A Survey of Tree-Walk Evaluation Strategies for Attribute Grammars

by

Daniel Yellin

CUCS-134-84

Computer Science Department
Columbia University
New York, New York, 10027

September 1984
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>An attribute grammar example</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>A semantic tree for the attribute grammar of figure 1</td>
<td>3</td>
</tr>
<tr>
<td>Figure 3</td>
<td>The semantic tree of figure 2 with dependency arcs drawn in</td>
<td>6</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Dependency and augmented dependency graphs</td>
<td>8</td>
</tr>
<tr>
<td>Figure 5</td>
<td>An attribute grammar for translating mathematical expressions into post-fix Polish notation</td>
<td>9</td>
</tr>
<tr>
<td>Figure 6</td>
<td>A semantic tree for the grammar of figure 5</td>
<td>10</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Two different computation sequences for the semantic tree of figure 2</td>
<td>13</td>
</tr>
<tr>
<td>Figure 8</td>
<td>An attribute grammar and pass assignment PN</td>
<td>18</td>
</tr>
<tr>
<td>Figure 9</td>
<td>The pass-oriented evaluator for the attribute grammar of figure 8</td>
<td>19</td>
</tr>
<tr>
<td>Figure 10</td>
<td>An attribute grammar not evaluable by an alternating pass strategy</td>
<td>21</td>
</tr>
<tr>
<td>Figure 11</td>
<td>The unique semantic tree that the attribute grammar of figure 10 derives</td>
<td>21</td>
</tr>
<tr>
<td>Figure 12</td>
<td>An algorithm for assigning pass numbers to attributes</td>
<td>22</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Two attributes not evaluable on the same pass</td>
<td>22</td>
</tr>
<tr>
<td>Figure 14</td>
<td>A Dp graph and protocols for X_0, X_1, and X_2</td>
<td>24</td>
</tr>
<tr>
<td>Figure 15</td>
<td>The acyclic graph $Dp[\delta X_0 \delta X_1 \delta X_0]$ and the cyclic graph $Dp[\delta X_0 \delta X_1 \delta X_0]$</td>
<td>28</td>
</tr>
<tr>
<td>Figure 16</td>
<td>The pseudo-protocol creation algorithm</td>
<td>29</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Pseudo-protocol graphs formed by the algorithm of figure 16</td>
<td>30</td>
</tr>
<tr>
<td>Figure 18</td>
<td>The cyclic augmented dependency graph $Dp[\delta A_i \delta A_i \delta \beta]$</td>
<td>30</td>
</tr>
<tr>
<td>Figure 19</td>
<td>An attribute grammar not evaluable by a uniform strategy</td>
<td>31</td>
</tr>
<tr>
<td>Figure 20</td>
<td>A protocol graph obtained from a pseudo-protocol graph using the greedy strategy</td>
<td>32</td>
</tr>
<tr>
<td>Figure 21</td>
<td>The IOX closure algorithm</td>
<td>34</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Sets of protocols for the symbols of the attribute grammar of figure 19</td>
<td>38</td>
</tr>
<tr>
<td>Figure 23</td>
<td>The multi-protocol evaluator constructed for the grammar of figure 19</td>
<td>37</td>
</tr>
<tr>
<td>Figure 24</td>
<td>A semantic tree for the attribute grammar of figure 19</td>
<td>38</td>
</tr>
<tr>
<td>Figure 25</td>
<td>The protocol closure algorithm</td>
<td>40</td>
</tr>
<tr>
<td>Figure 26</td>
<td>The function <code>COMPUTE_PROTOCOLS</code></td>
<td>41</td>
</tr>
<tr>
<td>Figure 27</td>
<td>An augmented dependency graph formed from a set of strings</td>
<td>45</td>
</tr>
<tr>
<td>Figure 28</td>
<td>The semantic tree T constructed from the augmented dependency graph $Dp[\delta X_0 \delta X_1 \delta X_0 \delta X_0]$</td>
<td>47</td>
</tr>
</tbody>
</table>
Abstract

Since the time that Knuth's seminal paper on attribute grammars (AGs) first appeared [24], the AG formalism for specifying the translation process has received much attention and has become the basis for several real translator-writing systems [12, 15, 19, 20, 25]. It seems to be a promising vehicle for automating the construction of compilers, in addition to its various other uses currently under investigation which includes syntax directed editors [5], attributed parsing [18, 39], interactive proof checking [35], waveform analysis [30], natural language translation into SQL data base code [31] and SQL data base code translation into natural language [27].

Given a sentence in a source language, an AG specifies a unique semantic tree for that sentence. The translation is found by evaluating the attribute-instances of the semantic tree. Upon completion, certain distinguished attributes of the root contain the translated string. Due to the declarative nature of the AG, there is no unique way to evaluate the semantic tree. Determining strategies to evaluate the semantic trees of an AG has been the focus of much discussion in the literature. It has both theoretical and practical importance: Bad strategies of evaluating semantic trees can be very inefficient in terms of both space and time making AGs less attractive for real translator-writing systems.

In this paper we survey static tree-walk evaluator strategies that have been developed for evaluating semantic trees. We compare the evaluators to each other on the basis of several performance criteria. We develop the notion of optimality of an evaluator and determine how close a given evaluation strategy comes to optimal. By considering different strategies we find a natural taxonomy of AGs: as not every AG will give rise to semantic trees evaluable by a given strategy S, we can define the class of S-evaluable AGs as exactly those AGs whose semantic trees are evaluable by strategy S. In this way we will discover a hierarchy of strategies of increasing power, the strongest strategy being one capable of evaluating the semantic trees of any well-defined AG.

In section 1 we present a brief introduction to AGs and set forth some terminology to be used in the rest of the paper. In section 2 we introduce the general idea of tree-walk evaluators and we formalize the concept of an optimal tree-walk evaluator for a semantic tree. In section 3 we define an especially useful class of evaluators called static evaluators. In the next three sections we survey three types of static evaluators: pass-oriented evaluators, uniform evaluators and multi-protocol evaluators. In section 7 we summarize our conclusions and review the taxonomy of AGs we have developed. The appendix presents the proofs of two NP-complete problems cited in the survey.
1. A Brief Introduction to Attribute Grammars

Attribute grammars were first proposed by Knuth [24] as a way to specify the semantics of context-free languages. A context-free grammar is a 4-tuple \((N, \Sigma, S, P)\), where \(N\) is a set of non-terminal symbols, \(\Sigma\) is a set of terminal symbols, \(S \in N\) is the start symbol, and \(P\) is a set of productions. A production is of the form \([p: X_0 ::= X_1 \ldots X_{np}]\), \(X_0 \in N\) is the left-part of \(p\); \(X_1 X_2 \ldots X_{np}\) is the right-part of \(p\) and for \(i > 0, X_i \in N \cup \Sigma\). Sometimes the expression "\(p[i]\)" is used to denote \(X_i\).

The basis of an attribute grammar is a context-free grammar. This describes the context-free language that is the domain of the translation; i.e., those strings on which the translation is defined. This context-free grammar is augmented with attributes and semantic functions. Attributes are associated with the nonterminal symbols of the grammar. We write "\(X.A\)" to denote attribute \(A\) of symbol \(X\), and \(A(X)\) to denote the set of attributes associated with \(X\). Semantic functions are associated with productions: they describe how the values of some attributes of the production are defined in terms of the values of other attributes of the production. Given a production \([p: X_0 ::= X_1 \ldots X_{np}]\), we call \(A(p) = A(X_0) \cup \ldots \cup A(X_{np})\) the attributes of \(p\).

Below is an attribute grammar that describes binary numerals and the decimal values they denote.

```
binary_number: (synthesized atts: binary_number.val; inherited atts: $)
  digits: (synthesized atts: digits.val; inherited atts: digits.place)
  digit: (synthesized atts: digit.val; inherited atts: digit.place)
1: $ 0: $

Context free symbols of the attribute grammar and their attributes

p1: binary_number ::= digits,
  binary_number.val + digits.val;
  digits.place = 0;
p2: digits0 ::= digit1 digit0
  digits0.val = digit1.val + digit.val;
  digits.place = digits0.place;
  digit1.place = digits0.place + 1;
p3: digits ::= digit
  digits.val = digit.val;
  digits.place = digits.place;
p4: digit ::= 0
  digit.val = 0;
p5: digit ::= 1
  digit.val = 2 digit.place;

Productions of the attribute grammar and their semantic functions

Figure 1: An attribute grammar example
```

In this AG there are 5 productions and each production has associated attributes and semantic functions. In production 2, \(<\text{digits0}>\) and \(<\text{digit1}>\) denote separate occurrences of the same symbol, \(<\text{digits}>\); the numeric suffixes distinguish these different occurrences.
A semantic function specifies the value of an attribute-occurrence of the production, e.g. the value of digits0.val in production 2 above is defined to be equal to the sum of digits1.val and digit.val. Semantic functions are pure functions, they have no side-effects. Their only arguments are either constants or other attribute-occurrences of the production.

How an attribute grammar specifies a translation can be most easily explained by an operational description. The underlying context-free grammar of an attribute grammar describes a language. Any string in this language has a parse tree associated with it by the grammar. The nodes of this parse tree can be labelled with symbols of the grammar. Each interior node of this tree, N, has two productions associated with it. The left-part production (LP) is the production that applies at N, say p, deriving N's children. The right-part production (RP) is the production that applies at the parent of N, say p′, deriving N and its siblings. The production instances of p and p′ are adjacent productions of the semantic tree. Leaves of the tree don't have LP productions; the root doesn't have an RP production.

A semantic tree is a parse tree in which each node contains fields that correspond to the attributes of its labelling grammar symbol. Each of these fields is an attribute-instance. Associated with each attribute is a set of possible values that instances of this attribute can be assigned. This is analogous to the "type" of a variable in a programming language.
However, each attribute-instance takes on precisely one such value; attribute-instances are not variables. The values of attribute-instances are specified by the semantic functions. Figure 2 shows a semantic tree for the string 1010 of the attribute grammar given in figure 1. Each node in this tree is labeled with its associated grammar symbol. To distinguish between different instances of the same grammar symbol each node is also assigned a number.

The semantic functions of a production represent a template for specifying the values of attribute-instances in the semantic tree. Consider figure 2 again. N2 is a semantic tree node labeled by the context-free symbol <digits>. It has two productions associated with it: [p1: binary_number ::= digits] (its RP production) and [p2: digits0 ::= digits1 digit] (its LP production). These two production instances are adjacent in the tree. The semantic function <digits.place = 0> of production p1 indicates that the value of attribute-instance N2.place will be set equal to the constant 0. Similarly, the semantic function <binary_number.val = digits.val> of that production indicates that the value of attribute-instance N1.VAL should be copied from the value of N2.val.

Since two different productions are associated with each attribute-instance, there could be two semantic functions that independently specify its value, one from the LP production and one from the RP production. If we assume that each attribute-instance is defined by only one semantic function, either from the LP production xor from the RP production, then we must guard against an attribute-instance not being defined at all because the LP production assumed that the RP production would define it and vice versa. These difficulties are avoided in attribute grammars by adopting the convention that for every attribute, X.A, either: (1) every instance of X.A is defined by a semantic function associated with its LP production, or (2) every instance of X.A is defined by a semantic function associated with its RP production. We refer to the semantic function which evaluates X.a as fX,a. Attributes whose instances are all defined in their LP production are called synthesized attributes; attributes whose instances are all defined in their RP production are called inherited attributes. Every attribute is either inherited or synthesized\(^1\). Inherited attributes propagate information down the tree, towards the leaves. Synthesized attributes propagate information up the tree, toward the root. The inherited attributes of a non-terminal X are denoted by i(X), the synthesized attributes by s(X); i(X) = fX,a(i(X)) \cup s(X). The start symbol has no inherited attributes. From the point of view of an individual production the above conditions require that the semantic functions of a production MUST define EXACTLY all the inherited attributes of the right-part symbols and all synthesized attributes of the left-

\(^1\)Some systems [10] have employed a third type of attribute, called an intrinsic attribute, initially introduced by [37]. An intrinsic attribute has its value defined during the parsing phase, as the semantic tree is being built. These attributes are evaluated during parsing and before actual semantic evaluation of the tree due to both conceptual and practical reasons. Conceptually these attributes directly relate to the input being parsed. Practically, using intrinsic attributes often helps to eliminate an extra pass in a pass-oriented evaluator. It has similar benefits for other evaluation strategies. In this paper, however, we shall restrict ourselves to just inherited and synthesized attributes.
part symbol. We call these attributes the defining attributes of \(p \),
\[\Delta A(p) = \langle X_0 \rangle \cup \langle X_1 \rangle \ldots \cup \langle X_{np} \rangle. \]

We shall not allow all attributes of \(A(p) \) to be used in defining the attributes of \(\Delta A(p) \); we only allow the applied attributes \(AP(p) = A(p) - \Delta A(p) \) to be used as arguments in the semantic functions of \(p \). That is, no attribute defined in \(p \) can itself be used to define another attribute in \(p \). An attribute grammar which obeys such a condition is said to be in Bochmann normal form [1]. In the remainder of this paper we assume that all attribute grammars are in Bochmann Normal Form unless stated explicitly otherwise. This does not impinge upon the power of the attribute grammar formalism; indeed it is not hard to see that any attribute grammar can be easily converted to Bochmann Normal Form [1]. Nonetheless, for reasons of efficiency and convenience, many real systems (such as Linguist [10] and GAG [20]) drop this constraint and allow for attribute grammars not in Bochmann Normal Form.

