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Acquisition and Interpretation of 3-D Sensor Data 
from Touch 

Absfmct- Acquisition of 3-D scene information has focused on ei- 
ther passive 2-D imaging methods (stereopsis, structure from motion, 
etc.) o r  3-D range sensing methods (structured lighting, laser scanning, 
etc.). Little work has been done in using active touch sensing with a 
multifingered robotic hand to acquire scene descriptions, even though it 
is a well developed human capability. Touch sensing differs from other 
more passive sensing modalities such as vision in a number of ways. 
A multifingered robotic hand with touch sensors can probe, move, and 
change its environment. This imposes a level of control on the sensing 
that makes it typically more difficult than traditional passive sensors in 
which active control is not an issue. Second, touch sensing generates far 
less data than vision methods; this is especially intriguing in light of 
psychological evidence that shows that humans can recover shape and a 
number of other object attributes very reliably using touch alone. Future 
robotic systems will need to use dextrous robotic hands for tasks such 
as grasping, manipulation, assembly, inspection, and object recognition. 
This paper describes our use of touch sensing as part of a larger system 
we are building for 3-D shape recovery and object recognition using 
touch and vision methods. It focuses on three exploratory procedures 
we have built to acquire and interpret sparse 3-D touch data: grasping 
by containment, planar surface exploration, and surface contour explo- 
ration. Experimental results for each of these procedures are presented. 

I. INTRODUCTION 

CQUISITION of 3-D scene information has focused on A either passive 2-D imaging methods (stereopsis, structure 
from motion, etc.) or 3-D range sensing methods (structured 
lighting, laser scanning, etc.). Little work has been done in 
using active touch sensing with a multifingered robotic hand 
to acquire scene descriptions, even though it is a well devel- 
oped human capability [24]. Touch sensing differs from other 
more passive sensing modalities, such as vision, in a num- 
ber of ways. A multifingered robotic hand with touch sensors 
can probe, move, and change its environment. This imposes 
a level of control on the sensing that makes it typically more 
difficult than traditional passive sensors in which active con- 
trol is not an issue. Second, touch sensing generates far less 
data than vision methods; this is especially intriguing in light 
of psychological evidence (described below) that shows that 
humans can recover shape and a number of other object at- 
tributes very reliably using touch alone. 

Future robotic systems will need to use dextrous robotic 
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Fig. 1. Utah-MIT hand with tactile sensors mounted 

hands for tasks such as grasping, manipulation, assembly, in- 
spection, and object recognition. This paper describes our use 
of touch sensing as part of a larger system we are building for 
3-D shape recovery and object recognition using touch and 
vision methods. It focuses on three exploratory procedures 
we have built to acquire and interpret sparse 3-D touch data. 
These procedures serve as a front end to an integrated shape 
recovery and object recognition system that can combine these 
exploratory procedures into strategies that can derive con- 
straints about an object’s most probable shape (described in 
Roberts [3 11). 

The outline of this paper is as follows: Section I1 is an 
overview of the hardwarelsensing environment we have built 
to perform intelligent hand functions, Section 111 describes the 
tactile sensing system we have implemented, Section IV de- 
scribes three exploratory procedures we have implemented for 
acquiring and interpreting 3-D touch information, and Section 
V is a summary that outlines future work to be done with the 
hand. 

11. SYSTEM OVERVIEW 
The system we have built consists of a Utah-MIT hand [19] 

attached to a PUMA 560 manipulator. The hand contains four 
fingers, and each has four degrees of freedom. It resembles the 
human hand in size and shape but lacks a number of features 
that humans find very useful. In particular, it has no palmar 
degree of freedom (closing of the palm), and the thumb is 
placed directly opposite the other three fingers with all fin- 
gers identical in size (see Fig. 1 ) .  The hand has joint position 
sensors that yield joint angle data and tendon force sensors 
that measure forces on each of the two tendons (extensor and 
flexor) that control a joint. The PUMA adds six degrees of 
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Fig. 2. Hardware overview. 

freedom to the system (three translation parameters to move 
the hand in space and three rotational parameters to orient the 
hand), yielding a 22 degree-of-freedom system. Clearly, such 
a system is a nightmare to control at the servo level in real 
time. Our approach is to use the embedded controllers in each 
of these systems, controlling and communicating with them 
through an intelligent, high-level controller that links together 
the movements of arm, hand, and fingers with the feedback 
sensing of joint positions, tendon forces, and tactile responses 
on the fingers. 

