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ABSTRACT. Not all rational numbers are possibilities for the 

average genus of an individual graph. The smallest such numbers 

are determined. and varied examples are constructed to 

demonstrate that a single value of average genus can be shared by 

arbitrarily many different graphs. It is proved that the number 

one is a limit point of the set of possible values for average 

genus and that the complete graph K~ is the only 3-connected 

graph whose average genus is less than one. Several problems for 

future study are suggested. 
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1. Introduction 

By the average genus of a graph G, we mean the average 

value of the genus of the imbedding surface, taken over all 

orientable imbeddings of G. This value is evidently a rational 

number, and it is clearly an invariant of the homeomorphism type 

of a graph. 

Studying the average genus of an individual graph was first 

suggested by Gross and Furst [1987], who placed it toward the 

bottom of an e~tensive hierarchy of invariants of isomorphism 

type, now known (Gross, Rieper, and Tucker [1989]) to contain 

complete invariants higher up. Other low-end invariants are the 

genus distribution and the face-size distribution. 

A graph has average genus zero if and only if it has ma~imum 

genus zero. In Section 2, we establish that the smallest possible 

positive values of average genus are 

113, 1/2, ~/9, 2/3, 19/27, 3/4 

It is easy to construct trivial e~amples of different graphs 

with the same average genus, as shown in Section 3. Our pursuit 

of non-trivial e~amples leads to a "necklace" construction in 

Section 4 that yields arbitrarily many 2-connected graphs with the 

same average genus, as well as a sequence of ascending values of 



average genus whose limit is the number one. In Section 5, we 

establish that all the cutedge-free supergraphs of K4 have 

average genus larger than one, from which it follows that K4 

is the only 3-connected graph whose average genus is less that 

one. Section 6 describes some related results and lists some 

open research problems. 

We assume familiarity with the standard lore of topological 

graph theory, as described by Gross and Tucker [1987], or -- with 

minor terminological exceptions -- by White [1984]. It might also 

be helpful to review Gross and Furst [1987]. 

our definitions and notations. 

Here are a few of 

A graph may have self-adjacencies or multiple adjacencies. 

It is taken to be connected unless one can infer otherwise from 

the immediate context. The orientable surface with j handles 

is denoted SJ. The graph imbeddings under consideration here 

are exclusively in orientable surfaces, and we observe that an 

analogous theory might be explored for non-orientable 

imbeddings. 

A bar-,m.lgam.tion of two diSjoint graphs G and H is 

obtained by running an edge from a vertex of G to a vertex of 

H. Proof of the following theorem of Gross and Furst [1987J is 

omitted. Its corollary is quite useful to our present 

investigation. 
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THEORSIt 1.1 The genus distribution of a bar-amalgamation of 

two graphs is a scalar product of the convolution of their 

respective genus distributions. 

COROLLARY 1.2 The average genus of a bar-amalgamation of two 

graphs equals the sum of their average genera. 
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2. S.~l~.t positive values of average genus 
~ 

A general question one might ask is, what positive rational 

numbers can be realized as the average genus of a graph? We begin 

our investigation by determining the smallest few numbers that can 

occur as the average genus of a graph. Zero is obviously the 

smallest, so we turn to the smallest positive numbers. 

In what follows, we assume that the reader has suffiicient 

familiarity with topological graph theory to calculate the genus 

distribution of a small graph. Various details of some of the 

calculations here are not given until later sections. We begin 

with a utility theorem. 

THEOREM 2.1 The average genus of a graph is at least as large 

as the average genus of any of its subgraphs. 

Proof. It suffices to consider the effect on average genus of 

adding an .d;e to a connected graph G. By Corollary 1.2, we may 

as well •• .u .. th.t the new edge is a self-loop or runs between 

two e~i5ti~ vertic.s of G. We denote the e~tension of G by 

G+. 

If the new edge is a self-loop at a verte~ v with valence 

d, then for each imbedding of G there are d(d+1) imb~ddings of 

G+, each in a surface of genus at least as large as the genus of 
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the imbedd~ng surface for G from which it arose. If each 

imbedding ~~ G+ had exactly the same genus as the imbedding of 

G from which it arose, then the genus distribution of G+ would 

be a scalar multiple of the genus distribution for G, and G+ 

would have the same average genus as G. Shifting parts of the 

coordinate values higher can only raise the average genus. 