Thus the semantic functions of an attribute grammar specify a unique value for each attribute-instance. However, in order to actually compute the value of attribute-instance \(X\text{.att} \) we must first have available the values of those other attribute-instances that are arguments of the semantic function \(f_{X\text{.att}} \) that defines \(X\text{.att} \). In the example of figure 2, before \(N_1\text{.VAL} \) can be computed the value of \(N_2\text{.VAL} \) must have already been computed. Such dependency relations restrict the order in which attribute-instances can be evaluated. In extreme cases an attribute-instance can depend on itself; such a situation is called a circularity and by definition such situations are forbidden from occurring in well-defined attribute grammars. In general, it is an exponentially hard problem [18] to determine that an attribute grammar is non-circular; i.e. that no semantic tree that can be generated by the attribute grammar contains a circularly defined attribute-instance. Fortunately there are several interesting and widely applicable sufficient conditions that can be checked in polynomial time [1, 17, 21, 23].

The result of the translation specified by an attribute grammar is realized as the value of one or more (necessarily synthesized) attribute-instances of the root of the semantic tree. In order to compute these values the other attribute-instances must be computed. Figure 3 shows the semantic tree of the previous example with dependency arcs drawn in. If an attribute \(N_i\text{.att} \) of a node in the tree depends on the value of another attribute \(N_j\text{.att} \) in the tree, then there exists an arc from \(N_j\text{.att} \) to \(N_i\text{.att} \). These arcs create a partial ordering on the attribute instances in the tree. It is important to note that since this ordering is only partial, there is no unique order of evaluating the attribute instances in the tree.

Consider, for example, a production \[p: X_i ::= X_j X_k \] with semantic functions \(X_i \text{.}a = f(X_j \text{.}a) \) and \(X_k \text{.}a = f(X_k \text{.}a) \). A literal implementation of these functions would require 2 evaluations of \(f(X_j) \), one to evaluate \(X_j \text{.}a \) and one to evaluate \(X_k \text{.}a \). If these functions were to be rewritten into the equivalent form \(X_i \text{.}a = f(X_j \text{.}a) \) and \(X_k \text{.}a = X_i \text{.}a \) then \(f(X_j) \) would only have to be evaluated once but Bochmann Normal Form constraints would be violated.
Figure 3: The semantic tree of figure 2 with dependency arcs drawn in

An attribute grammar evaluator for a given attribute grammar G is an algorithm which takes as input a semantic tree constructed from any valid sentence in G and computes the distinguished attribute-instances of the root (this normally involves computing all attribute-instances of the tree and unless we say so explicitly, we shall make no further distinctions between the two). Since the evaluator must be capable of evaluating any semantic tree of the grammar G, embodied in its control structure must be some general mechanism describing how to evaluate semantic trees. An attribute grammar evaluation strategy describes how to build the control structure of an evaluator. It is a meta-algorithm for building an algorithm that will compute attribute-instances in an order such that no attribute-instance is computed before all dependent attribute-instances are available and such that all attribute-instances of the root are computed. An attribute grammar evaluation strategy may work correctly only on a subset of all well-defined attribute grammars, but it must work correctly

3 Attributes in a semantic tree which are not needed to compute the distinguished attribute-instances of the root are called useless attributes. Normally evaluators are built which compute all attribute-instances of the tree including useless ones. Some evaluators, however, are built to evaluate only needed attributes, claiming that this can save a substantial amount of computation in the semantic tree. See [19, 22, 36] for instance. In [14], Fife discusses how to convert an attribute grammar into an equivalent attribute grammar which has the property that none of its semantic trees contain useless attributes. In general this construction can take an exponential amount of time.
on any semantic tree of an acceptable attribute grammar. The focus of this paper is to
survey various strategies which have been developed for efficient evaluation of semantic
trees.

Attribute grammars are attractive specification tools. Two principal reasons for this are
their locality of reference and their non-procedural nature. We say that an attribute grammar
has locality of reference in that the values it defines (i.e. the attribute-instances) are
specified exclusively in terms of other attribute-instances local to a production. An attribute
grammar does not contain any global variables or implicit state information that can affect
the translation. Each local piece of an attribute grammar, i.e. each production,
communicates with the rest of the attribute grammar only through strictly defined
interfaces: the attributes of the symbols occurring in this production.

Like a context-free grammar, an attribute grammar is a description rather than an
algorithm. Just as a context-free grammar specifies phrase-structure independently of a
parsing algorithm, so does an attribute grammar specify semantics or translation without
presuming an evaluation order. Because semantic functions are pure functions, the definition
of an attribute-instance is determined by the attribute grammar and the semantic tree: not
by the algorithms of the evaluator or those of the semantic functions. Thus, an attribute
grammar is a locally described, non-procedural specification of values, rather than an
algorithm for computing those values.

The modular nature of attribute grammars also allows for dependency information between
attributes to be expressed in a modular form. The dependency graph D_p of a production p
contains one vertex for each attribute of p and has an edge from v to w iff v is an
argument of the semantic function defining w. Any production-instance of p in any semantic
tree will exhibit the dependencies between its attribute-instances as given in the graph D_p; if
N_0, N_1, \ldots, N_p are nodes of a tree corresponding to the symbols X_0, X_1, \ldots, X_p of
$[p: X_0 ::= X_1 \cdots X_p]$, then an edge $(X_j.att_1, X_k.att_2)$ in D_p means that the attribute-
instance $N_j.att_1$ must be evaluated before the attribute-instance $N_k.att_2$.

Just because there is no edge (v,w) in D_p does not mean, however, that w can be
evaluated before v; it may be that w is indirectly dependent upon v. Consider a subtree
rooted at a node N in a semantic tree. Information flows into N's subtree by way of the
inherited attributes of N and information flows out of N's subtree by way of the synthesized
attributes of N. Hence the dependency information of N's subtree as it relates to N can be
summarized by a graph G_N whose vertices are attributes of N and whose edges are between
inherited and synthesized attributes. An edge from the inherited attribute $N.att_1$ to the
synthesized attribute $N.att_s$ implies that $N.att_1$'s value must already be computed before
$N.att_s$'s value can be evaluated. Given a production $[p: X_0 ::= X_1 \cdots X_p]$ and the graphs
$G_{X_k}, k = 1 \ldots p$, summarizing the dependency information for any subtree rooted at X_k,
the augmented dependency graph $D_p[G_{X_1}, \ldots, G_{X_p}]$ augments the dependency information of
the D_p graph by adding dependency information concerning the subtrees rooted at the right-part
symbols of the production p. It is obtained from the D_p graph by adding an edge
(X_{k\cdot att_1}, X_{k\cdot att_2}) to D_p whenever such an edge exists in G_{X_k}. Assuming that in a given semantic tree we have nodes N_0, ..., N_{np} corresponding to the context-free symbols of the production [p: X_0 ::= X_1 \cdots X_{np}] and graphs G_{X_k} (1 \leq k \leq np) summarizing the dependency information of the subtrees rooted at N_k (1 \leq k \leq np) then a path from X_{i\cdot att_1} to X_{j\cdot att_2} in D_p[G_{X_1}, \ldots, G_{X_{np}}] means that N_{i\cdot att_1} must be evaluated before N_{j\cdot att_2}.

Figure 4 gives a production p (production2 of Figure 1), its D_p graph, G_k graphs for p's RHS symbols, and the associated augmented dependency graph. Note that the graph G_{digit} contains an edge (place,val) since in some subtrees rooted at an instance of digits the attribute-instance digit.val will depend upon the attribute-instance digit.place (see production p_5 of figure 1).

p: digits0 ::= digital digit.
 digits0.val = digital.val + digit.val;
 digit.place = digits0.place;
 digit1.place = digits0.place + 1;

A production p

The dependency graph D_p for p

The augmented dependency graph D_p[G_{digits}, G_{digit}]

Figure 4: Dependency and augmented dependency graphs

Dependency and augmented dependency graphs are useful in determining the order in which attributes of a production must be evaluated. For example, the augmented dependency graph given in the above figure indicates a partial evaluation order of \langle digits0.place, digit.place, digit.val, digits0.val \rangle and of \langle digits0.place, digits1.place, digits1.val, digits0.val \rangle. In sections 5 and 8 we shall make use of a slightly extended version of augmented dependency graphs of the form D_p[G_{X_0}, G_{X_1}, \ldots, G_{X_{np}}] where the composite graph in this case is the same as before only now edges in G_{X_0} are included as well. In this case an edge from G_{X_i:a} to G_{X_i:b} (0 \leq i \leq np) indicates that according to a given strategy, X_i:a must be evaluated before X_i:b.
We close this section by presenting an attribute grammar which translates simple English descriptions of mathematical expressions into post-fix Polish notation. Although for the sake of brevity we have greatly simplified the attribute grammar, we hope that it nonetheless illustrates the power and simplicity of the attribute grammar formalism in translating strings from one language into strings of another language. The grammar distinguishes between expressions involving only integer values (in which case operators of the form $+_i$ and $*_i$ are required) and those involving a decimal point value (in which case operators of the form $+_r$ and $*_r$ are required). Figures 5 and 6 give the attribute grammar and a typical semantic tree for the grammar which translates the string 'Multiply 80 by 5.8' into the mathematical post-fix expression $(80,5.8,_{r} \cdot)$.

The attribute-instances of the tree have been filled in to reflect the values they will acquire upon computation.

\begin{verbatim}
Figure 5: An attribute grammar for translating mathematical expressions into post-fix Polish notation
\end{verbatim}
Figure 8: A semantic tree for the grammar of figure 5
2. Tree-walk Evaluators and Optimal Visit Sequences

An obvious way to evaluate the attributes in a semantic tree T would be to build an acyclic graph $G=(V,E)$ where $V =$ attribute-instances of T and $[v,w] \in E$ iff w is dependent upon v in T. We could then do a topological sort on the vertices of G and evaluate the attributes according to their topological order. This strategy has the pleasant property that a single evaluator would be able to evaluate any semantic tree for any well-defined attribute grammar. This strategy has actually been implemented, along with several optimizations, in the Delta system [26]. Unfortunately, the large number of attributes and dependencies in a semantic tree makes this approach expensive and unwieldy to use [26]. Furthermore, it also has the drawback of doing most of the semantic analysis during runtime, precluding many time and space optimizations [13]. Various other strategies relying upon run-time semantic analysis have also been considered [8, 19, 34]. Due to the reasons cited above, however, most evaluators that have been devised are tree-walk evaluators. A tree-walk evaluator has a single locus of control that moves around an explicit semantic tree. The locus of control is always at some production instance in the tree. We will often say that the locus of control is at a node N when we really mean that it is at the LP production associated with N. So, for example, if the locus of control is at a production-instance of $[p: X_0 ::= X_1 \cdots X_n]$ in some semantic tree, we will say that it is at N, where N is the node labeled by this occurrence of X_0. The evaluator executes a sequence of $\texttt{EVAL}_{\text{att}}$ and \texttt{VISIT}_k instructions. An $\texttt{EVAL}_{\text{att}}$ instruction says to evaluate the attribute att of the production that applies at the current node by invoking its associated semantic function f_{att}. Arguments supplied to this function are the (previously computed) values of appropriate applied attribute-instances of the current node and its children. A \texttt{VISIT}_k instruction causes the evaluator's locus of control to move from the current node to either its parent or one of its children; \texttt{VISIT}_0 moves it to the parent, if $k > 0$ then \texttt{VISIT}_k moves the locus of control to the kth child. Hence the locus of control always moves between adjacent productions in the semantic tree. The locus of control is never moved to a leaf as terminal grammar symbols have no attributes; a \texttt{VISIT}_0 executed at the root indicates the end of attribute evaluation.