The hardware structure of the system is shown in Fig. 2. 
The high-level control resides in a SUN-3 processor. The 
SUN serves as the central controller and has access to a full 
UNIX-based system for program development and debugging 
as well as a set of window-based utilities to allow graphical 
output and display of the system’s various states. The hand is 
controlled by an analog controller that is commanded through 
D/A boards from a dedicated 68020 system. The SUN is capa- 
ble of downloading and executing code on the 68020 and can 
communicate with it through a shared memory interface [28]. 
The tactile sensing system is controlled by another dedicated 
68020 that monitors the forces on each of the sensor pads. 
The connection from the SUN to the PUMA is via the VAL- 
11 host control option over a serial interface. We are currently 
changing the interface to the PUMA to RCCL [14] to make 
the hand-arm interaction more tightly coupled. The system 
has been used to perform a number of object manipulation 
and grasping tasks, including pouring liquids from pitchers 
and removing lightbulbs from sockets [2]. 

111. TACTILE SENSORS 

Although the level of sensing provided by the joint posi- 
tion and tendon force sensors on the Utah-MIT hand is better 
than earlier implemented hands, it still falls far short of the 

requirements for a dextrous manipulation system. In partic- 
ular, what is desired is accurate positional contact informa- 
tion between the hand and a target object and a measure of 
the forces exerted by the fingers at these contact points. The 
sensory feedback provided by the hand does not allow for lo- 
calization of contacts. Hence, a requirement for this system 
is a robust and accurate tactile sensing capability that utilizes 
sensors mounted on the links of the fingers. Tactile sensing dif- 
fers from traditional vision sensing in its active nature. Thus, 
a robotic system that employs tactile sensors on the fingers of 
a dextrous hand must deal with three related issues: 1) acqui- 
sition and interpretation of tactile sensor data from many sites 
on multiple fingers, 2) control of the dextrous hand using tac- 
tile sensor feedback, and 3) development of sensing strategies 
using tactile feedback. 

To satisfy the first requirement, we have mounted tactile 
sensors on each of the hand’s fingers. The technology being 
used is a piezoresistive polymeric material manufactured by 
Interlink, Inc. [33], [36]. The design of the tactile pads we 
are using sandwiches the polymer between two pliable sheets 
of Kapton material that contains electrical etching. The appli- 
cation of forces on the pads provides an increased electrical 
flow channel between the two sheets as the material within is 
compressed. The piezoresistive polymer is patterned to form 
rows on one substrate and columns on the other. The rows 
and columns form a grid in which each intersection acts as a 
force-sensitive variable resistance whose value decreases ap- 
proximately exponentially with normal force. The pads consist 
of 16 rows by 16 columns, providing a sense resolution of 256 
points on a 0.5 x 1.0 in pad. 

The 256 sites of each sensor pad are addressed independ- 
ently by analog circuitry that cancels current flow in all paths 
of the grid except the one containing the resistive element 
being measured using a method developed by van Brussel and 
Belien [37]. A hardware interface board has been developed 
to perform this operation at high speed. The interface board 
performs the analog-to-digital conversion task by means of an 
8-bit flash A/D converter and allows up to 16 sensor pads to 
be addressed. 

Some of the low-level tactile primitives that have been im- 
plemented include the following: 

Tactile Filters: A number of useful digital filters have 
been implemented, including averaging and median fib 
ters, which are very useful in processing noisy tactile 
data [26]. 
Tactile Moments: A useful technique for quickly get- 
ting contact information is central moment analysis [ 181. 
The contact area and centroid of the contact can be deter- 
mined using moments. The second moments are useful 
for determining the eccentricity of the contact region and 
the principal axes of the contact. 
Edge Detection: A number of edge detectors have been 
developed and used for feature extraction from tactile 
images. 
Line Detection: Lines are detected by using the output 
of the edge detection procedure in a Hough transform 
151. 
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Results with this sensor have been good. The signal is very 
localized, and by using moment analysis, we have been able 
to stably determine contact location on the pads. 

