Academic Commons

Articles

Bayesian hierarchical graph-structured model for pathway analysis using gene expression data

Zhou, Hui; Zheng, Tian

In genomic analysis, there is growing interest in network structures that represent biochemistry interactions. Graph structured or constrained inference takes advantage of a known relational structure among variables to introduce smoothness and reduce complexity in modeling, especially for high-dimensional genomic data. There has been a lot of interest in its application in model regularization and selection. However, prior knowledge on the graphical structure among the variables can be limited and partial. Empirical data may suggest variations and modifications to such a graph, which could lead to new and interesting biological findings. In this paper, we propose a Bayesian random graph-constrained model, rGrace, an extension from the Grace model, to combine a priori network information with empirical evidence, for applications such as pathway analysis. Using both simulations and real data examples, we show that the new method, while leading to improved predictive performance, can identify discrepancy between data and a prior known graph structure and suggest modifications and updates.

Subjects

Files

Also Published In

Title
Statistical Application in Genetics and Molecular Biology
DOI
https://doi.org/10.1515/sagmb-2013-0011

More About This Work

Academic Units
Statistics
Publisher
De Gruyter
Published Here
March 28, 2015
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.