It is helpful to view a tree-walk evaluator as 'roaming' over the semantic tree. Upon reaching a node, it decides to evaluate some attributes, visit some children, return to the node, evaluate some more attributes, etc., and then leave the node. How it decides which attributes to evaluate and which children to visit depends upon the control structure, which embodies some attribute grammar evaluation strategy.

What computational costs are associated with evaluating a semantic tree using a tree-walk strategy? Certainly an evaluator will incur the cost of evaluating each attribute in the semantic tree, corresponding to the execution of the $\texttt{EVAL}_{\text{att}}$ instructions. This cost cannot be increased or decreased depending upon the evaluation method; it is constant regardless of the evaluation strategy chosen. The second cost incurred by a tree-walk evaluator is the cost of transferring the locus of control from one production-instance in the tree to another adjacent production-instance in the tree, corresponding to the execution of the \texttt{VISIT}_k
instructions. This cost is dynamic and can vary widely in different evaluators. It might be useful for the reader at this point to glance back at figure 2 and notice that starting at the root, there are many ways one can traverse the tree, evaluating attributes and visiting adjacent productions (see figure 7). A third cost incurred during the evaluation of a semantic tree is intimately connected with the control structure of the evaluator. Upon visiting a node a tree-walk evaluator decides upon some sequence of VISIT_k and EVAL_att instructions to perform. If this decision involves a lot of computation it can also make the evaluator very inefficient.

For the static evaluators we shall study (to be introduced in the next section) deciding what instruction sequence to execute has little overhead (it involves the execution of a case statement for each VISIT_k instruction executed) and its cost can be tacked onto the cost of executing the VISIT_k instruction. Therefore an important criterion by which to judge a tree-walk evaluator is by how many VISIT_k instructions it uses to evaluate a semantic tree. An optimal tree-walk evaluator for a semantic tree T is, by definition, one which uses the minimum number of VISIT_k instructions possible to evaluate every attribute instance in the tree.

If we examine the behavior of a tree-walk evaluator E when evaluating a given semantic tree T, we can write down the sequence of EVAL_att and VISIT_k instructions it executes. Upon looking at this computation sequence [28] we can retrace the evaluator's traversal of the tree and note exactly when it evaluated each attribute-instance. If we remove all of the EVAL_att instructions from this sequence, the remaining VISIT_k instructions are called a visit sequence of E for T. An optimal tree-walk evaluator for a semantic tree will give rise to the shortest visit sequence possible. The problem of determining whether or not there exists a visit sequence of length ≤ N evaluating all the attributes in a semantic tree is shown in the appendix to be NP-complete in the number of attributes in the tree. This means that building an optimal evaluator for a single semantic tree, let alone one which will be optimal for every semantic tree of the attribute grammar, is an intractable problem.

Whenever a tree-walk evaluator visits the child of a node it must eventually return to the parent, as the evaluator ends its evaluation with the locus of control at the root. We adopt the convention of referring to a VISIT_0 instruction as a RETURN instruction. Note that for every VISIT_k instruction (k > 0) in a computation sequence there will exist exactly one RETURN instruction. Figure 7 shows two different computation sequences an evaluator might employ to evaluate the semantic tree of figure 2. The notation VISIT_k {Ni} is used to indicate that the visit to the kth child moves the locus of control of the evaluator to the node Ni of the tree.
Asymptotically the optimal evaluator, topological sort, and tree-walk evaluators all perform work proportional to the number of attributes in the tree. For real systems constant factors become important and in this survey of tree-walk evaluators one criterion that shall be considered is how close a given evaluator is to the optimal one. It is not that we actually wish to build optimal evaluators— as mentioned above that is too hard and unnecessary. But it is important for the evaluator not to spend too much time on simply visiting nodes, lest most of its time is spent executing VISIT k instructions instead of actually evaluating the attribute instances of the tree4. Some tree-walk evaluators we shall look at, for example, in the worst case must visit each production-instance in the entire tree to evaluate a single attribute. When this occurs the cost of visiting nodes in the tree drastically increases, dominating the cost of evaluating a semantic tree. Minimizing the number of VISIT k instructions an evaluator uses has been a major motivation behind the development of the tree-walk evaluators described in this paper.

4This is especially true if the entire semantic tree cannot fit into the working memory of the machine. In such a case additional visits often mean additional IO operations (as that part of the tree may not be in working memory but must be fetched from secondary memory) and can be quite costly. Hence minimizing the number of visits becomes very important.
3. Static Tree-Walk Evaluators

The remainder of this paper will deal with static tree-walk evaluators. This class includes most tree-walk evaluators which have been proposed in the literature and almost all which have been implemented to date. This is due to the fact that most static evaluators recognize a large class of attribute grammars, are not overly complex to construct, and are fairly efficient in their evaluation of semantic trees. The difference between the various static evaluators themselves lie in how they choose to balance the tradeoffs in efficiency versus complexity; the simplest evaluators to build are not as efficient as those requiring a more complicated construction and cannot be built for as many attribute grammars as their more complex counterparts.

Static tree-walk evaluators are static in the sense that they do not dynamically generate a sequence of EVAL_att and VISIT_k instructions to execute upon visiting a node but they always execute a precomputed sequence of instructions. That is, upon arriving at a node they do not examine the attribute dependencies and then decide which attributes to evaluate and which children to visit but they merely retrieve and execute some sequence of instructions which has been precomputed to obey the appropriate attribute dependencies. These evaluators are not allowed to use global information concerning the nature of the semantic tree (such as dependency relations found in a particular subtree of a node) in deciding which sequence of instructions to execute but only local information concerning which production applies at the locus of control (the current production-instance) and which productions apply at adjacent production-instances in the semantic tree. Some strategies which violate these constraints have been proposed in order to extend the power of the evaluator but they will not be discussed in any detail in this paper.

Formally, a static tree-walk evaluator consists of a set of mutually recursive procedures where each procedure is associated with a production \([p: X_0 ::= X_1 \cdots X_n]\) and consists of a sequence of EVAL_att and CASEVISIT_k instructions. The execution of a EVAL_att instruction will cause the appropriate attribute of the production to be evaluated. The execution of a CASEVISIT_k instruction \((k = 1 \ldots n_p)\) will cause a visit to \(X_k\), the \(k\)th child of the production and also determines which procedure will begin execution upon arrival at that node. A CASEVISIT_k instruction has the form:

\[
\text{Case LP} \quad \text{production of } X_k = \begin{cases} p_1: \text{VISIT}_k \text{ and call proc}_1; \\ p_2: \text{VISIT}_k \text{ and call proc}_2; \\ \vdots \\ p_m: \text{VISIT}_k \text{ and call proc}_m; \end{cases}
\]

Note that the code executed upon arriving at \(X_k\) is determined solely by which production applies there. If \(X_k\) is the LHS of \(m\) unique productions then there will be \(m\) conditional parts to the case expression. Each proc\(_j\) procedure of the CASEVISIT_k statement is itself one of the recursive routines of the evaluator and hence will consist of a sequence of EVAL_att and CASEVISIT_k instructions. After the last instruction of the procedure is executed a RETURN instruction is automatically performed, the locus of control returns to the adjacent production and the execution of instructions in the calling procedure resumes.
For example, if a procedure contains the subsequence \(<\text{EVAL}_{\text{att1}}, \text{CASEVISIT}_i, \text{EVAL}_{\text{att2}}\>\), after att1 is evaluated the CASEVISIT$_i$ instruction is executed causing a visit to X_i and the execution of a sequence of instructions in some procedure proc$_j$. After execution of the last instruction in proc$_j$ the locus of control returns to X_i's RP production and the EVAL$_{\text{att2}}$ instruction is executed. Evaluation of the semantic tree begins by initially invoking a special procedure to visit the root of the semantic tree and evaluation finishes when control returns from this procedure.

Any correct evaluator for an attribute grammar G which can be built in the above form is said to be a static tree-walk evaluator for G. By a correct evaluator we mean that for any valid semantic tree of G the evaluator must finish evaluation with the special attributes of the root computed and without having computed any attribute of the semantic tree twice.

Although we have defined a static tree-walk evaluator in terms of recursive procedures, we could just as well have defined it in terms of coroutines, stack automata, or finite automata. Our choice in couching the definition in terms of a specific implementation is based upon our desire to present concrete examples of evaluators and a complete description of the construction process. In [21], Kastens shows how his evaluator could be implemented by any of the above methods. Similar implementations could be built for any static tree-walk evaluator as well.

In the next 3 sections, as we survey static tree-walk evaluators, we shall attempt to find the unifying concepts behind them and a general criteria by which to judge them. One criterion we shall use is how close a given strategy comes to an optimal one in the sense mentioned in section 2. But this shall not be our only consideration; we shall also ask the following questions about a strategy: Can it be used to build an evaluator for any well-defined attribute grammar? If not, for what class of attribute grammars will such a strategy work? How hard is it to build such an evaluator? (Not surprisingly, the more efficient the evaluator is, the harder it will be to construct it). How large is the evaluator? And finally, how do we automate the building of an attribute grammar evaluator using this strategy; that is, given an attribute grammar, how do we automatically generate an evaluator which will evaluate any semantic tree of the grammar based on the given strategy?

The first type of static evaluators we shall discuss are the pass-oriented evaluators. These are obtained by restricting the nature of the instruction sequences allowed in the recursive procedures of the evaluator. These restrictions insure that the evaluator will always evaluate semantic trees by making left-to-right (LR) or right-to-left (RL) depth-first passes over the tree. The next type of static tree-walk evaluators we shall look at are the uniform evaluators. These evaluators assign a unique order to the attributes of a context-free symbol called a protocol such that for any instance of the symbol in a semantic tree the attribute-instances are evaluated in the given order. As we shall see, however, for many attribute grammars it is not possible to find a unique protocol for every context-free symbol and still evaluate every semantic tree. This will lead us to the multi-protocol evaluator which assigns a set of protocols to each context-free symbol. The order of computing attributes in this
The evaluator must be consistent with some protocol of each context-free symbol but not with every one.

The order in which we present these evaluators corresponds to their increasing complexity and size. Pass-oriented evaluators are easy to construct but can be far from optimal in their evaluation of semantic trees. Furthermore, they can be built for only a small subset of all attribute grammars. Uniform evaluators can be constructed for a larger class of attribute grammars and are much more efficient in their evaluation of semantic trees. Multi-protocol evaluators can be built for an even larger subset of attribute grammars yet are still as close to optimal as uniform evaluators. The size of the resulting evaluator, however, can be significantly larger than other static tree-walk evaluators.
4. Pass-oriented Evaluators

In a pass-oriented evaluator, every attribute X,a of the grammar is assigned a pass number, PN(X,a). Let K_{max} be the highest numbered pass number assigned to any attribute. The visit sequence resulting from the evaluation of any semantic tree will consist of VISIT_k instructions defining K_{max} consecutive left-to-right or right-to-left depth-first passes over the tree. On the i^{th} pass over the tree, before visiting any node labeled X, all the inherited attributes of X with a pass number = i are evaluated. Before returning from X (i.e., before transferring the locus-of-control from the X's left-part production to X's right-part production) all the synthesized attributes of X with a pass number = i are evaluated. After the K_{max}^{th} pass over the semantic tree all the attributes of the tree have been computed and evaluation is complete. It is important to note that if an attribute X,a has pass number = i then every occurrence of X,a in every semantic tree will be evaluated on the i^{th} pass.