The case in which the new edge runs between two different 

vertices is quite similar. Let us assume that their respective 

valences are d 1 and de. Then each imbedding of G leads 

to imbeddings of G+, none in a surface of genus lower 

than the genus from which it arises. As before, we observe that 

increasing the values of some members of a set of numbers cannot 

decrease the average. [ ] 

The bouquet is the graph with one vertex and n 

self-loops. Since there are four imbeddings in the sphere, two 

in the torus, and no other imbeddings, the average genus of Be 

is 1/3. 

.. 
The diPII. On 15 the graph with two vertices and n 

adjacencies between th.m. The dipole D3 has two imbeddings in 

the sphere and two in the torus, for an average genus of 1/2. 
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THEOR~2.2 Let G be a graph with positive average genus. 
'- .--'. 

Then the ~vwrage genus of G is at least 1/3. Moreover, it 

cannot lie in the open interval (1/3, 1/2). 

Proof. In accordance with Corollary 1.2, we may as well 

assume that the graph G has no cut-edge. Of course, this 

precludes 1-valent vertices. Since subdividing an edge does not 

change the genus distribution, we may also assume that G has 

no 2-valent vertices. 

Let C be a longest cycle in G. If there were a path in 

G - C from any verte~ of C to any other, then G would contain 

a homeomorph of the dipole 0 3 , implying that the average genus 

of G would be at least 1/2, by Theorem 2.1. 

If there are no paths in G - C from any vertex of the cycle 

C to any other vertex of C, then there is a path in G - C from 

each vertex of C to itself, because the minimum valence is at 

least three. This implies that G contains a homeomorph of the 

bouquet 8., from which it follows that the average genus is at 

1/3 is realized when the cycle C has 

If C had two vertices, then G would contain 

a dipole De with. self-loop at each end, whose average genus 

is 5/9. [ J 
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REMARK 2.3 The realizable values of average genus in the open 

interval tl/2,3/4) are 

5/9, 2/3, and 19/27 

Let n be the length of cycle C in the proof of Theorem 2.1. 

The cases n = 1 or 2 result in average genus at least 1/3, 

1/2, or 5/9, as established above. For n = 3, the graph G 

must have one of the following configurations: three self-loops, 

in which case its average genus is at least 19/27; a "2-ended 

bridge" and a self-loop, in which case the average genus is at 

least 2/3; a "3-ended bridge", in which case G has average 

genus at least 7/8, since G contains the complete graph 

K4 ; or two chords from the same vertex, in which case G has a 

subgraph with average genus 5/6. 

REMARK 2.4 The number 3/4 is the average genus of a cycle 

with two chords. 
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3. Shar •• values of average genus 

An easy way to construct an example of two non-isomorphic 

graphs with the same genus distribution is to subdivide an edge 

of any graph. The construction of an example of two 

non-homeomorphic graphs with the same average genus is a more 

interesting endeavor. With the aid of Corollary 1.2, we have 

rather rapid success, if cut-edges are to be permitted, as 

illustrated in Figure 3.1. 

ee 
( a ) (b) ( c ) ( d ) 

Figure 3.1 

to one. 

Four non-homeomorphic graphs with average genus equal 

Figur •• 3.1. and 3.1b illustrate two different iterated 

bar-amalgamations of three copies of the bouquet 

Corollary 1.2, both have average genus equal to 

1/3 + 1/3 + 1/3 

9 

By 



which equals one. Figure 3.1c shows a bar-amalgamation of two 

copies of ~e dipole 0 3 , and Figure 3.1d shows a subdivision 

of a copy of O~ bar-amalgamated to another copy of D~. By 

Corollary 1.2, both these graphs have average genus equal to 

1/2 + 1/2 

which also equals one. 

By restricting our attention to graphs of minimum valence at 

least two and no cut-edges, we eliminate the simplest examples. 

