10 and p-value < 0.05 are indicated in red. Plots are generated using Gene Spring 12.6 with moderated t-test
and Benjamini-Hochberg testing correction
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A, Luminal B, Triple negative, and normal tissue re-
spectively. As shown in Fig. 4, the expression of HPSE2
in all the three cancer tissues were down-regulated com-
pared with the expression in normal tissue. On the other
hand, the levels of MMP11 in all the 3 cancer tissues
were elevated compared with that in normal tissue. The
RT-qPCR results for these samples were consistent with
our gene expression microarray data (Table 2).
To further validate the reliability of our gene array

data, another 7 samples were randomly selected from
the testing set (Fig. 1), including subtype Luminal A
(C427 and C696), Luminal B (C927 and C369), Triple
negative (C430 and C434), and normal control (N319).
The results were shown in Fig. 5, which confirmed the

gene expression profile for HPSE2 and MMP11 from
microarray data. Validation with other samples from the
testing set is still ongoing while our initial testing results
demonstrated the reliability of the gene expression pro-
filing generated by our genearray data.

Discussion
Gene expression microarray as a powerful tool to identify
biomarkers in breast cancer
Unlike most traditional molecular biology tools, which
only allow study of a single gene or a very small set of
genes, gene expression microarrays provide a compre-
hensive overview of the entire transcriptional activity in
a biological sample. As a result, gene expression

Fig. 3 Heat map. The expression patterns of 28 genes out of 50,739 biological probes after one-way ANOVA test with a corrected p-value < 0.05
and fold change≥ 10 in all three breast cancer subtypes were shown in the heat map using Gene Spring 12.6 software. The heat map indicates
up-regulation (red), down-regulation (green), and mean gene expression (black). The columns represent individual tissue samples covering 3 breast
cancer subtypes: Luminal A (red), Luminal B (yellow), and Triple negative (purple) as well as normal samples (blue). The rows are labeled with individual
gene symbols
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Table 2 List of 28 genes involved in breast cancer a

Gene Fold change

Symbol Description Luminal A Luminal B Triple negative

1 GRIA4 Glutamate receptor, ionotropic, AMPA 4 −36.73 −10.59 −22.19

2 PIGR Polymeric immunoglobulin receptor −89.25 −24.54 −55.02

3 TUBB3 Tubulin, beta 3 class III 11.60 13.94 22.60

4 SLC26A3 Solute carrier family 26 (anion exchanger), member 3 −11.33 −10.86 −16.08

5 LINC00844 Long intergenic non-protein coding RNA 844 −15.33 −25.99 −13.74

6 FIGF c-Fos induced growth factor −49.22 −37.19 −18.18

7 SMYD1 SET and MYND domain containing 1 −31.85 −12.84 −17.43

8 CXCL2 Chemokine (C-X-C motif) ligand 2 −30.24 −13.34 −16.54

9 ALB Albumin −76.81 −54.76 −109.05

10 DRD2 Dopamine receptor D2 −19.79 −15.78 −10.30

11 DLK1 Delta-like 1 homolog −82.62 −47.07 −19.17

12 RNF186 Ring finger protein 186 −64.51 −23.30 −61.59

13 C2orf40 Chromosome 2 open reading frame 40 −69.81 −13.55 −18.39

14 OXTR Oxytocin receptor −48.00 −24.36 −28.75

15 DAPL1 Death associated protein-like 1 −20.83 −20.53 −25.10

16 COL10A1 Collagen, type X, alpha 1 36.84 13.82 39.31

17 FGFBP1 Fibroblast growth factor binding protein 1 −50.79 −50.39 −17.39

18 NTRK2 Neurotrophic tyrosine kinase, receptor, type 2 −23.96 −15.75 −48.94

19 SCARA5 Scavenger receptor class A, member 5 −21.61 −19.18 −39.67

20 DLK2 Delta-like 2 homolog −28.32 −11.49 −15.35

21 AFP Alpha-fetoprotein −29.03 −14.92 −42.89

22 HPSE2 Heparanase 2 −29.29 −20.28 −15.26

23 CAPN6 Calpain 6 −28.50 −38.50 −13.62

24 LINC00640 Long intergenic non-protein coding RNA 640 −18.13 −22.01 −12.84

25 LRRC3B Leucine rich repeat containing 3B −13.77 −21.02 −13.11

26 IL22RA2 Interleukin 22 receptor, alpha 2 −12.01 −22.72 −14.56

27 KCNJ16 Potassium inwardly-rectifying channel, subfamily J, member 16 −35.51 −11.58 −17.09

28 MMP11 Matrix metallopeptidase 11 24.75 12.45 50.25
aGenes with corrected p-value < 0.05 and fold changes ≥ 10 in all the 3 subtypes using GeneSpring 12.6 software