The start procedure of a pass-oriented evaluator is given below. It consists of K_{max} visits to the root node labeled S.

```
proc S
begin
  CASEVISIT_1; ... CASEVISIT_{K_{max}}
end;
```

In addition to this procedure there exists K_{max} procedures for every production of the grammar, one for each pass over the tree. They shall be referred to as proc_{p(1)}; proc_{p(2)}; ... proc_{p(K_{max})} where proc_{p(i)} is the procedure associated with the i^{th} visit to the production p occurring during the i^{th} pass over the tree. The figure below gives the form of a typical procedure proc_{p(i)} where the i^{th} pass over the tree is left-to-right and where p is of the form [p: X_0 ::= X_1 ... X_np].

```
proc_{p(i)}
begin
  EVAL_{att} instructions for each inherited attribute of X_1 with pass number = i;
  CASEVISIT_1;
  EVAL_{att} instructions for each inherited attribute of X_2 with pass number = i;
  CASEVISIT_2;
  ...
  EVAL_{att} instructions for each inherited attribute of X_np with pass number = i;
  CASEVISIT_{np};
  EVAL_{att} instructions for each synthesized attribute of X_0 with pass number = i;
end;
```

Each CASEVISIT_k instruction is of the form:

```
Case LP production of X_k = p_k: VISIT_k and call proc_{p_k(i)};
```

```
p_1: VISIT_k and call proc_{p_1(i)};
```

```
p_2: VISIT_k and call proc_{p_2(i)};
```

```
p_n: VISIT_k and call proc_{p_n(i)};
```
A pass-oriented evaluator may make LR passes over a tree, RL passes, or a mixture of LR and RL passes. Such an evaluator is called a LR-pass, RL-pass, and alternating-pass evaluator respectively. If the i^{th} pass over the tree is to be RL instead of LR then the procedure $\text{proc}_p(i)$ differs from the one given above in that the order of evaluating attributes and visiting nodes is reversed. First X_n's inherited attributes are evaluated and X_n is visited, then X_{n-1}'s inherited attributes are evaluated and X_{n-1} is visited and so on until X_1 is visited. Once again the synthesized attributes of X_0 are evaluated last.

Figure 8 gives a small attribute grammar and a pass assignment PN. Figure 9 presents the pass-oriented evaluator constructed for this attribute grammar using the pass assignment PN. The evaluator will make 2 passes over any semantic tree, the first being a LR pass and the second a RL pass. Due to space considerations, the procedures $\text{proc}_p2(1)$, $\text{proc}_p2(2)$, $\text{proc}_p4(1)$, and $\text{proc}_p4(2)$ are omitted.

Figure 8: An attribute grammar and pass assignment PN

Pass-oriented evaluators were first presented by Bochmann as making only left-to-right passes over a semantic tree [1]. It soon became apparent that the method could be enhanced by allowing right-to-left passes over the tree, as information often flows in that direction in semantic trees [17, 32]. If we look at the attribute grammar of figure 8, for instance, we see that by only allowing LR passes we cannot bound the number of passes that will be needed to evaluate a semantic tree: the deeper the tree becomes, more passes will be required. In particular, we cannot assign a pass number N to B.inhatt such that every instance of B.inhatt in every semantic tree could be evaluated on the N^{th} pass. Since no evaluator making only LR passes could be constructed for this attribute grammar, it is not in the class of LR-pass attribute grammars. It is, however, in the class of alternating pass attribute grammars as the evaluator given in figure 9 bears witness.
Let \(D = \langle D_1, ..., D_{K_{\text{max}}} \rangle \) be a sequence of directions where each \(D_i \) is either LR or RL indicating that the \(i^{\text{th}} \) pass is either LR or RL and there are to be \(k_{\text{max}} \) passes. If PN is
an assignment of pass numbers to the attributes of the grammar such that i) for every attribute $X.a$, $1 \leq PN(X.a) \leq k_{\text{max}}$ and ii) for any instance of $X.a$ in any semantic tree of the grammar, $X.a$ can be evaluated on the $PN(X.a)^{th}$ pass, then PN is said to be valid for D.

Given a sequence D and a valid assignment PN for D, it is easy to create an evaluator for the grammar. First construct the procedure proc_P. Then, for each production p and for each i, $1 \leq i \leq k_{\text{max}}$, add a procedure $\text{proc}_p(i)$ which visits each child and evaluates the attributes of the production with pass number $= i$, as was done for the grammar of Figure 8.

The main challenge in building the evaluator becomes one of finding such a sequence D and valid assignment PN. This is done incrementally: First a pass direction D_1 and a set of attributes S_1 are found such that for every attribute in S_1, any instance of that attribute in any semantic tree can be evaluated on the first pass in direction D_1. Each attribute $X.a \in S_1$ is assigned a pass number $PN(X.a) = 1$. Assuming that all attribute-instances of the attributes in $S_1 \cup S_3...\cup S_{i-1}$ in any semantic tree can be evaluated before the i^{th} pass, the i^{th} step consists of finding a pass direction D_i and a set of attributes S_i such that all attribute-instances of attributes in S_i in any semantic tree can be evaluated on the i^{th} pass in direction D_i. Each attribute $X.a \in S_i$ is assigned a pass number $PN(X.a) = i$. The algorithm terminates upon one of two conditions:

i) All the attributes of the grammar have been given a pass number. In this case a sequence $<D_1,...,D_{K_{\text{max}}}>$ and a valid assignment PN to the attributes have been found upon which to build the pass-oriented evaluator.

ii) There exists attributes which have not yet been assigned pass numbers yet no pass direction D_i can be found which will produce a non-empty set S_i of attributes to evaluate on the i^{th} pass. This means that there exists at least one attribute $X.a$ which cannot be assigned a pass number; depending upon where the attribute instance occurs in the tree it must be evaluated on different passes over the tree. If this condition holds then the attribute grammar is not in the class of alternating pass-oriented attribute grammars. Figure 10 below gives a simple attribute grammar which derives only one tree but is not in the class of alternating pass-oriented attribute grammars. This is because in the tree which this grammar derives, some instances of list.inhatt (namely list$_1$.inhatt and list$_3$.inhatt) need to be evaluated on the pass before other instances of this attribute (namely list$_4$.inhatt)5.

Using the incremental approach described above, depending upon which direction is chosen for D_1 (either LR or RL) the set S_1 may differ. Let $S_i|_{LR}$ be the set chosen if $D_i = LR$

5Note, that if we were to introduce a new context-free symbol Y, change the production p_0 to $p_0': S ::= \text{list}_1.Y \\text{list}_2$ and add a production p_2: $Y ::= \text{term}$ making the appropriate changes to the semantic functions, the attribute grammar would be evaluable in 2 RL or 2 LR passes; Evaluate Y.inhatt, Y.synatt, and S.translation on the second pass and all other attributes on the first pass. This illustrates the fact that often an AG can be massaged to make it evaluable by a given strategy. In [9], Farrow explores this issue for certain classes of attribute grammars.
Figure 10: *An attribute grammar not evaluable by an alternating pass strategy*

![Diagram](image)

Figure 11: *The unique semantic tree that the attribute grammar of figure 10 derives*

This algorithm calls for the computation of the sets $S_{i \text{LR}}$ and $S_{i \text{RL}}$ given the sets S_1, \ldots, S_{i-1}. To see how these sets can be computed note that an attribute $X.a$ can be evaluated during pass i iff it will be the case that for any occurrence of $X.a$ in any semantic tree dependent upon an occurrence of $Y.a$, either $Y.a$ was defined on a previous pass (i.e., $PN(Y.a) < i$) or $Y.a$ is defined on the same pass but before the time to evaluate $X.a$. Using the Dp graphs introduced at the end of section 1, this condition can be made more precise as follows:

Let $X.a$ be an inherited attribute of the grammar. Then $X.a$ is evaluable on the i^{th} pass iff for each production $[p: X_0 ::= X_1 \cdots X_{np}]$ with $X = X_j$, $j > 0$, if \exists an edge $(X_k.a, X_j.a)$ in Dp then either

1) $PN(X_k.a) < i$

2) $k = 0$ and $PN(X_k.a) = i$

3) $D_i = \text{LR}$, $PN(X_k.a) = i$, and $1 \leq k < j$

4) $D_i = \text{RL}$, $PN(X_k.a) = i$, and $j < k \leq n_p$.
begin

NOT_YET_ASSIGNED := all the attributes of the grammar;
i := 1;
Compute S_{ILR} and S_{INL};
While ($S_{ILR} \neq \emptyset$) and ($S_{INL} \neq \emptyset$) do

begin

if $S_{INL} \subseteq S_{ILR}$ then $D_1 := LR$ and $S_1 := S_{ILR}$
else if $S_{ILR} \subseteq S_{INL}$ then $D_1 := RL$ and $S_1 := S_{INL}$
else if $i = 1$ then $D_1 := LR$ and $S_1 := S_{ILR}$
else if $D_{i-1} = RL$ then $D_1 := LR$ and $S_1 := S_{ILR}$
else $D_1 := RL$ and $S_1 := S_{INL}$
endif;
For each attribute $X.a \in S_1$ do $PN(X.a) := 1$;
NOT_YET_ASSIGNED := NOT_YET_ASSIGNED - S_1;
$X_{max} := 1$;
i := i + 1;
Compute S_{ILR} and S_{INL};
end;
If NOT_YET_ASSIGNED # \emptyset then return("a pass-oriented evaluator cannot be built for the grammar")
else return(D = 0, ..., D_{max}, PN);
/* D is the sequence of definitions for the evaluator and PN defines a valid assignment for D */
end;

Figure 12: An algorithm for assigning pass numbers to attributes

If these conditions are not met then there exists some semantic tree with an occurrence of $X.a$ dependent upon an occurrence of $X_k.att$ where $X_k.att$ will defined on the i^{th} pass or later and where the order of evaluation is such that $X.a$ must be defined on a pass after $X_k.att$ is evaluated. An example of such a case is given below in figure 13. In that example, if $D_i = LR$ and $PN(X_k.att) = i$ then $PN(X_j.a) > i$ as the pass-oriented evaluator strategy calls for evaluating attributes of X_j before those of X_k during an LR pass.

Figure 13: Two attributes not evaluable on the same pass

For a synthesized attribute an even simpler condition can be formulated: Let $X.a$ be a synthesized attribute of the grammar. Then $X.a$ is evaluable on the i^{th} pass iff for each production $[p: X_0 ::= X_1 ... X_{np}]$ with $X = X_0$ if \exists an edge $(X_k.att, X_0.a)$ in D_p then $PN(X_k.att) \leq i$. This simple condition is due to the fact that the synthesized attributes of X_0 are the last to be evaluated in the procedures of the pass-oriented evaluator.
Using these conditions the algorithm of figure 12 computes the sets $S_{i\text{LR}}$ and $S_{i\text{RL}}$ given the sets $S_1,...,S_{i-1}$ of attributes already assigned pass numbers. Initially all the attributes in NOT_YET_ASSIGNED are candidates to be evaluated on the i^{th} pass. These attributes are examined and dismissed as candidates if they are found to violate the above conditions. As the the removal of one attribute may cause another attribute to violate the above conditions this step must be performed iteratively (taking the transitive closure) until stable sets $S_{i\text{LR}}$ and $S_{i\text{RL}}$ are found.

An evaluator strategy closely related to the pass-oriented strategy is one which makes sweeps over a semantic tree instead of passes. A sweep over a tree visits each node of the tree once in a depth-first manner, but not necessarily in a strictly left-to-right or right-to-left pattern. It may first visit the entire subtree rooted at X_k, then the subtree rooted at X_{k-1}, and finally the subtree rooted at X_{k+1}. The reader is referred to [7] for a comparison of this strategy to a pass-oriented one.

Because pass-oriented evaluators visit every node in the tree during each pass they can be extremely inefficient. If we look back at the example of figure 9, for example, we see that during the first pass over any semantic tree of the attribute grammar no attributes of nodes labeled B are evaluated. Similarly during the second pass no attributes of nodes labeled A are evaluated. As there can be an arbitrary number of these nodes in a semantic tree, the evaluator can consume much time performing VISIT$_k$ instructions which are not at all needed. This inefficient evaluation behavior was a prime motivation for the development of the evaluators to be discussed in the next two sections. In contrast to pass-oriented evaluators, these evaluators will only visit a node if doing so will cause it to evaluate at least one attribute of that node. This will not necessarily result in an optimal evaluator but does guarantee a much more efficient one.
5. Uniform Evaluators

Uniform evaluators [38], like pass-oriented evaluators, assign a number to every attribute of the grammar. As a uniform evaluator is not restricted like the pass-oriented evaluator in making passes over the tree, this number no longer corresponds to a pass number but to a visit number. That is, if an inherited attribute X.a has a visit number = i, then immediately before the ith visit to the left-part production of an instance of X, X.a must be evaluated. Similarly, if a synthesized attribute X.b has a visit number = i, then before returning from the ith visit to the left-part production of an instance of X, X.b must be evaluated. Bearing this in mind, we define the concept of a protocol for a context-free symbol X.

Let X be a nonterminal symbol of an attribute grammar. Then a protocol \(\pi_X = \pi(1), \ldots, \pi(2i-1), \pi(2i), \ldots, \pi(2n_X) \) for X is a sequence of sets of attributes of X such that

1. There exists an even number of elements in the sequence.
2. Even elements of the sequence consist entirely of synthesized attributes, odd elements consist entirely of inherited attributes.
3. \(\pi(X) = \pi(1) \cup \ldots \cup \pi(2n_X) \)
4. Every set \(\pi(i), i > 1, \) is non-empty.