IV. ACTIVE HAPTIC SENSING FOR OBJECT RECOGNITION TASKS 

A focus of our work has been in the use of the hand system 
described above to recover the shape of objects in a scene. Ob- 
ject recognition has traditionally been associated with vision 
sensor systems. However, these systems suffer from a num- 
ber of inherent problems, not the least of which is occlusion. 
A vision system will be limited to a view that obscures all 
back-facing areas of the object. In robot manipulation tasks, 
important areas of the work environment are occluded by the 
end effector itself. This difficulty is especially acute during 
the act of acquiring a grasp on an object when the contact 
areas will be occluded. A number of interesting properties of 
the human haptic’ system have been investigated by Leder- 
man and Klatzky and their colleagues 1231-[25]. This work 
has shown that an important component of the haptic system 
is its ability to recognize attributes of 3-D objects quickly and 
accurately. Among these attributes are global shape, hardness, 
temperature, weight, size, articulation, and function. An out- 
come of this research is the identification of hand movement 
strategies that are used by humans in discovering different at- 
tributes of 3-D objects. They have labeled these exploratory 
procedures (EP’s) and have reported success rates of 96-99% 
in identifying different object properties using two-handed, 
haptic exploration. We have found it natural to extend these 
human capabilities to our robotic domain.2 We have imple- 
mented three EP’s on our robotic hand system, which we 
describe below. 

A .  Coarse to Fine Recognition Strategies 

In acquiring information about a scene, a hierarchical ap- 
proach seems intuitive. Information content is often related to 
scale, and different sensory systems work at different size and 
detail scales [8], [38]. Our approach is to find gross object 
shape initially and then use a hypothesis-and-test method to 
generate more detailed information about an object, as dis- 
cussed in Allen [ 11. This approach is especially relevant with 
touch sensing, in which there is evidence that the human tac- 
tile system serves essentially as a low-pass filter [25]. This 

’ An important point to be made in applying hands to robots is that the 
human perceptual process of interest is haptic perception. By this, we mean 
the interplay of both the cutaneous system (skin, tactile receptors) and the 
kinaesthetic system Cjoints, muscle, and bone) of the arm 113). 

We must be careful in trying to draw too close a comparison between 
a human hand and devices such as a Utah-MIT hand. Johansson and Vallbo 
[20] have reponed that there are about 17,000 mechano-receptors in the skin 
of the human hand; our robotic hand is more limited with 16 joint sensors, 32 
tendon force sensors, and four 16 x 16 fingertip tactile sensors. In addition, 
a human hand has two main differences in structure from our robotic hand. 
The first is a highly flexible, opposable thumb that is mounted to the side of 
the other digits. The Utah-MIT hand thumb is identical to the other fingers 
and is mounted directly opposite the other fingers. The second difference 
is that a palmar degree of freedom exists in human hands that is missing 
in the Utah-MIT hand. Humans find this palmar degree of freedom quite 
useful, especially for encompassing type grasps where the hand is molded 
to an object and as a grasping mechanism in its own right, which is almost 
independent of the existence of multijointed fingers. 

motivates the idea of using an initial global estimate of shape, 
which can then be further refined by more specific and lo- 
calized sensing. The problem of generating a good initial hy- 
pothesis is central to robust object recognition. If we can gen- 
erate a good initial shape estimate, we will be much more 
successful as we try to discover further object structure. The 
requirements for an initial shape estimator are that it be ef- 
ficient, stable in the presence of noise and uncertainty, and 
able to use sparse, partial data. We have implemented such a 
shape recovery method, which we call grasping by contain- 
ment. This method was initially discussed in [3], and it is 
reviewed here since the method serves as a precursor to the 
other two EP’s we have implemented. 

