
ROP Payload Detection Using Speculative Code Execution

Michalis Polychronakis

Columbia University

mikepo@cs.columbia.edu

Angelos D. Keromytis

Columbia University

angelos@cs.columbia.edu

Abstract

The prevalence of code injection attacks has led to

the wide adoption of exploit mitigations based on non-

executable memory pages. In turn, attackers are increas-

ingly relying on return-oriented programming (ROP) to by-

pass these protections. At the same time, existing detection

techniques based on shellcode identification are oblivious

to this new breed of exploits, since attack vectors may not

contain binary code anymore. In this paper, we present a

detection method for the identification of ROP payloads in

arbitrary data such as network traffic or process memory

buffers. Our technique speculatively drives the execution of

code that already exists in the address space of a targeted

process according to the scanned input data, and identifies

the execution of valid ROP code at runtime. Our experi-

mental evaluation demonstrates that our prototype imple-

mentation can detect a broad range of ROP exploits against

Windows applications without false positives, while it can

be easily integrated into existing defenses based on shell-

code detection.

1 Introduction

The exploitation of memory corruption vulnerabilities in

server and client applications has been one of the prevalent

means of system compromise and malware infection. By

supplying a malicious input to the target application, an at-

tacker can inject and execute arbitrary code, known as shell-

code, in the context of the vulnerable process. Fortunately,

the wide adoption of non-executable memory page protec-

tions like Data Execution Prevention (DEP) [11] in recent

versions of popular OSes has reduced the impact of con-

ventional code injection attacks.

In turn, attackers have started adopting a new exploita-

tion technique, widely known as return-oriented program-

ming (ROP) [17], which allows the execution of arbitrary

code on a victim system without the need to inject any code.

In the same spirit as in the return-to-libc exploitation tech-

nique [19], return-oriented programming relies on the exe-

cution of code that already exists in the address space of the

process. In contrast to return-to-libc though, instead of exe-

cuting the code of a whole library function, return-oriented

programming is based on the combination of tiny code frag-

ments, dubbed gadgets, scattered throughout the code seg-

ments of the process. The execution order of the gadgets

is controlled through a sequence of gadget addresses that

is part of the attack payload. This means that an attacker

can execute arbitrary code on the victim system by inject-

ing only control data.

Besides the effective circumvention of non-executable

page protections, return-oriented programming also poses

significant challenges to a broad range of defenses that are

based on shellcode detection [4, 13–15, 18, 21, 24, 25]. The

main idea behind these approaches is to execute valid in-

struction sequences found in the inspected data on a CPU

emulator, and identify characteristic behaviors exhibited

by different shellcode types using runtime heuristics. Be-

sides the detection of code injection attacks at the network

level [13–15, 18, 25], shellcode identification has been used

for in-browser detection of drive-by download attacks [8,9],

as well as malicious document scanning [18, 22].

In a ROP exploit, however, in place of the shellcode, the

attack vector contains just a chunk of data—to which we

refer as the ROP payload—comprising the addresses of the

gadgets to be executed along with any necessary instruc-

tion arguments. Since there is no injected binary code to

identify, existing emulation-based shellcode detection tech-

niques are ineffective against ROP attacks. At the same

time, return-oriented programming is increasingly used in

the wild to broaden the targets of exploits against Acrobat

Reader and other popular applications, extending the infec-

tion coverage of recent exploit packs [5].

As a step towards filling this gap, we present a new tech-

nique for the detection of ROP exploits based on the iden-

tification of the ROP payload that is contained in the at-

tack vector. ROPscan, our prototype implementation, uses

a code emulator to speculatively execute code fragments

that already exist in the address space of a targeted process.

The execution is driven by valid memory addresses that are

found in the injected payload, and which could possibly



point to the actual gadgets of a malicious ROP code. We

have evaluated ROPscan using an array of publicly avail-

able ROP exploits against Windows applications, as well as

with a vast amount of benign data. Our results show that

ROPscan can accurately detect existing ROP exploits with-

out false positives, while it achieves an order of magnitude

higher throughput compared to Nemu [13, 14], an existing

shellcode detector with which ROPscan shares the code em-

ulation engine.

Current exploits use ROP code only as a first step to by-

pass memory protections and to enable the execution of a

second-level conventional shellcode, which is included in

the same attack vector and thus can be identified by existing

shellcode detectors. However, the embedded shellcode can

easily be kept unexposed through a simple packing scheme,

and get dynamically decrypted by a tiny ROP-based decryp-

tion routine, similarly to simple polymorphic shellcode en-

gines. It has also been demonstrated that return-oriented

programming can be used to execute arbitrary code [17],

and thus future exploits may rely solely on ROP-based ma-

licious code.