A protocol for X is basically just an assignment of visit numbers to the attributes of X. Let \(\pi_X = \pi(1), \ldots, \pi(2i-1), \pi(2i), \ldots, \pi(2n_X) \) be a protocol. The uniform evaluator will visit any instance of X in any semantic tree \(n_X \) times. Before the ith visit it will evaluate the inherited attributes of \(\pi(2i-1) \) [henceforth referred to as \(\pi_X(2i-1) \)]. Before returning from the ith visit it will evaluate the synthesized attributes of \(\pi_X(2i) \). \(n_X \) is called the length of the protocol \(\pi_X \). For every production \([p: X_0 ::= X_1 \ldots X_n X_p]\) with \(X = X_0 \), the evaluator will have \(n_X \) routines, one for each of the \(n_X \) visits to X. The procedure associated with the ith visit to a production p will be called \(proc_p(i) \). It must evaluate the synthesized attributes in \(\pi_X(2i) \). What other instructions are in the procedure depends upon the dependencies of p and the protocols for X, \ldots, X\(_n\). This is best illustrated by an example. Let \([p: X_0 ::= X_1 X_2]\) be a production with dependencies as given in the graph Dp of figure 14 and let \(\pi_X, \pi_{X_1}, \pi_{X_2} \) be protocols for X, X\(_1\), and X\(_2\) respectively.

![Figure 14: A Dp graph and protocols for X\(_0\), X\(_1\), and X\(_2\)](image)

The protocol for \(X_0 \) calls for the procedure \(proc_p(1) \) to evaluate \(X_0.b \). (\(X_0.a \), being an inherited attribute of the LHS node, would be evaluated before visiting \(X_0 \) and activating...
this procedure). As this attribute is dependent upon \(X_2.j \), the procedure must visit \(X_2 \) evaluating the attributes in \(\pi_{X_2}(2) = \{ X_2.j \} \). But the protocol for \(X_2 \) requires that \(X_2.i \) be evaluated before visiting \(X_2 \) for the first time so this attribute must also be evaluated in \(\text{proc}_{p(1)} \). This in turn requires that \(X_1 \) be visited, \(X_1.b \) be evaluated, and so forth. In this way production dependencies and protocols for the context-free symbols of the production interact to determine the procedures of the evaluator. In this example we can determine that on the first visit to \(p \) the attributes \(\{ X_1.e, X_1.g, X_2.i, X_0.b \} \) must be evaluated and on the second visit \(\{ X_2.k, X_0.d \} \) must be evaluated. In addition some of the RHS nodes must be visited in between evaluating these attributes according to protocol specifications. These considerations completely determine the form of the procedures \(\text{proc}_{p(1)} \) and \(\text{proc}_{p(2)} \) corresponding to the 1st and 2nd visits to \(p \), to be:

\[
\text{proc}_{p(1)} \begin{array}{l}
\text{Begin} \\
\text{EVAL}_{X_1.e} \\
\text{CASEVISIT}_1 \\
\text{EVAL}_{X_1.g} \\
\text{CASEVISIT}_2 \\
\text{EVAL}_{X_2.i} \\
\text{CASEVISIT}_2 \\
\text{EVAL}_{X_0.b} \\
\text{End}
\end{array}
\]

\[
\text{proc}_{p(2)} \begin{array}{l}
\text{Begin} \\
\text{EVAL}_{X_2.k} \\
\text{CASEVISIT}_2 \\
\text{EVAL}_{X_0.d} \\
\text{End}
\end{array}
\]

In \(\text{proc}_{p(1)} \) we are guaranteed that after the execution of the \text{CASEVISIT}_1 instruction control will transfer to some procedure \(\text{proc}'_{(1)} \) where \(p': Y_0 := Y_1 \ldots Y_m \) with \(Y_0 = X_1 \) and in that procedure \(X_1.f \) will be evaluated. This is because in constructing the procedure \(\text{proc}'_{p(1)} \) we make use of the same protocol \(\pi_{X_1} \) as we did in constructing the procedure \(\text{proc}_{p(1)} \) and this protocol demands that \(X_1.f (= Y_0.f) \) be evaluated on the 1st visit to its left-part production; the protocols guarantee that the procedures will fit together.

The procedures of a uniform evaluator allow a single procedure to visit a node any number of times and in any order. Furthermore, a node will only be visited if such a visit will cause an attribute of the node to be evaluated. Contrast this to the procedures of a pass-oriented evaluator where a node is visited exactly once per procedure whether or not such a visit will cause an additional attribute evaluation.

It is crucial to note that not any protocols for the nonterminals will allow us to create a uniform evaluator. To see why this is true, consider the previous example again, only substitute \(\pi'_{X_0} = \{ c \}, \{ d \}, \{ a \}, \{ b \} \) in place of \(\pi_{X_0} \) as the protocol for \(X_0 \). On the first visit to \(p \), this protocol requires that \(X_0.d \) be evaluated. Because of the dependencies in \(p \) and the semantics of the protocols, \(X_0.l \) and hence all of \(X_0 \)'s attributes must also be evaluated during this visit. As some of them are dependent upon \(X_0.a \), this in turn means that \(X_0.a \) must be evaluated before visiting this production and in particular, before evaluating \(X_0.d \). But this violates the protocol \(\pi'_{X_0} \) which calls for the evaluation of \(X_0.d \)
before X_0. Hence from the protocols π_{X_0}, π_{X_1}, and π_{X_2} it is not possible to create a uniform evaluator. A set of protocols (one for each nonterminal of the grammar) is said to be consistent iff a uniform evaluator can be built from them. Similarly a protocol for a symbol X is said to be consistent if there exists some uniform evaluator using that protocol for X.

Assuming that a consistent set of protocols for an attribute grammar has been found, it is an easy task to create the uniform evaluator for it. The evaluator will consist of the start procedure proc_S and n_X procedures for each production $[p: X_0 ::= X_1 \ldots X_n]$ where n_X is the length of the protocol for X_0. The procedure proc_S will contain just one CASEVISIT_k instruction. Each procedure $\text{proc}_{p(i)}$; $1 \leq i \leq n_X$ evaluates the synthesized attributes of X_0 in $\pi_{X_0}(2i)$ as well as other inherited attributes of the right-part symbols. Which inherited attributes of the right-part symbols are evaluated and which CASEVISIT_k instructions are performed is determined by the dependencies of p and the other protocols of the production, as illustrated in the example above. Actually, the construction is slightly more complicated than that example would indicate. This is because the dependencies of p and the protocols for the symbols of p will often only indicate a partial order of evaluation of the attributes of p and to unambiguously construct the procedures of p a total order on the attributes is required. This complication is easily resolved by choosing any total order for the attributes of p compatible with the partial order. This can best be illustrated by the following example:

Here the dependencies of p and the protocols π_{X_0}, π_{X_1}, and π_{X_2} describe only a partial order on the attributes of p. $<X_0.a, X_1.e, X_1.f, X_0.b, X_0.c, X_1.g, X_1.h, X_2.i, X_2.j, X_0.d>$ and $<X_0.a, X_1.e, X_1.f, X_2.i, X_2.j, X_0.b, X_0.c, X_1.g, X_1.h, X_0.d>$, for example, are both total orders compatible with the partial order. On the first visit to this production either total order calls for the procedure to evaluate $X_1.e$, visit X_1, and evaluate $X_0.b$. On the second visit both must evaluate $X_1.g$, visit X_1, and evaluate $X_0.d$. On one of these visits $X_2.i$ must be evaluated and X_2 visited. This must be done before evaluating $X_0.d$ but exactly when (in either the first or second visit) makes no difference and does not significantly effect the evaluator. Hence this ambiguity can be resolved arbitrarily by choosing some total order compatible with the partial order and appropriately dividing it up into visit sequences.

How are a consistent set of protocols for the nonterminals of the grammar found? Unfortunately, Engelfreit and Filé show in [6] that finding these protocols, if they exist at all, is an NP-complete problem. That is, it is an NP-complete problem to determine if an
attribute grammar is in the class of uniform attribute grammars and if it is, it is just as hard to determine a consistent set of protocols for the grammar. Still, for some subsets of this class a consistent set of protocols can be found in polynomial time. The rest of this section will examine how this is done but first a more precise method of determining the consistency of protocols needs to be formulated.

For any protocol πX, one can form the protocol graph δX = (V, E) where V = A(X) and there exists a path from X.a to X.b iff X.a ∈ πX(m) and X.b ∈ πX(m+k) for some k > 0. A protocol graph is always acyclic since if there exists a path in δX from X.a to X.b then the protocol πX specifies that X.a is to be evaluated before X.b. Given a protocol graph δX it is always possible to reconstruct the protocol πX from which it was derived. Note that in δX, for every inherited attribute I and synthesized attribute S either I ⊑ S or S ⊑ I. Moreover, these edges alone are sufficient to reconstruct the protocol associated with this protocol graph. Using protocol graphs it is possible to formalize when a set of protocols are consistent for a given attribute grammar; the following theorem is proved in [6].

Theorem 1: A set of protocols for an attribute grammar G is consistent iff for each production [p: X0 ::= X1 ... Xnp] in G, Dp[δX0, ..., δXnp] is acyclic, where δXi is the protocol graph for X_i's protocol.

Intuitively this is so is because an edge (Xj.a, Xk.b) in a graph Dp[δX0, ..., δXnp] means that for any instance of p in any semantic tree, the occurrence of Xj.a must be evaluated before the occurrence of Xk.b. If the edge is from the Dp graph then this requirement stems from the fact that Xk,b is dependent upon Xj.a. If the edge is from a δX graph then this requirement is due to the semantics of the protocol. If the graph Dp[δX0, ..., δXnp] contains a circularity then this requirement states that some attribute X.a must be evaluated before X.a, which is clearly not possible. If there are no circularities, however, then we can create a total order from the partial order given in Dp[δX0, ..., δXnp]. This total order, together with the protocols πX0, ..., πXnp will unambiguously determine the procedures proc_p(1), ..., proc_p(m). We know that all these procedures will fit together as they all make use of the same protocols for the symbols of the grammar.

In figure 15 we give the graphs Dp[δX0,δX1,δX2] and Dp[δ'X0,δX1,δX2] for the example of figure 14 above. The graph Dp[δ'X0,δX1,δX2] contains a cycle since the protocols π'X0, πX1, and πX2 are not consistent. The graph Dp[δX0,δX1,δX2], however, is acyclic since the protocols πX0, πX1, and πX2 are consistent.

The above theorem also suggests a method of computing consistent protocols for the nonterminals of an attribute grammar. For each nonterminal X of the grammar one starts with a graph GX having attributes of X as vertices and no edges. Edges are added

\(^{6}\)According to this definition many different protocol graphs can be constructed for a given protocol. All of these graphs, however, have the same transitive reduction graph. As this transitive reduction graph is itself a protocol graph (with the fewest possible number of edges), we shall take it to be the unique protocol graph for a given protocol.
Figure 15: The cyclic graph $D_{\text{p}X_0 \delta X_1 \delta X_2}$ and the cyclic graph $D_{\text{p}X_0 \delta X_1 \delta X_2}$

incrementally from $X.a_1$ to $X.a_2$ if it is determined (by examining an augmented dependency graph) that an instance of $X.a_1$ must be evaluated before an instance of $X.a_2$ in some semantic tree using a uniform evaluation strategy. This process continues until no more edges can be added to any G_X graph. At each step in the process, each G_X graph can be considered as a rough draft of a protocol graph δ_X. The reason it is only a rough draft and not an actual protocol graph is because it may not have the property that for every inherited attribute I and synthesized attribute S of X, either $I \Rightarrow S$ or $S \Rightarrow I$. Even upon termination when no more edges can be added to any G_X graph, these graphs may still be only rough drafts and not actual protocol graphs. However, if at termination of this stage there exists an edge from $X.a_1$ to $X.a_2$ then $X.a_1$ must be evaluated before $X.a_2$ using a uniform evaluation strategy. Hence any edge in a G_X graph must exist in a consistent protocol graph for X. We shall refer to the $\{G_X\}$ graphs upon termination of this process as pseudo-protocol graphs.

