Academic Commons

Reports

Optimizing Quality for Collaborative Video Viewing

Phung, Dan; Valetto, Giuseppe; Kaiser, Gail E.; Gupta, Suhit

The increasing popularity of distance learning and online courses has highlighted the lack of collaborative tools for student groups. In addition, the introduction of lecture videos into the online curriculum has drawn attention to the disparity in the network resources used by the students. We present an architecture and adaptation model called AI2TV (Adaptive Internet Interactive Team Video), a system that allows geographically dispersed participants, possibly some or all disadvantaged in network resources, to collaboratively view a video in synchrony. AI2TV upholds the invariant that each participant will view semantically equivalent content at all times. Video player actions, like play, pause and stop, can be initiated by any of the participants and the results of those actions are seen by all the members. These features allow group members to review a lecture video in tandem to facilitate the learning process. We employ an autonomic (feedback loop) controller that monitors clients' video status and adjusts the quality of the video according to the resources of each client. We show in experimental trials that our system can successfully synchronize video for distributed clients while, at the same time, optimizing the video quality given actual (fluctuating) bandwidth by adaptively adjusting the quality level for each participant.

Subjects

Files

More About This Work

Academic Units
Computer Science
Publisher
Department of Computer Science, Columbia University
Series
Columbia University Computer Science Technical Reports, CUCS-009-04
Published Here
April 26, 2011
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.