B .  Exploratory Procedure 1: Grasping by Containment 
Grasping by containment is an attempt to understand an ob- 

ject’s gross contour and volume by effectively molding the 
hand to the object. We have chosen to model objects as su- 
perquadrics [4], 161, [29] whose surface 3-D vector X is de- 
fined below using a latitudinal and longitudinal parameteriza- 
tion expressed in spherical coordinates: 

r a I c =  1 
1 ass;’ 1 

where C , ,  S, are cosine(v) and sine(a), € 1 ,  €2 are the su- 
perquadric shape parameters, and a ~ ,  a2, a3 are scaling fac- 
tors along the X ,  Y ,  and Z directions. 

Superquadrics form a rich set of shape primitives that allows 
a wide degree of freedom in modeling objects. The parameter 
space is continuous and allows a smooth change from a cuboid 
to a sphere to a cylinder with more complex shapes derivable 
with the addition of bending and tapering parameters. These 
“lumps of clay” are deformable by the usual linear stretching 
and scaling operations and can be combined using boolean set 
operations to create more complex objects. 

What makes superquadrics particularly relevant for haptic 
recognition is the following: 

The models are volumetric in nature, which maps directly 
into the psychophysical perception processes suggested 
by grasping by containment. 
The models can be constrained by the volumetric con- 
straint implied by the joint positions on each finger. 
The models can be recovered with sparse amounts of 
point contact data since only a limited number of pa- 
rameters need to be recovered. There are five parame- 
ters related to shape and six related to position and orien- 
tation in space. Global deformations (tapering, bending) 
add a few more. 
In addition to the use of contact points of fingers on a 
surface, the surface normals from contacts can be used 
to describe a dual superquadric, which has the same an- 
alytical properties as the model itself [6] .  
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Fig. 3. Object database 

The analytic nature of the model created from sparse data 
allows searching strategies in the model space to proceed 
in a hypothesize-and-test fashion. 

C .  Recovery Procedure 
For this initial work on recognition, we have used a simpli- 

fied procedure to gather data points. Our intent is to use the 
tactile sensors mounted on the finger links to generate contact 
position data. However, during our initial trials, our tactile 
sensors were not yet mounted on the hand. Instead, we opted 
for a method that used the hand’s internal joint angle readings 
and tendon forces to generate Cartesian positions of contact 
based on fingertip contact. Note that in all the experiments de- 
scribed in this paper, the objects to be explored were rigidly 
attached to a laboratory table. Exploring objects with active 
touch sensors can sometimes displace the objects. This is a 
very difficult problem that is solved at the human level by us- 
ing two hands, where one hand typically serves as a “fixture.” 
In the absence of a second hand, we have rigidly mounted the 
objects to allow one-hand exploration. 

The PUMA arm moves the hand to a position in which it 
will close around the object. The fingers are spread wide dur- 
ing approach. The fingers are then closed by position com- 
mands until the observed force (which is estimated by the 
difference between the flexor and extensor tendon tensions) 
exceeds a given threshold, which indicates that the finger is in 
contact with the object. The joint angle positions are read, and 
kinematic models of the hand and the PUMA arm are used 
to convert them to X Y Z  positions in world coordinates. The 
fingers are then opened wide again, and a second containing 
grasp is executed with the fingers taking different approach 
paths. The fingers are spread once again, and the PUMA arm 
moves the hand to the next position. 

The sequence of PUMA positions is given in advance. 
Once the contact points are determined using the forward 
kinematics of the hand derived from the joint angle sensors, 
the sparse sets of point data is injected into the recovery 
algorithm developed by Solina [32]. This algorithm uses a 
Levenberg-Marquardt nonlinear least squares approximation 
to fit the superquadric “inside-out function.” This is an im- 

plicit form of ( l) ,  which records if a sample data point lies 
inside, outside, or on the surface of the superquadric model. 
By summing the squared distance of each sample data point 
from the current model, an error of fit measure is generated 
that is minimized by the algorithm. 