We shall see in the next section that, even with these 

restrictions, arbitrarily many graphs can share the same average 

genus. For the time being, we consider the examples illustrated 

in Figure 3.2 

(A) ( b ) ( c ) 

Figure 3.2 Three non-homeomorphic graphs with average valence 

equa 1 to 5/6. 
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The graph in Figure 3.2a has two 3-valent vertices and one 

It follows that it has 

= 24 

imbeddings. Exactly four of them are in the sphere. Since its 

cycle rank is equal to three, its maximum genus is at most one. 

Thus, there are 20 toroidal imbeddings. It follows that the 

average genus is 5/6. 

The graph in Figure 3.2b has four 3-valent vertices and one-

4-valent vertex. Thus, it has 

( 2 ! ) '+ ( 3 ! ) = 96 

imbeddings. Of these, 16 are spherical. Although its cycle rank 

is four, every spanning tree has at least two odd components in 

its cotree, so the theorem of Xuong [1979] implies that the 

maximum genus is one. It follows that there are 80 toroidal 

imbedding •• Thu. the average genus is 5/6. 

The dipole 0 .. in Figure 3.2c has maximum genus equal to 

one, by Xuong's theorem, and 36 

of its imbeddings are spherical. 

11 
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Thus, the average genus is 5/6. 



4. NecklAces 

Examples in the previous section demonstrate that two 

different graphs can have the same average genus, even if there 

are no cut-edges or subdivisions. We now introduce a systematic 

method to construct arbitrarily many homeomorphism types of 

2-connected graphs with the same average genus. 

Suppose that r disjoint edges of a cycle are doubled and 

that a self-loop is added at each vertex which is not an endpoint 

of a doubled edge. Suppose this results in s self-loops. Then 

the resulting graph is called a necklace of type (r, s). 

4.1 illustrates two necklaces of type (2, 3). 

Figure 

Figure 4.1 Two non-homeomorphic necklaces with the same genus 

distribution. 
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The number of different necklaces of type (r, s) equals the 

coefficient of x + y is substituted into the 

cycle index polynomial for the dihedral group Dr •• _ A detailed 

explanation of this application of Polya's enumeration theorem is 

given, for example, by Harary [1969] or Tucker [1984]. In the 

present context, it is sufficient to realize that for r = 2, 

there are at least s/2 different necklaces of type (r, s), 

corresponding to the minimum number of self-loop "beads" between 

the two doubled-edge beads encountered in a traversal of the 

necklace. 

THEOREM 4.1 A necklace H of type (r, s) has the genus 

distribution 

= = 

Proof. Sinc. th.re are 2r vertices of valence 3 and s 

it follows that the number of imbeddings 

is An induction argument can be us~d to demonstrat~ 

that no matter what spanning tree is chos~n for the necklace H, 

the cotree has r + S - 1 odd components. Since the cycle rank 

of H is r + s + 1, it follows from Xuong's theorem (1979] that 

the maximum genus is one. Accordingly, our remaining task is to 

determine the number of imbeddings in So. 
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In order to count the spherical imbeddings, let us suppose 

that C is a maximum cycle in H. Thus, C is a Hamiltonian 

cycle that contains one edge of each doubled edge-pair and none 

of the self-loops. In the plane, we draw a rotation projection 

(see Gross and Tucker [1987]) for H so that C lies on a 

circle. The corresponding imbedding is spherical if and only if 

both ends of each of the r other edges of a doubled-edge pair 

lie on the same side of C and both ends of each self-loop lie on 

the same side of C. It follows that the number of spherical 

[ ] 

COROLLARY 4.2 The average genus of any necklace of type 

(r, s) is 

1 - (112)'- (2/3)- [ ] 

COROLLARY 4.3 Arbitrarily many mutually non-homeomorphic 

... 
2-connect~;r.phs c.n have the same average genus. [] 

COROLLARY 4.4 The aver~ge genus of a graph with non-trivial 

genus range can lie arbitrarily close to the maximum genus. [] 
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COROLLARY 4.5 The number one is an upper limit point of the 

set of pos~ble values of average genus. [) 

Constructing examples of non-homeomorphic 3-connected graphs 

with the same average genus is a more difficult task. The 

earliest known pair (Furst and Gross [1985), illustrated in 

Figure 4.2, comprises two non-simplicial graphs. McGeoch [1987) 

developed a general method for generating such pairs of 

non-simplicial graphs. Rieper [1988) has used methods from 

Jackson (1987) to generate arbitrarily many simplicial graphs with 

identical genus distribution and, hence, identical average genus. 

