Theses Doctoral

Robotic Functional Gait Rehabilitation with Tethered Pelvic Assist Device

Kang, Jiyeon

The primary goal of human locomotion is to stably translate the center of mass (CoM) over the ground with minimum expenditure of energy. Pelvic movement is crucial for walking because the human CoM is located close to the pelvic center. Because of this anatomical feature, pelvic motion directly contributes to the metabolic expenditure, as well as in the balance to keep the center of mass between the legs. An abnormal pelvic motion during the gait not only causes overexertion, but also adversely affects the motion of the trunk and lower limbs. In order to study different interventions, recently a cable-actuated robotic system called Tethered Pelvic Assist Device (TPAD) was developed at ROAR laboratory at Columbia University. The cable-actuated system has a distinct advantage of applying three dimensional forces on the pelvis at discrete points in the gait cycle in contrast to rigid exoskeletons that restrict natural pelvic motion and add extra inertia from the rigid linkages. However, in order to effectively use TPAD for rehabilitation purposes, we still need to have a better understanding of how human gait is affected by different forces applied by TPAD on the pelvis. In the present dissertation, three different control methodologies for TPAD are discussed by performing human experiments with healthy subjects and patients with gait deficits. Moreover, the corresponding changes in the biomechanics during TPAD training are studied to understand how TPAD mechanistically influences the quality of the human gait.
In Chapter 2, an ‘assist-as-needed’ controller is implemented to guide and correct the pelvic motion in three dimensions. Here, TPAD applies the correction force based on the deviation of the current position of the pelvic center from a pre-defined target trajectory. This force acts on the pelvic center to guide it towards the target trajectory. A subject in the device experiences a force field, where the magnitude becomes larger when the subject deviates further away from the target trajectory. This control strategy is tested by performing the experiments on healthy subjects with different target pelvic trajectories.
Chapter 3 describes a robotic resistive training study using a continuous force on the pelvis to strengthen the weak limbs so that subjects can improve their walking. This study is designed to improve the abnormal gait of children with Cerebral Palsy (CP) who have a crouch gait. Crouch gait is caused by a combination of weak extensor muscles that do not produce adequate muscle forces to keep the posture upright, coupled with contraction of muscles that limit the joint range of motion. Among the extensor muscles, the soleus muscle acts as the major weight-bearing muscle to prevent the knees from collapsing forward during the middle of the stance phase when the foot is on the ground. Electromyography, kinematics, and clinical measurements of the patients with crouch gait show significant improvements in the gait quality after the resistive TPAD training performed over five weeks.
Both Chapters 2 & 3 present interventions that are bilaterally applied on both legs. Chapter 4 introduces a training strategy that can be used for patients who have impairments in only one leg which results in manifests as asymmetric weight-bearing while walking. This training method is designed to improve the asymmetric weight bearing of the hemiparetic patients who overly rely on the stronger leg. The feasibility of this training method is tested by experiments with healthy subjects, where the controller creates an asymmetric force field to bring asymmetry in weight bearing during walking.
In summary, the present dissertation is devoted to developing new training methods that utilize TPAD for rehabilitation purposes and characterize the responses of different force interventions by investigating the resulting biomechanics. We believe that these methodologies with TPAD can be used to improve abnormal gait patterns that are often observed in cerebral palsy or stroke patients.


  • thumnail for Kang_columbia_0054D_14360.pdf Kang_columbia_0054D_14360.pdf application/pdf 5.42 MB Download File

More About This Work

Academic Units
Mechanical Engineering
Thesis Advisors
Agrawal, Sunil Kumar
Ph.D., Columbia University
Published Here
January 19, 2018