Equation (1) is for a canonical superquadric located at the 
origin. Since our sensor data can exist anywhere in the world 
coordinate space, the algorithm must recover the six rotation 
and translation parameters in addition to the five superquadric 
shape parameters ( a ] ,  a2, a3, € 1 ,  €2) .  In addition, we al- 
low global deformations to include tapering of superquadric 
forms. The taper is defined to be a linear tapering with two 
parameters that control the tapering in both the X and Y di- 
mensions. The algorithm must recover a minimum of l l  pa- 
rameters (13 if the object is tapered). 

We tested this procedure against a database of six ob- 
jects (shown in Fig. 3 plus a smaller cylinder). The database 
included objects that could be modeled as undeformed su- 
perquadrics (block, large cylinder, small cylinder) and de- 
formed (tapered) superquadrics (lightbulb, funnel, triangular 
wedge). The recovered shapes are shown in Fig. 4 with the 
sample data points overlaid on them. 

The recovered shapes are an accurate representation of the 
actual shapes, especially considering the sparse nature of the 
data and the errors in the derived contact points. These errors 
are a function of the accuracy and calibration of the robotic 
arm, the hand joint position sensors, and the kinematic model 
of the hand itself. The data points are overlaid on the recov- 
ered shapes to show the closeness of fit and the sparseness of 
the data. Each object’s shape was recovered with extremely 
sparse amounts of data, which was typically 30-100 points, 
depending on the object. It is important to note that this is 
about two orders of magnitude less than typical range data 
images that try to recover shape with denser data that, un- 
like touch sensing, is limited to a viewpoint that only exposes 
half the object’s surfaces to the sensor. Not all objects can 
be modeled adequately as superquadrics; however, we feel 
that in deriving an initial shape estimate from sparse data, 
they work quite well. The algorithm typically converges after 
about 10-15 iterations, and it takes about 10 s on a Sun-4 to 
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Fig. 4. Recovered shape of cylinder, block, wedge, lightbulb, and funnel. 

recover an undeformed superquadric shape (20 iterations of 
a 60-contact-point data set). A formal analysis of the conver- 
gence properties and accuracy of the recovery method can be 
found in Solina's thesis [32] and in work by Boult and Gross 

D. Exploratory Procedure 2: Planar Surface Explorer 
Once a superquadric has been fit to the initial grasp data, 

we have a strong hypothesis about an object's shape. The 
shape parameters € 1  and €2 are of particular importance. The 
shape of an object can be inferred from these parameters and 
used to direct further exploration. For example, if the shape 
parameters appear to be rectangular ( € 1 ,  €2 E O.l), the planar 
explorer can trace out the plane and perform a least square 
fit of the trace data to test the surface's planarity. If the shape 
parameters appear more cylindrical ( € 1  E 1, €2 E O.l), the 
planar faces of the cylinder can be explored with this prim- 
itive, and the cylinder's contour can be explored and veri- 
fied with the contour follower EP (described below). A major 
benefit of using the superquadric analytic shape description 
is that it supplies orientation and axis data that are necessary 
for further active probes of the environment with the hand. 
Instead of a blind search, we can use the recovered orienta- 
tion parameters to guide the further exploration of the object. 
Discovering a planar surface can be a very useful constraint 
in recognition, particularly if two opposing planar faces are 
grasped. By discovering multiple planar faces on an object, 
the recovery methods of Grimson and Lozano-Perez [ 121 and 

191. 

Fig. 5.  Planar surface explorer tactile contacts on two planar surfaces of a 
rectangular block. 

Ellis et al. [lo] can be invoked, and these have proven to be 
strong constraints on recognition of an object. 