In any case, the ability to identify the presence of ROP

code can increase the detection accuracy of current defenses

that rely only on shellcode detection. ROPscan can inspect

arbitrary data, which allows its easy integration into existing

detectors—we present two case studies in which we have

used ROPscan as part of a network-level attack detector and

a malicious PDF scanner.

2 Background and Related Work

The ability to identify the presence of shellcode in arbi-

trary data inputs, such as network traffic [12–15,18,21,23–

25], process buffers [8,9,22], or memory dumps [18], offers

an effective way to detect a broad range of code injection at-

tacks. This alleviates the need to take into consideration the

specifics of the exploitation method used, or the actual vul-

nerability being exploited—the mere presence of shellcode

in a network request, a memory buffer, or a malicious file

denotes suspicious activity.

Initial shellcode detection approaches used code disas-

sembly on network streams to identify the NOP sled [21]

or the shellcode itself [12, 23]. Static code analysis though

is not effective in the presence of code obfuscation or self-

modifying code, techniques that are widely used for shell-

code packing and polymorphism. Dynamic code analysis

using emulation can effectively handle even highly obfus-

cated code, and therefore has been used extensively for

shellcode detection [4, 13–15, 18, 24, 25].

As ROP code has started replacing conventional shell-

code in recent exploits, in this work we build on the concept

of dynamic code analysis with the goal to detect the pres-

ence of ROP payloads in arbitrary inputs. Our prototype

Figure 1. Example of ROP code taken from

an exploit against Adobe Reader (CVE-2010-
0188). The execution of the gadgets (right)

is driven by the arrangement of gadget ad-

dresses and embedded data in the ROP pay-
load (left). Arrows denote read accesses to

payload data, and numbers correspond to the
order of the executed instructions.

system is based on Nemu [13, 14], a shellcode detector that

uses a CPU emulator to identify the execution behavior of

various shellcode types using different runtime heuristics.

During execution, the shellcode may access data that al-

ready exist in the address space of the vulnerable process.

To execute shellcode correctly, Nemu uses a fully-blown

virtual memory subsystem that can be initialized with a

snapshot of the complete address space of a real process.

We take advantage of this feature to speculatively trigger

the execution of gadgets that already exist in the executable

memory segments of the vulnerable application we aim to

protect, according to the ROP payload in the attack vector.

Each gadget of the ROP code transfers control to the next

one through an indirect control transfer instruction—the fi-

nal one in its sequence of “useful” instructions. The target

addresses are read sequentially from the sequence of gadget

addresses contained in the injected ROP payload, as shown

in the example of Figure 1.

The gadgets usually end with a ret instruction—hence

the name of the technique [17]—although any other indi-

rect jump instruction can be used [6]. The ret instruction

is a perfect fit for transferring control to the next gadget

because it actually performs two operations at once: sets

the instruction pointer (EIP) to the address contained in the

memory location pointed to by the stack pointer (esp), and

increments the stack pointer by four bytes (assuming an ad-

dress size of 32 bits). This allows esp to be used as an

“index” register for transferring control to the desired gad-

get according to the list of addresses in the ROP payload.



3 Approach

Our goal is to identify the presence of a ROP payload

in arbitrary data, such as network traffic streams or process

memory buffers. Each input is simply treated as a sequence

of bytes, without any knowledge about the actual type or

structure of the data. Consequently, if an input actually

contains a ROP payload, its location is initially unknown.

ROPscan searches the whole input to identify sequences of

valid addresses that, when treated as a ROP payload, yield

an actual execution path that spans several gadgets.

3.1 Setting up the Environment

To execute the sequence of gadgets used in an exploit,

ROPscan should have access to the executable memory seg-

ments of the targeted process in which the gadgets reside.

For this reason, the virtual address space of the emulator

is initialized with a snapshot of the process memory from a

real instance of each application we aim to protect. Multiple

address spaces can coexist at the same time by maintaining

a set of different page tables. This is useful in case an input

needs to be checked in the context of more than one vulner-

able processes.

