Academic Commons

Theses Doctoral

Deposition and Characterization of Magnetron Sputtered Beta-Tungsten Thin Films

Liu, Jiaxing

β-W is an A15 structured phase commonly found in tungsten thin films together with the bcc structured W, and it has been found that β-W has the strongest spin Hall effect among all metal thin films. Therefore, it is promising for application in spintronics as the source of spin-polarized current that can be easily manipulated by electric field.
However, the deposition conditions and the formation mechanism of β-W in thin films are not fully understood. The existing deposition conditions for β-W make use of low deposition rate, high inert gas pressure, substrate bias, or oxygen impurity to stabilize the β-W over α-W, and these parameters are unfavorable for producing β-W films with high quality at reasonable yield. In order to optimize the deposition process and gain insight into the formation mechanism of β-W, a novel technique using nitrogen impurity in the pressure range of 10-5 to 10-6 torr in the deposition chamber is introduced. This techniques allows the deposition of pure β-W thin films with only incorporation of 0.4 at% nitrogen and 3.2 at% oxygen, and β-W films as thick as 1μm have been obtained. The dependence of the volume fraction of β-W on the deposition parameters, including nitrogen pressure, substrate temperature, and deposition rate, has been investigated. The relationship can be modeled by the Langmuir-Freundlich isotherm, which indicates that the formation of β-W requires the adsorption of strongly interacting nitrogen molecules on the substrate.
The dependence of β-W formation on the choice of underlayer materials has also been investigated. The β-W phase can only be obtained on the underlayer materials containing non-metallic elements. The dependence is explained by the existence of strong covalent bonds in β-W compared with that in α-W. The nickel and permalloy underlayers are the only exception to the above rule, and β-W has been successfully deposited on permalloy underlayer using very low deposition rate for spin-diffusion length measurement of β-W.
The permalloy thin films usually take the (111) texture, since its (111) planes have the lowest surface energy. However, permalloy thin films deposited on β-W underlayer can achieve (002) texture using amorphous glass substrates. Therefore, the permalloy/β-W bilayer system can work as a seed layer for the formation of (002) textured films with fcc or bcc structure. The mechanism of the (002) texture formation cannot be explained by the existing models.
The β-W to α-W phase transition was characterized by differential scanning calorimetry. The enthalpy of transformation is measured to be 8.3±0.4 kJ/mol, consistent with the value calculated using density functional theory. The activation energy for the β-W to α-W phase transformation kinetics is 2.2 eV, which is extremely low compared with that of lattice and grain boundary diffusion in tungsten. The low activation energy might be attributed to a diffusionless shuffle transformation process.


  • thumnail for Liu_columbia_0054D_13464.pdf Liu_columbia_0054D_13464.pdf binary/octet-stream 2.31 MB Download File

More About This Work

Academic Units
Applied Physics and Applied Mathematics
Thesis Advisors
Barmak Vaziri, Katayun
Ph.D., Columbia University
Published Here
July 6, 2016
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.