The explorer uses the hand's index finger. Although the 
index finger is held in an extended position, the PUMA arm 
is moved until the tactile sensors on the index finger contact a 
surface (if no contact is detected, the procedure terminates). 
After the initial contact, the Cartesian position of the contact 
point is noted. The hand and arm then begin an iterative search 
for the boundaries of the surface by performing the following 
sequence: a) lift the finger off the surface until tactile contact 
is lost; b) move the arm in a direction parallel to the surface; 
c) if the finger is in contact after the movement, note the 
new contact location; otherwise, lower the index finger until 
it makes contact with the surface again; d) repeat steps a)-c) 
until the finger fails to make contact in step c). In step d), if the 
finger does not contact the surface, either the finger has moved 
beyond the edge of the surface, or the surface is too far away 
from the finger to be detected. To check for the latter case, 
the arm must be moved toward the surface. After completing 
the first collection of data points and finding the edge of the 
surface, the index finger is moved back to the position of initial 
contact, and a second mapping of the surface is undertaken 
in a direction 180" opposite. This procedure continues until a 
second surface edge is detected. The search now continues as 
before but in a direction perpendicular to the first two traces. 
This procedure is then able to map out a set of contact points 
on the surface describing its extent. Each time the fingertip 
contacts the surface, the Cartesian coordinates of the contact 
are retained. The acquisition of data points in this method is 
compatible with the three-point seed method of Henderson and 
Bhanu for forming planar surfaces from range data [15]. Fig. 
5 shows a pattern of traces on two adjacent planar faces of 
a rectangular block using this EP. Least-square planes were 
fit to each of the traces, and the computed angle between 
the recovered planes is 96" (the actual angle is unknown but 
assumed to be 90"). 

E .  Exploratory Procedure 3: Surface Contour Following 
The third EP we have implemented is surface contour fol- 

lowing with a two-fingered grasp. This EP will allow us to 
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determine an object’s contour that has been shown to be a 
strong shape cue from previous vision research [27], [30], 
[35]. The contour follower EP in humans is described by 
Klatzky and Lederman as “a dynamic procedure in which the 
hand maintains contact with a contour of the object. Typically, 
the movement is smooth and non-repetitive within a segment 
of object contour, stops or shifts direction when a contour 
segment ends, and does not occur on a homogeneous surface 
[22].” It seems natural that this EP will report information 
that can be used to recover a shape that can be represented 
as a class of generalized cylinders. The contours we are able 
to extract from touch are inherently 3-D. This simplifies re- 
covery of shape since the 2-D image projection used in most 
contour work entails a loss of information. Since we can re- 
cover the 3-D contours, we are able to hypothesize a number 
of different shapes, including generalized cylinders and solids 
of revolution, using the 3-D contour alone. 

Generalized cylinders have been proposed by many re- 
searchers (beginning with Binford [7]) as a shape modeling 
primitive. Other researchers have expanded on this idea of a 
swept volume by creating classes of generalized cylinders or 
cones, depending on the nature of the axis curve, sweeping 
rule, and cross sectional curve. These primitives have special 
appeal in the recognition of elongated objects and objects that 
provide strong visual contours. 

Fearing [ 111 has attempted to recover the shape of a class 
of these generalized cones, known as right linear straight ho- 
mogeneous generalized cones (RLSHGC’s) using extremely 
sparse amounts of data. He has characterized the necessary 
and sufficient conditions for being able to recover the axis 
and orientation of these cones given limited, multifingered 
tactile sensor data that includes point contacts, surface normal 
direction, and surface curvature information. 

We have also chosen to use a class of these primitives for 
shape recovery. The class we are using is surfaces of revolu- 
tion, which are RLSHGC’s with a circular cross-section func- 
tion (no linear scaling of the cross section is required). These 
surfaces may be completely described by the rotation of a 
plane curve about the axis of symmetry. If we take this axis 
to be the Z axis, the surface will intersect the 0-XZ plane 
in the plane curve. 

rc(u)  = p(u) i  + z(u)k 

and the surface of revolution has the equation 

r =p(u)cos6i +p(u)sinBj + z ( u ) k .  (3) 

From the definition, we can see that the cross-section curve 
is circular, but the contour generator curve can be quite arbi- 
trary. 