Consider for example the case of a PDF file scanner, as

the one described in Section 5.2. Different versions of Ac-

robat Reader may have the same DLL mapped into different

addresses, and more than likely there will be differences in

the actual code of some segments. The construction of ROP

code is based on a particular static memory layout of the tar-

geted application, and even a slight variation in one of the

gadgets may break its execution. Exploits also may load on

demand DLLs or executable components that are not loaded

by default by the application. It is thus desirable to be able

to check the same buffer for ROP payloads that would be

valid in the context of different versions of Acrobat Reader,

i.e., different memory layouts. Besides different versions of

the same application, in other settings, such as the network-

level detector described in Section 5.1, an input may also be

inspected in the context of several different applications.

3.2 Speculative Execution

A working ROP exploit should contain a sequence of

valid memory addresses in its ROP payload, each pointing

to an actual gadget in the executable address space of the

targeted process. A key characteristic of ROP code is that it

relies on gadgets that exist in the non-ASLR code segments

of the process, which remain static across different process

instances or system configurations.

These segments are often a small subset of all allocated

pages, which in turn are a subset of the whole virtual ad-

dress space of a process (2GB for the default configurations

of 32-bit Windows). We collectively refer to all the non-

volatile memory segments of a process that have execute

permission as its gadget space.

For randomized processes, the gadget space is even

smaller, usually comprising the code segments of just a few

non-ASLR DLLs. For the application and OS combina-

tions we tested, the gadget space ranges from 28KB to just

17.71MB, as shown in Table 1. This means that the proba-

bility of an arbitrary address to fall within the gadget space

is significantly low. Note that for 64-bit systems, this proba-

bility is even smaller due to the massive size of the available

address space. In this work, we focus on 32-bit processes,

since even in 64-bit versions of Windows the most com-

monly exploited applications are still 32-bit.

Based on the above observation, the first step of the de-

tection algorithm is to identify potential gadget addresses

within the scanned input. This is achieved by advancing

a 4-byte sliding window one byte at a time, and check-

ing whether the 32-bit address that corresponds to the cur-

rent location of the window falls within the gadget space of

any of the protected applications. In the common case, a

random address will fall either into an unmapped or non-

executable memory page, or in the kernel address space

(upper 2GB of the total 4GB), as shown in Figure 2(a). Ad-

dress 0072F741 is not mapped, and the sliding window

advances to the next byte of the input.

If the address falls into the gadget space of a process,

then this may denote the beginning of a ROP payload. In

that case, ROPscan assumes that the address corresponds to

the first gadget of the ROP code, and speculatively starts

executing the code that exists at that address. Figure 2(b)

illustrates the moment at which the sliding window reaches

the first gadget address of the payload shown in the exam-

ple of Figure 1. The address falls into the gadget space

of the process (specifically, in the code segment of Adobe

Reader’s BIB.dll, which is the sole source of the gadgets

used in this particular exploit), so EIP is loaded with ad-

dress 070072F7 (the bytes of which are in reverse order

in the payload due to endianness).

As discussed in Section 2, for the proper execution of

the ROP code, the attacker needs to control both the EIP

and esp registers. The latter is crucial for the correct trans-

fer of control to the second gadget after the first one has

completed. For this reason, before the beginning of a new

execution, the esp register is set to point right after the

four bytes of the first gadget’s address in the input buffer, as

shown in Figure 2(b). This corresponds to the state of the

vulnerable process right after the flow of control has been

hijacked, and is usually the outcome of a stack pivot in-

struction sequence [10, 26] (for exploits in which the stack

pointer does not happen to point right at the beginning of

the ROP payload).

In this example, the first gadget pops the next 4-byte



Figure 2. Overview of the scanning process. If the 4-byte value at the current position does not

correspond to a mapped executable memory page, the sliding window advances one byte (a). When
a valid address is found, EIP and esp are initialized appropriately and a new execution begins (b).

value from the ROP payload into eax, and transfers con-

trol to the next gadget through the ret instruction. The

execution continues normally as long as each gadget ma-

nipulates the stack pointer correctly, and may terminate for

one of the following reasons: i) a gadget transfers control to

an invalid address, ii) the emulator encounters an invalid or

privileged instruction, iii) the number of executed instruc-

tions in the current gadget reaches a certain threshold, or iv)

the total number of executed instructions reaches an overall

execution threshold.

The second condition is possible due to the variable-

length instruction set of the x86 architecture. For example,

a random address in a benign input may fall into the middle

of an actual instruction in one of the code segments. That

byte may correspond to the opcode of a privileged instruc-

tion that only the kernel is allowed to execute.