Fig. 4 Validation of expression of HPSE2 and MMP11 using RT-qPCR. Four samples (C282, C421, C734, and N114) were picked from the training
set, representing Luminal A, Luminal B, Triple negative, and normal tissue respectively. Fold changes of gene expression were calculated with the
2-ΔΔCT method, using β-actin as the house keeping gene. Results were shown as mean ± SEM from triplicates (n = 3). *p < 0.05 compared with
N114, **p < 0.001 compared with N114
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microarrays significantly facilitate and accelerate the
discovery of novel and unexpected functional roles of
genes. This powerful tool has been applied to a broad
range of applications, including discovering novel disease
biomarkers and developing new diagnostic tools [20].
In the current study, 32 RNA samples from breast cancer

patients as well as normal controls were employed as a
training set. The expression profiling of as many as 50,739
genes in these samples were examined simultaneously using
the newly developed Agilent Sure Print G3 Human Gene
Expression Microarray technology, which provided com-
prehensive coverage of genes and transcripts with the most
up-to-date genomic content. Distinct expression patterns
between cancer and normal samples were identified (Fig. 3).
Furthermore, there were 28 genes that have fold changes
(the expression levels in cancer samples compared with
normal controls) larger than 10 and p-value less than 0.05
(Table 2, Fig. 3), suggesting their important roles in cancer
development and as biomarkers in breast cancer diagnos-
tics. Moreover, the RT-qPCR results of several genes from
both the training set and the testing set displayed good
consistency with the results obtained from gene expression
microarray, further indicating the accuracy and reliability of
this technology (Fig. 4, 5).

MMP11 and HPSE2 as a biomarker gene set in breast
cancer
One of the main characteristics of breast cancer is its
significantly higher capacity of invasion and metastasis.
Most breast cancers are invasive, or infiltrating [1, 9],
breaking through the ductal of glandular walls where
they originated and growing into surrounding breast tis-
sues. The invasive capacity is influenced by interactions
between cancer cells and their extracellular matrix
(ECM) components. During invasion and metastasis,
tumor cells destruct the basement membrane (BM) and
migrate into the connective tissue. The degradation of
ECM and BM may further release and activate ECM-

bound cytokines and ECM fragments that modulate cell
growth, migration and angiogenesis [34].
Evidences now suggest that matrix metalloproteinase

(MMP) and heparanase (HPSE) play important roles in
degrading BM and ECM (Fig. 6). MMPs are zinc-
dependent endopeptidases, which are capable of degrad-
ing all kinds of ECM proteins. The overexpression of
many MMP family members, such as MMP1, MMP2,
MMP7, MMP9, and MMP11 has been found to be in-
volved in cancer progression [33, 35, 36]; therefore, the
development of MMP inhibitors has become an effective
strategy in clinical cancer therapies [37]. HPSE degrades
heparan sulfate (HS), which is present at the cell surface
and in the ECM in the form of proteoglycans. On the
other hand, HPSE2, a homologue of HPSE, lacks HS-
degrading activity. Nonetheless, HPSE2 remains capable
of high-affinity interaction with HS. Therefore, HPSE2
acts as a competitive binder with HPSE for HS, thereby
showing anti-metastatic features [32, 38]. The correl-
ation between the expressions of MMP9 and HPSE in
cancer progression; has been observed previously in dif-
ferent types of cancer [34, 39, 40]. However, the close

Fig. 5 Validation of expression of HPSE2 and MMP11 using RT-qPCR. Seven samples were picked from the training set, representing Luminal A
(C427 and C696), Luminal B (C927 and C369), Triple negative (C430 and C434), and normal tissue (N518) respectively. Fold changes of gene expression
were calculated with the 2-ΔΔCT method, using β-actin as the house keeping gene. Results were shown as mean ± SEM from triplicates (n= 3). *p< 0.05
compared with N518, **p< 0.001 compared with N518

