Academic Commons


Nuclear matrix protein Matrin 3 is a regulator of ZAP-mediated retroviral restriction

Erazo, Angela; Goff, Stephen P.

Matrin 3 is a nuclear matrix protein involved in multiple nuclear processes. In HIV-1 infection, Matrin 3 serves as a Rev cofactor important for the cytoplasmic accumulation of HIV-1 transcripts. ZAP is a potent host restriction factor of multiple viruses including retroviruses HIV-1 and MoMuLV. In this study we sought to further characterize Matrin 3 functions in the regulation of HIV gene expression.

Here we describe a function for Matrin 3 as a negative regulator of the ZAP-mediated restriction of retroviruses. Mass spectrometry analysis of Matrin 3-associated proteins uncovered interactions with proteins of the ZAP degradation complex, DDX17 and EXOSC3. Coimmunoprecipitation studies confirmed Matrin 3 associations with DDX17, EXOSC3 and ZAP, in a largely RNA-dependent manner, indicating that RNA is mediating the Matrin 3 interactions with these components of the ZAP degradation complex. Silencing Matrin 3 expression caused a remarkably enhanced ZAP-driven inhibition of HIV-1 and MoMuLV luciferase reporter viruses. This effect was shared with additional nuclear matrix proteins. ZAP targets multiply-spliced HIV-1 transcripts, but in the context of Matrin 3 suppression, this ZAP restriction was broadened to unspliced and multiply-spliced RNAs.

Here we reveal an unprecedented role for a nuclear matrix protein, Matrin 3, in the regulation of ZAP’s antiretroviral activity. Suppressing Matrin 3 powers a heightened and broader ZAP restriction of HIV-1 gene expression. This study suggests that this ZAP regulatory mechanism is shared with additional nuclear matrix proteins.


Also Published In

More About This Work

Academic Units
Biochemistry and Molecular Biophysics
Microbiology and Immunology
Published Here
August 12, 2018