Figure 4.2 Two non-homeomorphic 3-connected graphs with the genus 

distribution 8,536,3416,1224. 
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5. On the ~verage genus of 3-connected graphs 

Two easily derived properties of the complete graph K4 are 

that its average genus is 7/8 and that it is contained 

homeomorphically as a subgraph of every 3-connected graph. In 

view of Theorem 2.1, this implies that every 3-connected graph has 

genus at least 7/8. We shall prove that except for K4 

itself, the average genus of a 3-connected graph is larger than 

one. 

THEOREM 5.1 The average genus of the complete graph K4 

is equal to 7/8. 

Proof. As explained by Mull, Rieper, and White (1988), there 

are three conjugacy classes of imbeddings of the complete graph 

K4 , which are illustrated in Figure 5.1. There are two 

imbeddings of class (a), six of class (b), and eight of class (c). 

Since class (a) is the only spherical class and classes (b) and 

(c) are toroidal, it follows that the average genus is 14/16, 

which equals 7/8. [ ) 

Figure 5.1 The three conjugacy classes of imbeddings of K4 • 
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LEMMA ~.2 Every 3-connected graph G contains a homeomorphic 

subdivision of the complete graph K~. 

Proof. Since adding self-loops or doubling edges does not 

change the connectivity of a graph, we may as well assume that 

the graph G is simplicial. Let u and v be two 

arbitrarily selected vertices of the graph G. By Menger's 

theorem (e.g., see Bondy and Murty [1976] or Harary [1969]), 

there exist three internally-disjoint paths in G between u 

and v. Since G is simplicial, at least two of these paths 

contain internal vertices. Therefore, we may choose an internal 

vertex w on one of the three paths from u to v, denoted 

and another vertex x on another such path, denoted Pee 

By Menger's theorem, there are three internally disjoint paths 

from w to x. Clearly, one of them, say path P, does not go 

through either of the points u or v. Without loss of 

generality, we assume that the path P goes directly from w to 

x without .v.r int.rnally intersecting either of the paths P1 

for otherwis., we might r~place w by the last vetex 

and x by the first vertex in 

which P intersects Pee 

Let H be the subgraph of G formed by the three paths 

between u and v plus the path P from w to x. If path P 

does not intersect the third path between u and v, then H 
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is homeomorphic to K4 • If the intersection is a single 

vertex, then H is homeomorphic the wheel W4 with four 

spokes, which contains K4 • It is not difficult to verify that 

even if the intersection contains more than one vertex, the graph 

H still contains K4 • [ ] 

THEOREM 5.3 Every cutedge-free proper super graph of K4 

has average genus larger than one. 

Proof. There are eight different ways to add an edge to K4 

so that the resulting graph has no cut-~dges. It is suffici~nt to 

demonstrate that each of them has more imbeddings in the surfac~ 

Se than in the sphere. (Since this result is a first cousin 

to a forbidden-subgraph theorem, some case-by-case analysis seems 

i nev it ab 1 e. ) We repeatedly refer back to the conjugacy classes 

of imbeddings of K4 described above. 

Case 1: attach a sRlf-loop at a vertex of K4 • There are 

two class C.> imb.ddings. 

vertex with th. s.lf-loop. 

Three different facRs meet at the 

There are two directions in which to 

run the po.I'lv. 5.n •• of the loop in each of those three faces. 

Thus, ther. are 12 imbeddings in So. On the other hand, 

there are six class (b) imbeddings. In each of them a genus four 

imbeddings can be obtained by placing one end of the self-loop in 

the 4-sided face and the other end in one of two "angles" of the 

8-sided face. Thus, the number of imbeddings in Se that arise 
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from class (b) alone is 24. 