The third condition helps distinguishing between ran-

dom code and actual ROP code. The typical size of the

gadgets used in Turing-complete implementations [6, 17],

as well as in the exploits we tested, ranges between 2–5 in-

structions, while the largest number of executed instructions

in a single gadget that we observed is 10 instructions (EDB-

ID 16619 in Table 1). We have conservatively set a gadget

threshold of 32 instructions.

The final execution threshold ensures that the execution

will stop in case the flow of control has been “trapped” into

a loop or an overly long straight-through code path. Al-

though the largest number of executed instructions in the

ROP exploits we have encountered so far is less than 500,

we have set a conservative threshold of 4096 instructions.

3.3 Runtime Detection

It is common for a totally benign input to contain one or

more 4-byte values that fall within the gadget space, and

which consequently point to valid instruction sequences.

Depending on their arrangement in the input buffer and the

final instruction of each sequence, a benign input may result

in an execution chain of “accidental” gadgets that exhibits a

ROP-like behavior. For the accurate detection of real ROP

payloads, we need to be able to distinguish between the ac-

cidental execution of random instruction sequences and the

actual execution of real gadgets. This is achieved using a

runtime heuristic that precisely matches the execution be-

havior of ROP code.

We observe that the transfer of control to a subsequent

gadget is always achieved through an indirect branch in-

struction, and its control data is always derived from the

injected ROP payload. That is, the branch instruction itself

(in case of ret, as shown in Figure 1), or some previously

executed instruction in the same gadget (in case of indirect

jmp or call), reads the destination address from the ROP

payload. For example, gadgets that end with a non-ret in-

struction [6] use a sequence like pop eax; jmp eax;

to first read the destination address from the payload and

then jump to it. Therefore, we consider that the execution

of an instruction sequence corresponds to an actual gadget

if it ends with an indirect control transfer instruction that

uses control data derived from the original input buffer.1

During the execution of an instruction sequence, if a jmp

eax instruction transfers control to another valid location in

the gadget space, but the value of eax has not been loaded

from the input buffer, then this sequence is clearly not a

gadget. Similarly, consider a relative call instruction that

transfers control a few bytes further from the current loca-

tion of EIP, followed at some point by a ret instruction.

In this case, ret does not denote the end of a gadget al-

though it reads an address from the payload and jumps to

it, because the value read is not the original value that ex-

1In case a dispatcher gadget is used [6], gadgets first transfer control to

it using a previously initialized register. Only the dispatcher gadget reads

the next destination address from the payload and jumps to it. This does

not pose any problem to our definition of a gadget’s execution because the

dispatcher gadget will be considered as part of the previous gadget.



isted at that location of the input buffer, but the return ad-

dress pushed at runtime by the call instruction (each ex-

ecution starts with a “clean” version of the original buffer

using copy-on-write).

The above definition captures an essential property of the

execution behavior of a gadget, which is rarely encountered

during the execution of random code. Indeed, although it is

very common for a benign input to contain addresses that

correspond to random gadget-like instruction sequences, it

is much less probable that one of these sequences will hap-

pen to read another valid destination address from the orig-

inal input and transfer control to it—but sometimes, this

may happen as well.

Fortunately, the ROP code of an exploit will rely on a

set of several different gadgets, and there should be an un-

interrupted flow of control from one to the other. Given that

the same gadget can be executed several times (e.g., the sec-

ond gadget at address 070015BB in Figure 1) our detection

heuristic is based on the number of unique gadgets that are

encountered during the same execution chain. Although it is

possible that a benign input will result to the execution of a

few consecutive gadgets, setting a higher detection thresh-

old provides for a robust detection heuristic that precisely

captures the runtime behavior of ROP code. In the follow-

ing section, we discuss how we can set this threshold so as

to accurately detect existing ROP exploits, while practically

eliminating the possibility of false positives.

4 Experimental Evaluation

We begin our evaluation by focusing on the resilience of

the detection heuristic against false positives through stress-

testing with benign data. We then test the detection effec-

tiveness of ROPscan using existing ROP payloads, and fi-

nally discuss runtime performance and optimization issues.

4.1 Tuning the Detection Threshold

To assess the accuracy of ROPscan’s detection heuristic,

we tested our prototype implementation using a large and

diverse set of benign data. Our aim is to verify the intuition

that the execution patterns of the random code that can be

triggered by valid addresses—which unavoidably occur in

benign inputs—will not match the runtime behavior of the

ROP code used in current exploits. This is crucial for ensur-

ing that benign data are not falsely identified as containing

a ROP payload.