The following two stage algorithm can be employed to find a consistent set of protocols for an AG (if one exists): first form the pseudo-protocol graphs $\{G_X\}$ as above, so that any edge from $X.a_1$ to $X.a_2$ in one of these graphs means that any uniform evaluator for the grammar must evaluate $X.a_1$ before $X.a_2$. Check and see if these pseudo-protocol graphs are consistent - the addition of these edges has not caused a circularity in an augmented dependency graph. If they are not consistent then the attribute grammar is not uniform. If they are consistent then stage two calls for completing these G_X graphs into actual protocol graphs such that for every inherited attribute I and synthesized attribute S of X, either $I \Rightarrow S$ or $S \Rightarrow I$. The addition of edges in stage two of the algorithm may also cause an inconsistency to arise in the augmented dependency graphs.

Stage 1 uses the pseudo-protocol creation algorithm [21] given in figure 16 which finds pseudo-protocol graphs $\{G_X\}$ for each nonterminal X of the grammar, adding an edge to G_X only if such an edge must exist in any consistent protocol graph for X. It begins by creating the graph $G_X = (V,E)$ for each nonterminal X of the grammar, with $V = \mathcal{A}(X)$ and $E = \emptyset$. It then considers the various augmented dependency graphs $D_{\text{p}}[G_{X_0}X_{X_1} \ldots G_{X_{n_0}}]$ adding an edge $(X_{i,a},X_{i,b})$ to the graph G_{X_i} if there is a path from $X_i.a$ to $X_i.b$ in $D_{\text{p}}[G_{X_0}X_{X_1} \ldots G_{X_{n_0}}]$ and this edge is not already in G_{X_i}. After all such edges have been added, each augmented dependency graph $D_{\text{p}}[G_{X_0}X_{X_1} \ldots G_{X_{n_0}}]$ is examined. If any one is cyclic then the algorithm halts; in such a case the AG is not in the class of uniform attribute grammars. This algorithm was initially formulated by Kastens [21] as the computation of his IDS.
relation. It is similar but not equivalent to Kennedy and Warren's computation of IOX graphs which is presented in the next section. It can be implemented in terms of a transitive closure algorithm.

For each nonterminal X create the graph $G_X = (V, E)$ where $V = \lambda X$ and $E = \emptyset$.

While an edge can be added to some graph G_X do

Begin

Choose a production $p: X_0 ::= X_1 \ldots X_n$ of the grammar;

If \exists a path from $X_{k.a}$ to $X_{k.b}$ in $\frac{P}{p}(G_{X_0}, G_{X_1}, \ldots, G_{X_n})$ and $\lambda_{k.a, k.b}$ is not in G_X
Then add the edge $(\lambda_{k.a, k.b})$ to G_X;

End;

If for any production p of the grammar the graph $\frac{P}{p}(G_{X_0}, G_{X_1}, \ldots, G_{X_n})$ contains a cycle
Then return("grammar is not evaluable by a uniform evaluator")
Else return("the pseudo-protocol graphs: G_X have been computed");

Figure 16: The pseudo-protocol creation algorithm

Assume this algorithm terminates returning the pseudo-protocol graphs $\{G_X\}$. If we look at these graphs, we may find that in the process of adding edges some of them have become actual protocol graphs whereas others remain only pseudo-protocol graphs; i.e., they need to be completed further in order to be actual protocol graphs. In any case, for any resulting G_X graph, if \exists an edge $(X.a,X.b)$ in this graph then any consistent protocol π_X for X must have $X.a \in \pi_X(m)$ and $X.b \in \pi_X(m+k)$ for some $k > 0$. This is due to the fact that an edge $(X.a,X.b)$ was added only if some production required $X.a$ to be evaluated before $X.b$. (See [11, 29]).

In the next figure we present an attribute grammar (giving the Dp graphs to describe dependencies instead of the semantic functions themselves) having 3 nonterminals S, A, and B. We give the graphs G_A and G_B that are formed by the pseudo-protocol creation algorithm.

The graph G_A is a protocol graph for A describing the protocol $\pi_A = \{a\}, \{b\}, \{c\}, \{d\}$ whereas G_B is only a pseudo-protocol graph and could still be completed into 3 different protocol graphs corresponding to 3 different protocols: $\pi_B = \{g\}, \{h\}, \{e\}, \{f\}$, $\pi'_B = \{e\}, \{f\}, \{g\}, \{h\}$, and $\pi''_B = \{e, g\}, \{f, h\}$. The first of these is a consistent protocol for B. The last two, however, introduce a cycle in the augmented dependency graph for Dp_1; i.e., the graphs $Dp_1[\delta_A, \delta_A', \delta_B]$ and $Dp_1[\delta_A, \delta_A', \delta_B'']$ are cyclic, where δ_A is the graph G_A, δ_B is the protocol graph formed from the protocol π_B, and δ_B'' is the protocol graph formed from the protocol π''_B. The graph $Dp_1[\delta_A, \delta_A', \delta_B]$ is given below in figure 18.

The application of the pseudo-protocol creation algorithm completes the first stage in finding a consistent set of protocols for the AG. After this step it may have determined that the grammar is not in the class of uniform attribute grammars. If this is not the case, then a collection of pseudo-protocol graphs have been found which contain edges essential to any set of consistent protocols for the grammar. The second stage of the strategy is
The productions of the grammar and their Dp graphs

The graph \(G_A \)

The graph \(G_B \)

Figure 17: Pseudo-protocol graphs formed by the algorithm of figure 16

Figure 18: The cyclic augmented dependency graph \(Dp_g[\delta_A, \delta_A', \delta_B] \)

concerned with further completing the \(\{G_X\} \) pseudo-protocol graphs so that each graph becomes an actual protocol graph instead of a pseudo one and such that the resulting graphs make up a consistent set of protocols for the attribute grammar. In general, as stated earlier, this is an intractable problem. Instead an algorithm is chosen which completes the graphs according to some heuristic \(H \). On applying heuristic \(H \) to the pseudo-protocol graphs \(\{G_X\} \) a set of actual protocol graphs \(\{\delta_X\} \) for the grammar is obtained. If these graphs determine a consistent set of protocols (which can be checked by examining whether or not the augmented dependency graphs are cyclic or not) then a uniform evaluator can be built based upon them. If they are found not to be consistent, however, then these cannot serve as the basis of a uniform evaluator. We cannot be sure (without exhaustive search) whether there is some way to complete the graphs to a consistent set or whether the grammar is not in the class of uniform attribute grammars. We could attempt to use a different heuristic \(H' \) to complete the graphs and once again check the resulting protocols for consistency. A better suggestion is to build a multi-protocol evaluator (as described in the next section) instead. Figure 19 gives an AG which 'passes' the pseudo-
protocol creation algorithm test; i.e., all the dependency graphs augmented by the pseudo-
protocol graphs are acyclic yet this AG is not in the class of uniform attribute grammars.
In particular, the dependencies of \(p_1 \) indicate that stmt.a must be evaluated before stmt.c
but the dependencies of \(p_2 \) indicate that stmt.c must be evaluated before stmt.a. Hence a
consistent protocol for stmt cannot be formed even though the dependency graphs
augmented by the pseudo-protocol graphs are all acyclic. This attribute grammar would
pass the first stage but fail in the second stage no matter which heuristic was used to
complete the pseudo-protocol graphs. Any uniform attribute grammar would pass the first
stage but would pass or fail the second stage depending upon which heuristic was used to
complete the graphs.

Several heuristics for completing the pseudo-protocol graphs into actual protocol graphs
have been discussed in the literature [9, 11]. Here we describe a heuristic similar to the one
devised by Kastens [21]. It follows a greedy strategy in that it completes the pseudo-protocol
graphs so as to make as small a protocol as possible\(^7\) and to evaluate attributes as early in
the protocol as possible. Given the graph \(G_X \), we define \(T_1 = \{ i \mid i \in J(X) \mid \exists \text{ edge } (v,i) \text{ in } G_X \} \). \(T_1 \) contains those vertices of \(G_X \) corresponding to inherited attributes of \(X \) which
have no entering arcs. Given the sets \(T_1, \ldots, T_{j-1} \) we create the set \(T_j \) in the following way:

\[
T_{2j} = \{ s \mid s \in S(X) \mid s \notin T_h, h < 2j \mid \text{ if } \exists \text{ an edge } (v,s) \text{ in } G_X \text{ then } v \in T_k, k < 2j \}
\]

\[
T_{2j+1} = \{ i \mid i \in J(X) \mid i \notin T_h, h < 2j+1 \mid \text{ if } \exists \text{ an edge } (v,i) \text{ in } G_X \text{ then } v \in T_k, k < 2j+1 \}
\]

\(T_{2j} \) are those vertices \(s \) of \(G_X \) corresponding to synthesized attributes of \(X \) such that if \(\exists
\]

\(^7\)By making \(p_X = p(1), \ldots, p(n_x) \) as small as possible we mean making the length \(n_x \) of the
protocol as small as possible. This is advantageous for several reasons. Most importantly,
the smaller \(p_X \) is, the fewer \(\text{VISIT}_k \) instructions required to nodes labeled \(X \) in the tree.
an edge \((v,s)\) entering \(s\), then \(v\) is in an "earlier" set \(T_k\). \(T_{2j+1}\) has a similar
interpretation for the inherited attributes of \(X\). Note that if there is a path from \(v\) to \(w\) in
\(G_X\) then \(v \in T_h\) and \(w \in T_h+k\) for some \(k > 0\). We create the non-empty sets \(T_1, \ldots, T_m\)
in this way forming a partition of the attributes of \(X\). The protocol completion strategy
calls for introducing an edge \((v,w)\) in \(G_X\) between every 2 vertices \(v\) and \(w\) such that \(v \in T_j\) and \(w \in T_{j+1}\). This heuristic certainly completes the pseudo-protocol graphs into actual
protocol graphs as after adding these arcs, either \(I \Rightarrow S\) or \(S \Rightarrow I\) for each inherited
attribute \(I\) and synthesized attribute \(S\) of \(X\). Figure 20 gives a pseudo-protocol graph and
the protocol graph obtained by using this protocol completion strategy. It is not hard
to see that this heuristic will not always result in the creation of a consistent protocol. For
example, this heuristic would complete the pseudo-protocol graph \(G_B\) of figure 17 into the
protocol graph \(\pi_B\) corresponding to the protocol \(\pi_B'.\) We already saw that this protocol is
not consistent (see figure 18) even though there are ways to complete \(G_B\) into a protocol
graph corresponding to a consistent protocol for \(B\).

![Diagram](image)

Figure 20: A protocol graph obtained from a pseudo-protocol graph using the greedy strategy

Kasten's heuristic [21] is similar to the one given here except that he forms protocols in
the reverse direction; he first creates a set \(T_m\) of those synthesized attributes \(s\) such that \(s\)
an edge \((s,v)\) in \(G_X\). He then creates the set \(T_{m-1}\) of those inherited attributes \(i\) such that
if \(i\) the edge \((i,v)\) in \(G_X\) then \(v \in T_m\). He continues in this fashion to form the sets
\(T_1, \ldots, T_m\) and then completes the pseudo-protocol graphs based on these sets as we did
above. If the resulting set of protocols turns out to be consistent, the attribute grammar is
said to be an *ordered attribute grammar*. For the pseudo-protocol graph given in figure
20 Kasten's strategy would compute the protocol \{(a),(b),(c),(d)\}. Contrast this protocol
to the one produced by the greedy strategy given above (see figure 20). It is easy to
construct grammars for which the greedy strategy would find a consistent set of protocols
but Kasten's strategy would not and vice versa. Both heuristics have the desireable
property of producing protocols which are as small as possible.

