Academic Commons


Towards the Quality of Service for VoIP traffic in IEEE 802.11 Wireless Networks

Shin, Sangho; Schulzrinne, Henning G.

The usage of voice over IP (VoIP) traffic in IEEE 802.11 wireless networks is expected to increase in the near future due to widely deployed 802.11 wireless networks and VoIP services on fixed lines. However, the quality of service (QoS) of VoIP traffic in wireless networks is still unsatisfactory. In this thesis, I identify several sources for the QoS problems of VoIP traffic in IEEE 802.11 wireless networks and propose solutions for these problems. The QoS problems discussed can be divided into three categories, namely, user mobility, VoIP capacity, and call admission control. User mobility causes network disruptions during handoffs. In order to reduce the handoff time between Access Points (APs), I propose a new handoff algorithm, Selective Scanning and Caching, which finds available APs by scanning a minimum number of channels and furthermore allows clients to perform handoffs without scanning, by caching AP information. I also describe a new architecture for the client and server side for seamless IP layer handoffs, which are caused when mobile clients change the subnet due to layer 2 handoffs. I also present two methods to improve VoIP capacity for 802.11 networks, Adaptive Priority Control (APC) and Dynamic Point Coordination Function (DPCF). APC is a new packet scheduling algorithm at the AP and improves the capacity by balancing the uplink and downlink delay of VoIP traffic, and DPCF uses a polling based protocol and minimizes the bandwidth wasted from unnecessary polling, using a dynamic polling list. Additionally, I estimated the capacity for VoIP traffic in IEEE 802.11 wireless networks via theoretical analysis, simulations, and experiments in a wireless test-bed and show how to avoid mistakes in the measurements and comparisons. Finally, to protect the QoS for existing VoIP calls while maximizing the channel utilization, I propose a novel admission control algorithm called QP-CAT (Queue size Prediction using Computation of Additional Transmission), which accurately predicts the impact of new voice calls by virtually transmitting virtual new VoIP traffic.



More About This Work

Academic Units
Computer Science
Department of Computer Science, Columbia University
Columbia University Computer Science Technical Reports, CUCS-035-08
Published Here
April 26, 2011