The test inputs consist of randomly generated data, as

well as real benign data. Specifically, we used a sim-

ple program that continuously generates inputs of varying

size between 4–16KB with uniformly random binary and

ASCII content. The data were fed directly to ROPscan,

which inspected 100 million inputs of each type, totalling

Gadgets

1 2 3 4 5 6

%
 o

f 
in

p
u
ts

10

1

0.1

0.01

0.001

0.0001

0

Random binary data

Random ASCII data

Network streams

PDF memory buffers

Figure 3. Percentage of benign inputs with a
given maximum number of unique gadgets in

the same execution chain.

about 1.86TB of data. We also used traces of real network

traffic captured at the access link of two production net-

works. The data set consists of about 7 million reassem-

bled TCP streams with a maximum size of 64KB, totalling

more than 196GB. Finally, we analyzed 923 benign PDF

files with embedded JavaScript code using MDscan [22],

and dumped the contents of the memory buffers allocated

by the JavaScript interpreter that had a size larger than 128

bytes.

For each input, we measure the maximum number of

unique gadgets that happen to be executed as part of a single

execution chain, according to the runtime pattern definition

discussed in the previous section. To stress the detection

algorithm, the emulator has been initialized with snapshots

of multiple processes, which correspond to the applications

listed in Table 1. This slightly increases the probability that

a random address will fall into the combined gadget space

of all processes.

Figure 3 shows the percentage of inputs with a given

maximum number of unique gadgets in the same execution.

For all kinds of data, about 7–10% of the inputs cause the

execution of a single gadget. As discussed, a random in-

struction sequence is considered as a gadget only if it ends

with an indirect branch with control data derived from the

payload. Of course, the vast majority of the inputs trigger

many other execution chains, but most of the time these do

not end with a valid indirect branch, or are terminated due

to the execution thresholds. The percentage of inputs with

two gadgets ranges from 0.02% for memory buffers to 2.7%

for random binary data, while an extremely small amount of

inputs resulted to the execution of three gadgets.

In these experiments, as well as previous preliminary

tests, we never observed a benign input with more than three

unique gadgets. This means that, for the data sets we have

used so far, setting a detection threshold of four gadgets



will never result in a false positive. Although we can never

rule out the possibility of a false identification in another set

of data or an actual long-term deployment, it is possible to

raise the detection threshold even higher in order to increase

the robustness or ROPscan against false alarms. Based on

the results of the analysis of real ROP exploits that follows,

the minimum number of unique gadgets used in the pub-

licly available exploits we tested is eight, which allows for

an execution threshold of up to eight gadgets.

We should note that there are several ways in which

the detection heuristic could be strengthened even further

in terms of accuracy. For instance, by manually analyzing

the instructions of the instances with three unique gadgets,

we observed that more than two thirds of them were due to

three identical (but located in different addresses, and thus

unique) single-instruction gadgets, each consisting solely

of a ret instruction. Single-instruction gadgets alone can-

not achieve anything useful other than advancing the stack

pointer, so we could strengthen the heuristic by requiring

the execution of a certain amount of gadgets with at least

two or more instructions.

Furthermore, the current allowable maximum gadget

length of 32 instructions is a quite conservative value, as

discussed in Section 3.2, and could be lowered. About one

third of the random gadgets in the tested benign inputs were

overly long, between 16–32 instructions, and their execu-

tion could have been avoided by setting a lower maximum

gadget length.

4.2 Detection Effectiveness

We evaluated the detection effectiveness of ROPscan us-

ing a set of eight publicly available ROP exploits against

Windows applications. All exploits use a first-stage ROP

code to bypass DEP and execute an embedded second-

stage shellcode. Details about the exploits are listed in

Table 1. The exploits are available through the Exploit

Database [2] using the corresponding EDB-ID, and most of

them are also included in Metasploit [3]. We also used four

generic ROP payload implementations for bypassing Win-

dows DEP [1, 7]. Two of them are based on gadgets from

msvcr71.dll, a DLL that is included in (and remains

static across) many popular applications [1].

For each exploit, we isolated the attack vector that con-

tains the ROP payload, and fed it to ROP scan, which in

all cases identified the beginning of the payload correctly.

The last two columns in the table correspond to the total

number of executed gadgets and the number of unique gad-

gets, respectively. When considering the detection heuris-

tic used in ROPscan, in the worst case, one of the exploits

against Adobe Reader uses just eight gadgets for its ROP

code. When combined with the results of Section 4.1, this

gives us a range of possible values for the detection thresh-

old between 4–8 gadgets. A median value of six gadgets

strikes a good balance between increased resilience to false

positives, and the ability to detect even smaller ROP code

implementations.