Fearing was able to recover the shape of generalized cylin- 
ders from a minimal set of tactile contacts that were static in 
nature and not dynamic. Our attempt to recover the shape of 
these objects from touch is based on receiving less-accurate 
tactile information than the system used by Fearing. In partic- 
ular, our tactile sensors are not capable of reporting accurate 
surface normals or surface curvatures. They are, however, 
capable of producing localized 3-D positional contacts of fin- 

gers to the object. Our experience is that information such 
as surface curvature is very difficult to accurately sense, par- 
ticularly with sensors that have low dynamic range and are 
used in an active, exploratory manner. Our approach is to use 
the contour follower to recover the contour curve described 
above. If we obtain two such contour curves that are on either 
side of the object, we can estimate the axis of the surface of 
revolution and recover the shape. This procedure maps nat- 
urally into a two-fingered contour follower EP in which an 
object’s contour on either side is sensed using the thumb and 
index finger. 

The problem of using a tactile device to trace a surface 
on an object is a complicated one. Previous work by Allen 
[ 11, using a one-fingered tactile sensor mounted on a PUMA, 
traced along a curved surface by calculating a weighted vector 
of constraint direction that tried to follow the surface curva- 
ture while preserving smoothness of the trace and a constraint 
having to do with creating regions bounded by traces that 
were equivalent in size. Hor [17] traced contours of planar 
objects using a planar four-fingered “chopstick” like manipu- 
lator. Strain gauge sensors on the fingers of this device would 
calculate surface normals and move tangentially along a sur- 
face, recording the contour. Stansfield [34] experimented with 
active tactile sensing to determine an object’s shape using 
a single tactile sensor mounted on a robot arm. Following 
Klatzky and Lederman, Stansfield’s system also successfully 
determined several other object properties that included com- 
pliance, elasticity, and texture. 

Our method is now described. First, the PUMA is moved to 
a location near one end of the explored object, and the thumb 
and index finger are opened enough to allow them to encom- 
pass the object without making contact with it. The thumb is 
then slowly moved toward the object until the sensors detect 
contact between the thumb and the object. Next, the index 
finger follows the same movement. After detecting contact, 
the positions of the two contact locations are noted, and the 
fingers are backed off the object so that they are no longer in 
contact. The arm and hand are moved a small amount along the 
axis of the explored object, and the process is repeated. This 
exploratory procedure ends when one of the fingers moves to- 
ward the object and fails to make contact. (The location of the 
object and its axis are not currently determined autonomously 
but with human aid.) 

The detection of contact and conversion to Cartesian coor- 
dinates is a process that requires several steps. The fingers 
are moved toward the object in a number of discrete intervals. 
After each movement, two checks are performed. First, did 
the tactile sensor detect contact, and second, did the finger 
move the entire distance that was commanded? If the tactile 
sensor detects contact, the location of the center of the con- 
tact region is then found. To find the center of the contact, the 
first moments of the array are taken. A transformation is then 
performed from the fingertip coordinate frame to the hand CO- 

ordinate frame and finally from the hand coordinate frame to 
world coordinates. The second check is that the finger does not 
move the entire distance commanded (and there is no tactile 
contact). This event would signal that something is impeding 
a finger from moving. In this case, no centroid of the contact 
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Fig. 6. Recovered solids of revolutit on from surface contour explorer (left 
to right; wine bottle, coke bottle, beer bottle, Orangina bokle). 

region is found, and the data point is thrown out. Currently, 
after detecting contact that does not involve the tactile sensor, 
the exploratory procedure continues looking for valid contact 
points along the original search axis. 

We have performed a series of experiments that try to re- 
cover the shape of a number of different solids of revolution 
including a wine bottle, a beer bottle, a coke bottle, and an 
Orangina soft drink bottle (a flask-like object). The procedure 
begins by exploring the object along an exploration axis that 
is assumed to be perpendicular to the support table (but can 
be inferred from vision sensing described below). The points 
generated from these contour traces are then linked into a 
set of linear contour segments. Circular cross-section curves 
are then fit perpendicular to the exploration axis, including 
trace points from each of the contours. The recovered shapes 
are shown in Fig. 6 .  The shapes are clearly distinguishable 
from this sparse data. Additional and important discriminating 
characteristics are actual 3-D size and volume, and these are 
calculable from these representations. 

