Academic Commons

Articles

Fire and gap dynamics over 300 years in an old-growth temperate forest

McEwan, Ryan W.; Pederson, Neil; Cooper, Adrienne; Taylor, Josh; Watts, Robert; Hruska, Amy

Questions What are the long-term patterns of wildfire occurrence and gap dynamics in an old-growth deciduous forest? Are there temporal patterns in fire and gap dynamics over the last ca. 300 yrs? How is drought related to fire occurrence? Are there temporal interactions between gap dynamics and fire? Location Lilley Cornett Woods Appalachian Research Station, Southeastern Kentucky, USA. LCW; 37°05′ N, 83°00′ W. Methods We cross-dated and analysed annually-resolved tree-ring data from 35 tree cross-sections in an old-growth deciduous forest to reconstruct historical fire and canopy disturbance and explore connections among these processes. Canopy disturbance patterns as indicated by tree growth release within this collection [fire history collection: (FHC)] were compared to cores from 26 trees collected in 1983 for the purposes of climate reconstruction [climate collection: (CC)]. Results Initiation dates in the FHC ranged from ca. 1670 to 1925. Thirty-three fire scars were identified from 1678 to 1956. The mean interval between fire events was 9.3 yrs, and there were many more fires after 1800 than before that date. Gap dynamics, as reconstructed through growth release detection, were relatively constant through the FHC record and were supported by a similar result in the CC. The mean number of years between detected release events was 5.2 yrs. Many individual trees, and the mean growth chronology for the FHC, indicate that many oak trees exhibit growth release after long periods of suppression and, after a final release, exhibit a step-change in growth rate suggesting canopy accession. Conclusions Fire and gap dynamics occurred through much of the last ca. 350 yrs in this old-growth forest. There was not evidence to support that these two processes were temporally linked – gap dynamics were ostensibly independent of fire occurrence. Even so, we posit that these two processes may have a synergistic effect on long-term dynamics, wherein fire ‘filters’ the seedling pool and gap openings provide canopy accession opportunities. We also note several instances where release events are associated with stand-wide growth increases suggesting large-scale canopy accession. These events could influence the overstorey composition of the forest for centuries.

Geographic Areas

Subjects

Files

Also Published In

Title
Applied Vegetation Science
DOI
https://doi.org/10.1111/avsc.12060

More About This Work

Academic Units
Lamont-Doherty Earth Observatory
Biology and Paleo Environment
Published Here
August 28, 2013