Fig. 6 The involvement of MMPs, HPSE, and HPSE2 in ECM degradation
and cancer cell invasion. MMPs are capable of degrading all kinds
of ECM proteins. HPSE degrades heparan sulfate (HS), which is present in
the ECM in the form of proteoglycans. HPSE2 lacks HS-degrading activity
but remains high affinity towards HS. Abnormal ECM dynamics lead to
deregulated cancer cell proliferation and invasion
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Fig. 8 Heat map showing gene expression patterns of MMP1, MMP9, MMP11, HPSE, and HPSE2. The heat map indicates up-regulation (red),
down-regulation (green), and mean gene expression (black). The columns represent individual tissue samples covering three breast cancer subtypes:
Luminal A (red), Luminal B (yellow), and Triple negative (purple) as well as normal samples (blue). The rows are labeled with individual gene symbols

Fig. 7 Box-and-Whisker plots. The gene expression levels of HPSE2 (a) and MMP11 (b) from the 32 samples in the training set covering Luminal A
(n = 19), Luminal B (n = 3), Triple negative (n = 3) and normal control (n = 7) were shown in the box-and-whisker plots. The plots were generated
using GeneSpring 12.6 software. The correlation of fold changes (FC) and normalized intensity (NI) values were calculated using the formula FC
(Xn) = 2 ^ [averaged NI (Xn)-averaged NI (XControl)]. X: individual genes; n: breast cancer subtypes; NI (Xn): Normalized intensity of gene X in subtype n; NI
(Control): normalized intensity of gene X in normal samples
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relationship between MMP11 and HPSE2 was first dis-
covered and further investigated in our study.
As shown in Table 2, both MMP11 and HPSE2 were

found on the top 28 genes list with fold changes ≥ 10.
Consistent with the above notion, our gene expression
profiling results showed that while MMP11 was up-
regulated by 12.45 to 50.45 folds in breast cancer tissue
samples compared with normal controls, HPSE2 was
down-regulated by −15.26 to −29.29 folds (Table 2). The
Box-and-Whisker plots for the normalized intensity (NI)
values of these 2 genes are shown in Fig. 7, which high-
lights the important features and shows the variations of
the gene expression in each subgroup. In addition, an-
other 2 well-studied genes in the MMPs family, MMP1
and MMP9, were also found to be up-regulated (2.22–
21.18 and 3.56–21.41 folds, respectively) from our gene
expression microarray data, although they were not in
the top 28 genes list. With regards to HPSE, it was
slightly up-regulated in Luminal A and Triple negative
samples (2.40 and 2.48 folds, respectively), but down-
regulated (−1.33 folds) in Luminal B subtype, suggesting
that HPSE was not a suitable biomarker. The heat map
for these genes is shown in Fig. 8.
Our analysis further identified a negative correlation

between the expression of MMP11 and HPSE2 with a
correlation coefficient of −0.72 (p < 0.0001, calculated by
GraphPad Prism 6). More importantly, the gene regula-
tion of MMP11 and HPSE2 was validated using real-
time RT-qPCR with RNA samples from both training
and testing sets (Figs. 3 and 4). All the results above sug-
gest that MMP11 and HPSE2 can be used as a promis-
ing biomarker gene set in breast cancer. Given the
synergetic effects of MMP11 and HPSE2, our findings
may shed light on target-based anticancer drug design
and development.

Conclusion
Breast cancer is one of the most common cancers and
the leading health crises for women today. Identification
of mechanisms and biomarkers in breast cancer remains
an urgent challenge [2, 41–45]. By applying state-of-the-
art Agilent SurePrint G3 Human Gene Expression
Microarray technology to clinical human tissue samples,
we were able to obtain a comprehensive snapshot of the
gene expression profile of breast cancer, providing in-
formative data to identify novel biomarkers. Expressions
of MMP11 and HPSE2, 2 genes closely involved in
ECM-mediated cancer cell migration and angiogenesis,
were found to be significantly different in breast cancer
samples compared with normal controls. This important
finding was further confirmed by real-time RT-qPCR.
To the best of our knowledge, this is the first time that
these 2 genes are demonstrated to act as a gene set
in breast cancer. Our findings identify the negative

correlation of MMP11 and HPSE2 in breast cancer pro-
gression, which provides novel insight into the optimization
of breast cancer treatment. Based on our results, effective
and targeted therapy for patients with different breast
cancer subtypes can be designed and optimized for
clinical application to more precisely identify and at-
tack cancer cells by selectively inhibiting the expression
of MMP11 or inducing the expression of HPSE2. The
efforts to target those 2 genes in anti-breast cancer
research with chemically synthesized molecules have
already been initiated in our group [46].

Availability of supporting data
This gene expression microarray data is deposited to
the GEO repository (accession number: GSE57297) and
this material is available free of charge via the Internet
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GSE57297.
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