It is not hard to see that a pass-oriented evaluator is just a special case of a uniform
evaluator. Given a k-pass evaluator for an AG, we can easily construct a consistent set of
protocols for the grammar. To each nonterminal \(X\) we assign the protocol: \(\{X.i \in \mathcal{A}(X) |\)
\(PN(X.i) = 1\}, \{X.s \in \mathcal{S}(X) | PN(X.s) = 1\}, \{X.i \in \mathcal{I}(X) | PN(X.i) = 2\}, \{X.s \in \mathcal{S}(X) |

3 This does not mean that the resulting evaluator will be optimal as the optimal evaluator
may not be uniform at all. It does mean that the resulting evaluator will be the most
efficient uniform evaluator which can be constructed for the attribute grammar.
\[\text{PN}(\text{X.s}) = 2 \} \ldots, \{ \text{X.i} \in \mathcal{X} \mid \text{PN}(\text{X.i}) = k \}, \{ \text{X.s} \in \mathcal{X} \mid \text{PN}(\text{X.s}) = k \}^9. \] This set will be consistent or we would not have been able to build the pass-oriented evaluator for the attribute grammar. Not only are uniform evaluators more efficient than pass-oriented evaluators, they can be built for a larger class of attribute grammars. For example, the reader should have no problem in recognizing \(\{ \pi_\text{S} = \emptyset, \{ \text{translation} \}, \pi_\text{list} = \{ \text{inhatt} \}, \{ \text{synatt} \} \} \) as a consistent set of protocols for the attribute grammar of figure 10. Thus although we cannot construct a pass-oriented evaluator for that grammar, we can construct a uniform evaluator for it.

\[^9 \text{This may not be a protocol in the strict sense of the definition as some of these sets may be empty. This can be corrected by deleting any set other than the first which is empty.} \]
6. Multi-protocol Evaluators

In the construction of a uniform evaluator given in the last section, a set of pseudo-protocol graphs were obtained, one for each nonterminal grammar symbol. Each of these graphs was then used as a model from which to build a unique protocol for each nonterminal. The construction of a multi-protocol evaluator proceeds along similar lines. Initially a set of model graphs is formed, one for each nonterminal grammar symbol. However, instead of using these graphs to form a unique protocol for each nonterminal, they will be used to form a set of protocols for each nonterminal. From this family of protocols the procedures of the multi-protocol evaluator will be built in a manner analogous to the construction of the procedures of the uniform evaluator.

The evaluator presented in this section follows, to a large degree, the sub-protocol evaluator of Farrow [9]. It has many aspects in common with the tree-walk evaluator of Kennedy and Warren [23] and the direct evaluator of Nielson [28]. We have chosen Farrow's paradigm as it is a natural extension of the uniform evaluator of the last section.

We begin by showing how to form the model graphs of the multi-protocol evaluator. For each nonterminal X, a graph called IO_X is formed. This graph has only edges from inherited attributes to synthesized attributes. If in any semantic tree \exists a node N labeled X with the synthesized attribute N.s dependent upon the inherited attribute N.i then there will be an edge (i,s) in IO_X. The converse is not true however: there may exist an edge (i,s) in IO_X even though there does not exist a subtree with a node N labeled X and with N.s dependent upon N.i. The IO_X closure algorithm which finds the set of IO_X graphs for an attribute grammar is given in Figure 21.

For each nonterminal X create the graph $\text{IO}_X = (V,E)$ where $V = A(X)$ and $E = \emptyset$;

While an edge can be added to some graph IO_X do

Begin

Choose a production $[p: X_0 ::= X_1 \ldots \ldots X_p]$ of the grammar;

If \exists a path from $X_0 . a$ to $X_0 . b$ in IO_X and $(X_0 . a, X_0 . b)$ is not in IO_X then add the edge $(X_0 . a, X_0 . b)$ to IO_X;

End;

If for any production p of the grammar the graph IO_X contains a cycle then return("grammar is not evaluable by a multi-protocol evaluator")

Else return("the graphs: {IO_X} have been computed");

Figure 21: The IO_X closure algorithm

Note the similarity between the pseudo-protocol creation algorithm of the last section and

IO_X graphs were first introduced by Knuth [24] and subsequently used by Kennedy and Warren [23], who gave them the name IO_X graphs. IO stands for input-output as the graph shows the dependencies between information input into a subtree rooted at a node labeled X and information output from the subtree. The information enters via the inherited attributes of the root and leaves via the synthesized attributes of the root.
the IOX closure algorithm. In fact, for any nonterminal X, the graph IOX is a subgraph of the pseudo-protocol graph GX created by the pseudo-protocol creation algorithm. Any edge in IOX certainly exists in GX but not every edge in GX exists in IOX. The main difference between the algorithms is that the IOX closure algorithm only adds edges to the graph IOX0 and not to graphs IOXi, i > 0, when paths are found in Dp[IOX1, ..., IOXnp] while the pseudo-protocol creation algorithm adds edges to any GXi graph. Note that because the grammar is in Bochmann Normal Form, any path in Dp[IOX1, ..., IOXnp] from X0.a to X0.b will be from an inherited to a synthesized attribute of X0.

If for every production p in the attribute grammar the graph Dp[IOX1, ..., IOXnp] is acyclic, then the grammar is called absolutely non-circular (ANC) [23]. A multi-protocol evaluator can be constructed for any ANC attribute grammar. Hence if we intend to build a uniform evaluator but find that in the last step of completing the pseudo-protocol graphs we do not end up with a consistent set of protocols we can still construct a multi-protocol evaluator for the grammar.

Given an ANC attribute grammar, using the set of IOX graphs a set of protocols IX is constructed for each nonterminal X, except for the start symbol S which will have only one protocol associated with it. This set of protocols will be such that for each production [p: X0 ::= X1 ... Xnp] of the grammar, for each protocol πX0 ∈ IX0, ∃ protocols πX1 ∈ IX1, ..., πnp ∈ IIXnp such that Dp[πX0, δX1, ..., δXnp] is acyclic, where δXi is the protocol graph corresponding to πXi. Let IX = {IX | X a nonterminal of the grammar} be a family of protocol sets obeying the above property. Then IX is said to be a consistent family of protocol sets. Just as a uniform evaluator can be built for any consistent set of protocols, a multi-protocol evaluator can be built for any consistent family of protocol sets.

Given a family of consistent protocol sets the multi-protocol evaluator can be built in a fashion similar to the way the uniform evaluator was built. The main difference is that in the uniform evaluator one set of procedures was constructed for a production p based on the unique protocols for X0,...,Xnp, whereas in the multi-protocol evaluator a set of procedures is created for each protocol of X0. That is, for each πX0 in IX0 a set of procedures is built based on the protocols πX1 ∈ IX1, ..., πnp ∈ IXnp such that Dp[δX0, δX1, ..., δXnp] is acyclic. These procedures will be similar to the procedures of the uniform evaluator with the exception of some additional bookkeeping to keep track of which

11 Recall that our algorithm for finding a consistent set of protocols for an attribute grammar consists of two stages: we first build pseudo-protocol graphs for the nonterminals and check whether the augmented dependency graphs are acyclic. If so, we proceed by attempting to complete the pseudo-protocol graphs into a consistent set of actual protocols. If we were successful in stage 1, i.e., all the dependency graphs augmented by the pseudo-protocol graphs were acyclic, then we can always build a multi-protocol evaluator as these graphs being acyclic implies that the attribute grammar is ANC. But even if we failed at stage 1, i.e., some Dp[GX0, GX1, ..., GXnp] graph is cyclic, the grammar may still be ANC and we could create a multi-protocol evaluator for it. This is because a cycle in Dp[GX0, GX1, ..., GXnp] does not necessarily mean that Dp[IOX1, ..., IOXnp] will contain a cycle.
A protocol is being used for each nonterminal. So, for example, a CASEVISIT \(_k\) statement now takes on the following form:

\[
\text{Case LP production of } X_k = p_1: \text{VISIT}_k \text{ and call proc}_{p_1(1)}[\pi_1];
\]
\[
P_2: \text{VISIT}_k \text{ and call proc}_{p_2(1)}[\pi_1];
\]
\[
\vdots
\]
\[
P_h: \text{VISIT}_k \text{ and call proc}_{p_h(1)}[\pi_1];
\]

Here \(\text{proc}_{p(i)}[\pi]\) is a procedure to visit production \(p\) for the \(i\)th time, using \(\pi\) as a protocol for \(X_k\). \(\pi\) is not a parameter to the procedure but part of the procedure name. Unlike the uniform evaluator where there was only one procedure \(\text{proc}_{p(i)}\) corresponding to the \(i\)th visit to an instance of \(p\) in a semantic tree, in the multi-protocol evaluator there may be \(h\) procedures \(\text{proc}_{p(i)}[\pi_1], \ldots, \text{proc}_{p(i)}[\pi_h]\) each corresponding to the \(i\)th visit to an instance of \(p\). Which of the procedures is used depends upon which of the \(h\) possible protocols is being used for the node labeled \(X_k\). It does not require any extra overhead during run-time, however, to determine which one to use; that is determined by the calling procedure. This can best be demonstrated by an example. Figure 22 gives the sets of protocols for the nonterminals of the attribute grammar presented in figure 19. Although this attribute grammar is not a uniform attribute grammar it is a multi-protocol attribute grammar. Figure 23 presents the procedures of the multi-protocol evaluator built for it. In addition to the procedures \(\text{proc}_2\) and \(\text{proc}_0\) there exists 2 sets of procedures for each of the productions \(p_1, p_2, p_3\). For example, since \(p_1\) has the symbol \(\text{stmt}\) as its LHS, we need one set of procedures for \(p_1\) using \(\pi_{\text{stmt}}\) as the protocol for \(\text{stmt}_0\) and one set using \(\pi'_{\text{stmt}}\) as the protocol for \(\text{stmt}_1\). The set of procedures using \(\pi_{\text{stmt}}\) as the protocol for \(\text{stmt}_0\) namely \(\text{proc}_{p_1(1)}[\pi_{\text{stmt}}]\) and \(\text{proc}_{p_1(2)}[\pi'_{\text{stmt}}]\), uses \(\pi_{\text{stmt}}\) as the protocol for \(\text{stmt}_0\) and \(\pi'_{\text{stmt}}\) as the protocol for \(\text{stmt}_1\) since these protocols cause the augmented dependency graph to be acyclic; should \(\pi_{\text{stmt}}\) be used as protocols for both \(\text{stmt}_1\) and \(\text{stmt}_2\) the augmented dependency graph would contain a cycle. Similarly the set of procedures for \(p_1\) using \(\pi'_{\text{stmt}}\) as the protocol for \(\text{stmt}_0\) namely \(\text{proc}_{p_1(1)}[\pi'_{\text{stmt}}]\) and \(\text{proc}_{p_1(2)}[\pi_{\text{stmt}}]\), uses \(\pi'_{\text{stmt}}\) as the protocol for \(\text{stmt}_0\) and \(\pi_{\text{stmt}}\) as the protocol for \(\text{stmt}_1\) since these protocols cause the augmented dependency graph to be acyclic; should \(\pi_{\text{stmt}}\) be used as protocols for both \(\text{stmt}_1\) and \(\text{stmt}_2\) the augmented dependency graph would contain a cycle. Due to space considerations, figure 23 does not give the procedures for production \(p_2\).

\[
\Pi_s = (\pi_s = s.\{\text{trans}\})
\]
\[
\Pi_{\text{stat}} = (\pi_{\text{stat}} = (\{q\},\{b\},\{c\},\{d\},\pi'_{\text{stat}} = \{c\},\{d\},\{a\},\{b\})
\]

Figure 22: Sets of protocols for the symbols of the attribute grammar of figure 19

At this point it may be beneficial for the reader to trace the execution of the evaluator on a typical semantic tree for this attribute grammar. Figure 24 gives such a tree. In this figure we have labeled each nonterminal node by the protocol that would be (automatically) used by the evaluator to evaluate the attributes of that node. Evaluation of the tree would begin by calling \(\text{proc}_S[\pi_S]\). This procedure would in turn call \(\text{proc}_{p_0}\). This first evaluates \(N2.a\), then visits \(N2\)'s LP production invoking the procedure \(\text{proc}_{p_1(1)}[\pi_{\text{stmt}}]\) (indicating that
Figure 23: The multi-protocol evaluator constructed for the grammar of figure 19
Figure 24: A semantic tree for the attribute grammar of figure 19

N2's LP production is p1, that N2 is associated with the protocol π_{stmt} and that N2 is being visited for the first time). Upon returning from this visit N2.c is evaluated; since N2's protocol is π_{stmt} we know that N2.b was evaluated during the visit. Next N2 is visited for the second time invoking the procedure proc_{p1(2)}[π_{stmt}]. Upon returning from this visit we know that N2.d has been evaluated and that N1.trans can be evaluated. We see that although the evaluator never explicitly gave N2 the protocol π_{stmt} this assignment is implicit in the procedure proc_{p0}. If the reader continues the simulation of the evaluator as it visits the other nodes in the tree, he will see that multi-protocol evaluator always implicitly assigns to a node a protocol by choosing the appropriate procedure calls.