V. DISCUSSION 
Although the focus of this paper is on the acquisition and in- 

terpretation of touch sensor data, our overall approach to the 
problem of robotic object recognition lies in a multisensor 
approach; we believe no single sensing modality is currently 
powerful enough to robustly perceive and recognize its envi- 
ronment. Just as humans exploit a multitude of sensor systems, 
robotic systems need to use multiple sensors for perception as 
outlined in Allen [l] and Kak and Chen [21]. A central idea 
in using multisensor data is that overreliance on one sensor 
can cause error. It has been empirically observed that trying 
to extract too much information from a single sensing modal- 
ity results in a degradation of results; however, using only 
the most reliable and highest confidence sensor data allows 
one to proceed along a path that is known to be correct. We 
call this principle “less is more” in that reduced amounts of 
reliable data from a single sensor are more useful than large 
amounts of data that may be spurious. By combining the data 
that is most reliable from each of a number of sensors, more 
accurate results may be computed. 

An example of this approach is in determining the explo- 
ration axis for the contour follower EP. Knowing in which 
direction to trace the object is important to higher level re- 
covery procedures that need to use this information in the 
recognition process. Once the hand makes contact with the 

object, it explores the contour along a known axis, which we 
calculate a priori. We are currently implementing a vision- 
based technique to determine this axis. Our method of visual 
recovery of the exploration axis exploits the recent work of 
Wolff [39] in stereo line matching. Point-based stereo tech- 
niques tend to be unreliable in that multiple correspondences 
between images can cause mismatches and error. More sta- 
ble matching can occur using larger primitives such as lines 
[16]. Even using line-based matching, problems can still oc- 
cur. Matching the end points of lines can be prone to errors 
in the output of the line finder, which may break a single line 
into multiple segments due to differing edge strengths along 
the line. The problem here is that 3-D depth is being com- 
puted, which requires an absolute correspondence of points 
(whether from point-based or line-based methods). 

Our method alleviates this dependence on absolute matching 
of unstable primitives to generate 3-D depth. All we require 
of the algorithm is an orientation vector in 3-D. We do not 
need to have its absolute depth, but we do need to generate 
a match between a family of parallel lines sharing the same 
orientation. This orientation can then be used by the active 
hand as the exploration axis. The 3-D depth has already been 
determined from the contact of the hand with the object. Given 
this 3-D depth from tactile contact, we can follow the 3-D axis 
determined by the line-based stereo matcher to continue our 
exploration. 

It is important to note that this method is less sensitive to 
matching errors and baseline measurement, which is another 
common cause of stereo error. In addition, it is also less prone 
to the effects of physical point mismatches as the baseline 
increases since we are still matching a larger entity, which is 
the line itself. Intuitively, the method creates a 3-D plane in 
space from the camera center and any two points on the line. 
This plane and a similar plane from the other camera are all 
that are needed to create a 3-D intersection line, which we 
can use as the exploration axis. 

Because there are many lines in a scene, we have to choose 
a criterion for deciding those lines that constitute the axis 
of the object. For exploration purposes, we simply want to 
discover a maximum length line that will serve as an axis. In 
most cases, this is part of the visual occluding contour of the 
object, which is exactly the axis we desire for active tactile 
exploration. 

VI. SUMMARY 
We have described a set of exploratory procedures using 

touch sensing that can serve as a front end to a multisensor 
object recognition system. The EP’s can be used in a coarse- 
to-fine sensing strategy that tries to build shape descriptions 
at a number of levels. An important feature of this system is 
the multiple representations used in recovering and reasoning 
about shape. The first EP, grasping by containment, uses a 
global volumetric recovery method that is stable and efficient 
with extremely sparse amounts of data. It can be used as a 
precursor to more detailed fine shape recovery using either 
the planar surface explorer or a 3-D surface contour EP that 
can be used to recover solids of revolution. 

In the future, we hope to link all the exploratory procedures 
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into a fully autonomous system that will be able to use gross 
object structure as a generator of sensing hypothesis for the 
finer level EP’s. In this way, we hope to be able to recover 
the shape of more complex objects using tactile and visual 
processing. 
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