Academic Commons

Articles

Cardiac Tissue Engineering

Vunjak-Novakovic, Gordana; Radisic, Milica

We hypothesized that clinically sized (1-5 mm thick),compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3) can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons), or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz). Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart) as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

Files

Also Published In

Title
Journal of the Serbian Chemical Society

More About This Work

Academic Units
Biomedical Engineering
Publisher
Serbian Chemical Society
Published Here
January 31, 2014
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.