Note that in these exploits ROP code is used only to cir-

cumvent DEP, and the actual malicious functionality is car-

ried out by conventional shellcode. A fully-blown ROP-

based implementation of the same functionality or the addi-

tion of a decryption routine would probably require a larger

number of gadgets.

4.3 Runtime Performance and Optimiza-
tions

The most CPU-intensive operation in ROPscan is the

emulated execution of the code that is triggered whenever

a new address from the input falls within the gadget space.

Fortunately, the total size of the gadget space even when

multiple process images are used is usually just a few tens

of megabytes, as shown in Table 1, which is a fraction of

the 4GB of addressable space using a 32-bit address.

Even whenever an execution chain is spawned, it usually

ends very soon, as the occurrence of long valid instruction

sequences is quite rare. This allows ROPscan to achieve

a high raw processing throughput, despite the reliance on

CPU-intensive interpretive emulation, which in our exper-

iments exceeded 120Mbit/s on average. This allows it to

be easily used in tandem with the legacy shellcode detec-

tion heuristics of Nemu, which achieve about an order of

magnitude lower throughput [13].

Implementing the detection algorithm of ROPscan in a

shellcode detection system like ShellOS [18], which ex-

ecutes the inspected code using native execution through

virtualization, would allow for a much higher processing

throughput. Additionally, there is room for further perfor-

mance optimizations in the detection approach itself. For

instance, not all addresses in the gadget space correspond to

actual gadgets. In fact, usually just a fraction of them point

to useful instruction sequences. Assuming a given maxi-

mum gadget length, potential valid gadget addresses can be

pre-marked in the address space of the emulator, e.g., with

the aid of a gadget discovery tool [17, 20]. Then, instead of

blindly attempting an execution whenever an address from

the input happens to fall anywhere within the gadget space,

ROPscan will consider for execution only the addresses that

point to actual pre-marked gadgets, reducing significantly

the cycles spent on code emulation.

5 Use Cases

The main detection engine of ROPscan can inspect and

identify the presence of ROP payloads in arbitrary inputs.



Tested Gadget Executed Unique

Exploit/Payload CVE EDB-ID Platform Space Gadgets Gadgets

Adobe Reader v9.3.0 2010-0188 16670 Windows XP SP3 17.7MB 47 8

Adobe Reader v9.3.0 2010-1297 16687 Windows XP SP3 17.7MB 60 12

Adobe Reader v9.3.4 2010-2883 16619 Windows 7 SP1 864KB 33 10

Adobe Reader v9.3.4 2010-3654 16667 Windows XP SP3 17.7MB 60 12

Winamp v5.572 - 14068 Windows 7 SP1 5.7MB 126 21

Integard Pro v2.2.0 - 15016 Windows 7 SP1 724KB 165 16

Mplayer Lite r33064 - 17124 Windows 7 SP1 6.4MB 179 16

All to MP3 Converter v2.0 - 17252 Windows XP SP3 9.4MB 388 16

msvcr71.dll [1] - - Windows 7 SP1 228KB 11 9

msvcr71.dll [7] - - Windows 7 SP1 228KB 12 11

mscorie.dll [1] - - Windows 7 SP1 28KB 9 9

mfc71u.dll [7] - - Windows 7 SP1 872KB 15 10

Table 1. Details of the tested ROP exploits [2,3] and generic ROP payloads [1,7].

This allows it to be used in a broad range of attack detec-

tion and analysis systems. In this section, we discuss two

different settings in which we have used ROPscan to detect

network-level attacks and malicious documents. We expect

that ROPscan will be easy to incorporate in other shellcode

detectors as well [4, 18, 24].

5.1 Network-level Detection

Shellcode identification has been widely used for code

injection attack detection at the network level [13–15, 18,

25]. The ability to identify ROP payloads can extend the

range of attacks that these systems can detect, especially

for next-generation attacks that may rely on ROP-only im-

plementations of their malicious code.

ROPscan has been implemented on top of the detection

engine of Nemu [13,14], which already has a network-level

detection component based on passive network monitoring.

In this setting, ROPscan can detect ROP payloads in the raw

network data that are transmitted through a TCP stream. For

instance, the attack vector of the exploit against Integard Pro

(a filtering proxy server) is just a POST request to the web

interface of the application that triggers a buffer overflow.