Case 2: subdivide an edge, and attach a self-loop at the new 

vertex. There are four ways to extend a class (a) imbedding of 

K4 to an imbedding of this supergraph, so there are 8 

spherical imbeddings of the supergraph. The subdivided edge lies 

on two different faces in four of the class (b) imbeddings of 

K4 and in four of the class (c) imbeddings. For each such 

imbedding, there are two ways to install the self-loop so that the 

resulting imbedding has an additional handle. Thus, the number of 

imbeddings in Se is 16. 

Case 3: run a new edge between two existing vertices, thereby 

creating a parallel adjacency to edge e. There are two ways two 

extend each class (a) imbedding to a spherical imbedding of the 

new graph, yielding a total of 4 spherical imbeddings. For 

each of the four class (b) imbeddings in which edge e lies on 

two faces, there are four ways to install the parallel edge so 

that its ends are not in the same face, yielding 

in Se from ClASS <b> Alone. 

16 imbeddings 

CaSR 41 run A new edge from a vertex v to the midpoint of 

an edge e which is incident on v. As in case 3, there are only 

4 spherical imbeddings. For each of the four class (b) imbeddings 

such that edge e lies on two faces, there are three ways to 

install the new edge on a new handle. 
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From her. on, we do not bother to count the imbeddings in 

Se' since 4he details would repeat part of the previous cases. 

Case 5: run a new edge from a vertex v to the midpoint of 

an edge e that is not incident on v. Then the resulting graph 

is isomorphic to the wheel w~ with four spokes and has only 

two spherical imbeddings. 

Case 6: run a new edge between the midpoints of two edges that 

meet. Then the resulting graph is simplicial and 3-connected, so 

it has only two spherical imbeddings. 

Case 7: run a new edge between the midpoints of two edges that 

do not meet. Then the resulting graph is isomorphic to K~.3 

and has average genus 11/8. 

Case 8: run a new edge between two new subdivision points on 

the same edge of K~. 

imbeddings • 

• ~ 

Then there are only four spherical 

[ ] 

COROLLaRY ~.4 Every 3-connected graph e~cept K~ has 

average genus l~rger that one. 

Proof. This follows immediately from Theorem 2.1, Lemma 5.2, 

and Theorem 5.3. [ ] 
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6. Res.arch problems and related work 

In the course of this research, it became clear that there are 

numerous immediate possibilities for continuation. 

formulate several of them as specific problems. 

We now 

(6.1> First of all, the "necklaces" of Section '+ are an 

infinite family of cutedge-free graphs whose average genus is less 

than one. Find a concise way to characterize the other 

homeomorphism types of cutedge-free graphs with average genus less 

than one. 

(6.2) Characterize the set of limit points of the values of 

the average genus of 2-connected graphs and of 3-connected graphs. 

(6.3) The number one is an upper limit point of the set of 

values of average genus. Are there any lower limit points? 

Rieper [1988] h~s proved that the average genus of a 3-regular 

graph is ~t l.~.t h.l~ the ma~imum genus. 

Stahl (1989] h~. proved that the average genus of Kn is 

asymptotic to the ma~imum genus, and he has obtained upper bounds 

for the mean and variance of the genus distribution of an 

arbitrary graph. Determining the average genus of all 

imbeddings over the class of graphs with a fi~ed number of edges 

is a somewhat related problem that has also been explored by 
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Stah I [19831. 

Furst, Gross, and Statman [1989] have calculated the genus 

distributions of two infinte classes of graphs, called closed-end 

ladders and cobblestone paths. McGeoch [1987] has calculated the 

genus distributions of circular ladders and of Mobius ladders. 

Gross, Robbins, and Tucker [1989J have calculated the genus 

distributions of bouquets of circles. Stahl [1989] has 

subsequently elaborated upon this by demonstrating that the 

genus distribution (or "region distribution", if one prefers) of' a 

bouquet is a close appro~imation to the distribution of the 

unsigned Stirling cycle numbers. 

(6.4) All the known genus distributions are strongly 

unimodal. Decide whether the the genus distribution of every 

graph is strongly unimodal. 

Lee and White (1989] and Schwenk and White (1989] have 

e~plored some of' the v~riations that occur in studying imbedding 

distributions, depending on whether or not one prescribes labeling 

of the grAph or orient~bility of the imbedding surface. 
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