Similarly, the exploits against the media player applications

in Table 1 are based on malicious media files that take con-

trol of the application when opened. The ROP payload is

contained in the raw data of the file, which can easily be

transmitted to potential victims over the network.

For all above exploits, ROPscan was able to detect the

ROP payload by scanning the attack traffic. Actually, each

input is inspected twice, since Nemu also applies its run-

time shellcode detection heuristics, which are based on the

execution of network data itself. Shellcode detection using

emulation is much more CPU-intensive compared to ROP

payload detection, and thus the additional overhead due to

ROPscan is negligible.

5.2 PDF Scanning

Return-oriented programming has been widely used in

exploits against Adobe Reader, which has full DEP support

since version 9.2.0. As shown in Table 1, one version can

be successfully exploited even in Windows 7, since a few

third-party DLLs do not support ASLR.

We incorporated ROPscan in MDScan [22], a malicious

PDF scanner based on shellcode detection. MDScan ex-

tracts any JavaScript code contained in the scanned docu-

ment and executes it on a JavaScript emulator. Most of the

exploits against Adobe Reader use JavaScript code to trig-

ger a memory corruption vulnerability and execute the em-

bedded code. MDScan inspects each newly allocated mem-

ory buffer in the context of the JavaScript interpreter for the

presence of shellcode. As with in the case of the network-

level detector, with the addition of ROPscan each buffer is

also scanned for the presence of ROP payloads.

We generated malicious PDFs of all four Adobe Reader

exploits using Metasploit [3]. From these exploits, only

CVE-2010-0188 does not rely on JavaScript, and thus its

malicious payload is not exposed to MDScan. The ROP

code of all three other exploits was successfully detected.

Our preliminary tests with actual in-the-wild malicious

PDFs have also been positive.

MDScan inspects only JavaScript buffers, which limits

its detection capabilities against malicious PDFs that do not

rely on JavaScript code. However, ROPscan can easily be

used in other types of detectors that either scan all mem-

ory buffers of a process at runtime using library interposi-

tion [16], or scan raw dumps of specific memory areas [18].

6 Conclusion

Attackers always seek new ways to evade detection sys-

tems and bypass protection mechanisms. Return-oriented



programming is increasingly used in the wild in exploits

against Windows applications to circumvent DEP, facili-

tated in part by the lack of full support for address space

layout randomization in many vulnerable applications. The

detection algorithm of ROPscan can identify the presence of

ROP payloads in arbitrary inputs, and the results of our ex-

perimental evaluation demonstrate that it can easily extend

the detection capabilities of existing defenses that are based

solely on the detection of conventional shellcode. As part

of our future work, we plan to explore possible optimiza-

tions in the performance and accuracy of the core detection

algorithm, and incorporate it in other existing detectors.

Acknowledgments

This work was supported in part by the US Air Force, DARPA,

and the NSF through Contracts AFRL-FA8650-10-C-7024 and

DARPA-FA8750-10-2-0253, and Grant CNS-09-14312, respec-

tively, and by the FP7-PEOPLE-2009-IOF project MALCODE,

funded by the European Commission under Grant Agreement No.

254116. Any opinions, findings, conclusions, or recommendations

expressed herein are those of the authors, and do not necessarily

reflect those of the US Government, the Air Force, the NSF, or

DARPA.

References

[1] http://www.whitephosphorus.org/

[2] http://www.exploit-db.com/

[3] http://www.metasploit.com/

[4] P. Baecher and M. Koetter. libemu. http://libemu.

carnivore.it/

[5] K. Baumgartner. The ROP pack. In Proceedings of the 20th

Virus Bulletin International Conference (VB), 2010.

[6] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,

H. Shacham, and M. Winandy. Return-oriented program-

ming without returns. In Proceedings of the 17th ACM con-

ference on Computer and Communications Security (CCS),

2010.

[7] Corelan Team. Corelan ROPdb. https://www.corelan.

be/index.php/security/corelan-ropdb/

[8] M. Cova, C. Kruegel, and G. Vigna. Detection and analysis

of drive-by-download attacks and malicious JavaScript code.

In Proceedings of the 19th International World Wide Web

Conference (WWW), 2010.

[9] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defend-

ing browsers against drive-by downloads: Mitigating heap-

spraying code injection attacks. In Proceedings of the 6th in-

ternational conference on Detection of Intrusions and Mal-

ware, & Vulnerability Assessment (DIMVA), 2009.

[10] Ú. Erlingsson. Low-level software security: Attack and

defenses. Technical Report MSR-TR-07-153, Microsoft

Research, 2007. http://research.microsoft.com/

pubs/64363/tr-2007-153.pdf

[11] R. Hensing. Understanding DEP as a mitigation tech-

nology. 2009. http://blogs.technet.com/b/srd/

archive/2009/06/12/understanding-dep-as-a-

mitigation-technology-part-1.aspx

[12] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.

Polymorphic worm detection using structural information of

executables. In Proceedings of the International Symposium

on Recent Advances in Intrusion Detection (RAID), Sept.

2005.

[13] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos.

Comprehensive shellcode detection using runtime heuris-

tics. In Proceedings of the 26th Annual Computer Security

Applications Conference (ACSAC), December 2010.

[14] M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis.

Network-level polymorphic shellcode detection using emu-

lation. In Proceedings of the Third Conference on Detec-

tion of Intrusions and Malware & Vulnerability Assessment

(DIMVA), July 2006.

[15] M. Polychronakis, E. P. Markatos, and K. G. Anagnos-

takis. Emulation-based detection of non-self-contained

polymorphic shellcode. In Proceedings of the 10th Inter-

national Symposium on Recent Advances in Intrusion De-

tection (RAID), September 2007.

[16] P. Ratanaworabhan, B. Livshits, and B. Zorn. NOZZLE:

A defense against heap-spraying code injection attacks. In

Proceedings of the 18th USENIX Security Symposium, Aug.

2009.

[17] H. Shacham. The geometry of innocent flesh on the bone:

return-into-libc without function calls (on the x86). In Pro-

ceedings of the 14th ACM conference on Computer and

Communications Security (CCS), 2007.

[18] K. Z. Snow, S. Krishnan, F. Monrose, and N. Provos. Shel-

lOS: Enabling fast detection and forensic analysis of code

injection attacks. In Proceedings of the 20th USENIX Secu-

rity Symposium, 2011.

[19] Solar Designer. Getting around non-executable stack (and

fix). http://seclists.org/bugtraq/1997/Aug/63

[20] P. Solé. Hanging on a ROPe. http://www.immunitysec.

com/downloads/DEPLIB20_ekoparty.pdf

[21] T. Toth and C. Kruegel. Accurate buffer overflow detec-

tion via abstract payload execution. In Proceedings of the

5th Symposium on Recent Advances in Intrusion Detection

(RAID), Oct. 2002.

[22] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. P.

Markatos. Combining static and dynamic analysis for the

detection of malicious documents. In Proceedings of the Eu-

ropean Workshop on System Security (EuroSec), April 2011.

[23] X. Wang, C.-C. Pan, P. Liu, and S. Zhu. Sigfree: A

signature-free buffer overflow attack blocker. In Proceed-

ings of the USENIX Security Symposium, Aug. 2006.

[24] G. Wicherski. libscizzle. http://code.mwcollect.org/

projects/libscizzle

[25] Q. Zhang, D. S. Reeves, P. Ning, and S. P. Lyer. Analyzing

network traffic to detect self-decrypting exploit code. In Pro-

ceedings of the 2nd ACM Symposium on Information, Com-

puter and Communications Security (ASIACCS), 2007.

[26] D. A. D. Zovi. Practical return-oriented programming.

SOURCE Boston, 2010.

http://www.whitephosphorus.org/
http://www.exploit-db.com/
http://www.metasploit.com/
http://libemu.carnivore.it/
http://libemu.carnivore.it/
https://www.corelan.be/index.php/security/corelan-ropdb/
https://www.corelan.be/index.php/security/corelan-ropdb/
http://research.microsoft.com/pubs/64363/tr-2007-153.pdf
http://research.microsoft.com/pubs/64363/tr-2007-153.pdf
http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-
http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-
mitigation-technology-part-1.aspx
http://seclists.org/bugtraq/1997/Aug/63
http://www.immunitysec.com/downloads/DEPLIB20_ekoparty.pdf
http://www.immunitysec.com/downloads/DEPLIB20_ekoparty.pdf
http://code.mwcollect.org/projects/libscizzle
http://code.mwcollect.org/projects/libscizzle

	Introduction
	Background and Related Work
	Approach
	Setting up the Environment
	Speculative Execution
	Runtime Detection

	Experimental Evaluation
	Tuning the Detection Threshold
	Detection Effectiveness
	Runtime Performance and Optimizations

	Use Cases
	Network-level Detection
	PDF Scanning

	Conclusion