Note that several different procedures (procedures for the same production but using different protocols for the nonterminals) can have the same code. proc_{p1(2)}[π_{stmt}] and proc_{p1(1)}[π'_{stmt}], for example, have the same one instruction: EVAL_{stmt}.b. The procedure proc_{p1(2)}[π_{stmt}] corresponds to the second visit to a production-instance of p1 where the LHS node stmt has the protocol π_{stmt}; The procedure proc_{p1(1)}[π'_{stmt}] corresponds to the first visit to a production-instance of p1 where the LHS node stmt has the protocol π'_{stmt}. Nonetheless this procedure needs to be written only once; during compiler construction time the compiler generator needs to notice that two or more procedures are the same and to eliminate duplicates. This can significantly reduce the amount of code needed for the evaluator.12

12This idea of eliminating duplicate procedures which have the same code is due to Farrow \cite{9}. We actually have generalized his technique somewhat. We allow more procedures to be eliminated, but for this to be done we need a more complicated technique- such as actually checking the procedures for equivalent code.
How many procedures are required by the multi-protocol evaluator? The uniform evaluator required construction of n_{X_0} procedures for each production $[p: X_0 := X_1 ... X_n]$, where n_{X_0} is the length of the protocol for X_0. A multi-protocol evaluator requires the construction of $n_{X_0}^1 + n_{X_0}^2 + ... + n_{X_0}^h$ procedures for each production p, where $\Pi_{X_0} = \{\tau_{X_0}^1, ..., \tau_{X_0}^h\}$ are the set of protocols for X_0 and $n_{X_0}^i$ is the length of $\tau_{X_0}^i$. Since the number of protocols per nonterminal can be exponential in the number of attributes of the symbol [9], this can result in an extremely large evaluator. Fortunately this is only in the worst case. If, for instance, a multi-protocol evaluator for the attribute grammar can be built by assigning a singleton set of protocols to every nonterminal except one, to whom a set containing 2 protocols must be assigned, then the resulting multi-protocol evaluator constructed will be only slightly larger than the uniform evaluator would have been. Furthermore, as illustrated in the last example, many of the procedures constructed have the same code and can be shared. For these reasons it seems probable that the size of a multi-protocol evaluator constructed for an attribute grammar will be on the same order as a uniform evaluator would have been (had we been able to construct one for the attribute grammar).

We have seen how to construct a multi-protocol evaluator given a consistent family of protocol sets. But how do we initially find such a set? In figure 25 we give the protocol closure algorithm which, given an ANC attribute grammar, finds a set of protocols for each nonterminal so that the multi-protocol evaluator can be built. Here we shall not concentrate on finding a small set of protocols for each nonterminal, although this is obviously desirable in order to build as small an evaluator as possible. The interested reader should consult [9] which presents heuristics for this purpose. The protocol closure algorithm starts with a unique protocol for the start symbol S. As S has no inherited attributes, this protocol is simply $\tau_S = \emptyset, \emptyset$ (synthesized attributes of S). It then generates protocol sets for all of the nonterminals of the attribute grammar. The protocol closure algorithm will terminate as there are only a finite number of possible protocols for a given nonterminal. It will always be able to find a set of protocols such that $Dp[\delta_{X_0}, \delta_{X_1}, ..., \delta_{X_n}]$ is acyclic because the grammar is ANC. (See [28, 29]).

The protocol closure algorithm uses the function COMPUTE_PROTOCOLS given in figure 25. This function can be viewed as a heuristic for completing protocols (see end of section 5). Given the dependency graph Dp, the LO_X graphs for $X_1, ..., X_n$, and a protocol for X_0, it completes the model LO_X graphs to form protocols for $X_1, ..., X_n$. It does so by determining which attributes will be evaluated and which children visited on each visit to the production, based on the protocol for X_0. From the resultant protocols $\tau_1, ..., \tau_n$ together with τ_0, a set of procedures for the multi-protocol evaluator can be constructed; i.e., the graph $Dp[\delta_{X_0}, \delta_{X_1}, ..., \delta_{X_n}]$ is acyclic. The function READY_TO_EVALUATE_INH(W,G,j) used by the function COMPUTE_PROTOCOLS takes a set of already evaluated attributes W, an augmented dependency graph G, and a subscript j. It returns the set $\{\text{att} \in \mathcal{A}(X_j) \mid W \}$ for each arc (w, att) in G, $w \in W$; i.e., those inherited attributes of X_j which can be evaluated immediately as all of the attributes it depends upon are in the set W of already evaluated attributes. The function
Let \(\pi_\emptyset = \emptyset \) (synthesized attributes of \(S \))
For each nonterminal \(X \in \Sigma \) let \(\Pi_X = \emptyset \) endFor;
Repeat until no more protocols need to be added
For each production \([p: X_0 ::= X_1 \cdots X_p] \)
For each protocol \(\pi_{x_0} \in \Pi_{x_0} \)
\[\pi_1, \ldots, \pi_p ::= \text{COMPUTE_PROTOCOLS} \left(D_p, \pi_{x_0}, I_{x_1}, \ldots, I_{x_p} \right) \]
\(\text{$} \) \(D_p(\delta_{x_0}, \delta_{x_1}, \ldots, \delta_{x_p}) \) is acyclic */
For \(i \in [1..n_p] \)
\[\text{if } \pi_i \notin \Pi_{x_i}, \text{ then add } \pi_i \text{ to } \Pi_{x_i}; \]
endFor;
endFor;
endRepeat;

Figure 25: The protocol closure algorithm

READY_TO_EVALUATE_SYN\((W,G,j)\) similarly returns those synthesized attributes of \(X_j \) which can be evaluated immediately. The function \(\text{HAS_NON_EMPTY_YIELD}(W,G) \) returns a set of right-part context-free symbols \(\{ X_k \mid k > 0 \mid \exists \text{ synthesized attribute } \pi_{k,\text{att}} \in s(X_k) \wedge W \mid \text{ for each arc } (w,\pi_{k,\text{att}}) \text{ in } G, \text{ either } w \in W \text{ or } w \in \text{READY_TO_EVALUATE_INH}(W,D_p(\delta_{x_0}, I_{X_1}, \ldots, I_{X_{n_p}})) \} \); i.e., those right-part symbols which would yield newly evaluated synthesized attributes by evaluating any of their inherited attributes ready to be evaluated and then visiting their subtrees. So if \(X_k \in \text{HAS_NON_EMPTY_YIELD}(W,G) \) then we know that after evaluating the inherited attributes of \(X_k \) which are ready to be evaluated immediately, we can visit \(X_k \) and during that visit evaluate some synthesized attribute of \(X_k \) which has not yet been evaluated. The protocol closure algorithm and the \(\text{COMPUTE_PROTOCOLS} \) function are based on a similar construction in [28, 29]. They also have features in common with the *Kennedy-Warren Planning Algorithm* [23].

Notice the nondeterminism in the function \(\text{COMPUTE_PROTOCOLS} \). On each step through the WHILE loop the set \(\text{HAS_NON_EMPTY_YIELD}(W,D_p(\delta_{X_0}, I_{X_1}, \ldots, I_{X_{n_p}})) \) is computed. This is a set of RHS nodes \(X_i \), \(1 \leq i \leq n_p \), such that if \(X_k \) is in this set then \(X_k \) can be visited allowing at least one synthesized attribute to be evaluated (we say that the visit yields an attribute). The function arbitrarily chooses one of these nodes to visit and then recomputes the set. This continues until no more possible visits can be made; i.e., until there does not exist a node which will yield an attribute by visiting it. Depending upon how this nondeterminism is implemented different protocols may result for the children \(X_1, \ldots, X_{n_p} \). It is desirable to restrict this nondeterminism so that the protocols produced are as small as possible. In the appendix it is shown, however, that producing the set of protocols for \(X_1, \ldots, X_{n_p} \) (given the protocol \(\pi_{X_0} \) and the graphs \(I_{X_1}, \ldots, I_{X_{n_p}} \)) such that their total length is minimal is an NP-complete problem.

40
Although the multi-protocol evaluator outlined in this section is based on the ideas in [9], it is very similar to the tree-walk evaluator of Kennedy and Warren [23] and the direct evaluator of Nielson [28]. A comparison of these evaluators is presented in [9]. A different interesting approach, based on an algebraic formulation of attribute grammars [2, 4], can be found in [19, 22]. These evaluators are not really tree-walk evaluators; their underlying scheme is to build one recursive function per synthesized attribute. In this way they avoid construction of protocols and the need for flags (as found in the Kennedy-Warren evaluator).

Although multi-protocol evaluators can be built for a large class of attribute grammars, if an evaluator for a attribute grammar which is not ANC is required then we must go beyond static evaluators and build a dynamic evaluator. We need to use more run-time information than the static evaluator allows. Assume, for example, that we have a attribute grammar which is not ANC. Then there is some production p such that $D_p[O_{X_1},\ldots,O_{X_p}]$ is cyclic. Assuming that the grammar is actually well defined, this circularity must be due to a spurious edge. That is, there are 2 edges $(X_k.a,X_k.b)$ and $(X_k.c,X_k.d)$ along the cycle in $D_p[O_{X_1},\ldots,O_{X_p}]$ such that one will appear in some subtree rooted at a node labeled X_k and the other will appear in a different subtree rooted at a node labeled X_k but they will never appear in the same subtree. In order to know in which order to visit the...
children one must know which edge is spurious. A static evaluator cannot deal with this situation: the only information it can use when at an instance of a production p is which productions apply at its children. This information is not sufficient to detect which edge is spurious and hence cannot determine in what order to visit the children nodes. A dynamic evaluator, however, can use an arbitrary amount of knowledge concerning the semantic tree. It could, for example, make a prepass over the tree passing information to each node on the nature of its subtree. This sort of information is sufficient to evaluate any semantic tree for any well-formed AG. Many dynamic evaluators have been formulated \cite{3, 23, 28}.
7. Conclusion

In this paper we have developed the notion of static tree-walk evaluators. These evaluators represent an important subclass of all tree-walk evaluator strategies. We presented three types of static evaluators: pass-oriented, uniform and multi-protocol evaluators. Pass-oriented evaluators evaluate semantic trees by traversing each tree a fixed number of times in right-to-left or left-to-right depth-first passes. They are easy to construct and reasonably small. They have two significant weaknesses however. First of all, a pass-oriented strategy can be very inefficient in its evaluation of semantic trees. Secondly, many attribute grammars cannot be evaluated by such a strategy. Uniform evaluators do significantly better in both of these areas: as they only visit a node in order to evaluate an attribute they are much more efficient in their evaluation of semantic trees. Also, they can be constructed for a larger subset of well-defined attribute grammars. But uniform evaluators have a weak point as well: in general it is too hard (NP-complete) to construct such an evaluator for every attribute grammar which could have one constructed for it. Most compiler generators based on a uniform evaluation strategy will therefore only construct evaluators for a subset of all uniform attribute grammars. Multi-protocol evaluators are not as restricted as uniform ones: for any absolutely non-circular AG a multi-protocol evaluator can be built. Moreover, this evaluator evaluates semantic trees as efficiently as the uniform evaluator, only visiting a node of a tree if doing so would result in the evaluation of an attribute of the node. Unfortunately, in the worst case the resultant evaluator can be exponentially large.

Acknowledgement

I would like to thank Rodney Farrow for serving as my advisor and introducing me to most of the material presented in this survey. Our conversations always led to new and exciting ideas. He also read several drafts of this paper and offered many useful suggestions. I would also like to thank Rich Korf and Kathy McKeown for their helpful recommendations.
Appendix

In this appendix we show that two related problems are NP-Complete. The first concerns finding minimal length protocols, the second concerns optimal time evaluation of semantic trees.

Given a production \([p: X_0 \rightarrow X_1 \ldots X_{np}]\) and an augmented dependency graph \(Dp[\delta_{X_0}, I_{X_1} \ldots I_{X_{np}}]\) the algorithm of figure 29 computes valid protocols for the symbols of \(X_1, \ldots X_{np}\). By valid protocols we mean protocols whose graphs \(\delta_{X_1}, \ldots \delta_{X_{np}}\) are such that the graph \(Dp[\delta_{X_0}, \delta_{X_1}, \ldots \delta_{X_{np}}]\) is a directed graph and such that every edge in \(Dp[\delta_{X_0}, I_{X_1} \ldots I_{X_{np}}]\) is in \(Dp[\delta_{X_0}, \delta_{X_1}, \ldots \delta_{X_{np}}]\). It would be desirable to create these protocols such that their total length \(n_{X_1} + n_{X_2} + \ldots + n_{X_{np}}\) is as small as possible; a smaller total length means that less visits to children need to be made for any such production-instance in a semantic tree and this would lead to more efficient evaluators.

Theorem 2: Given a production \([p: X_0 \rightarrow X_1 \ldots X_{np}]\) and an integer \(k\) finding whether there exists a valid protocol \(\pi_{X_1} \ldots \pi_{X_{np}}\) for the grammar symbols \(X_1, \ldots X_{np}\) having lengths \(n_{X_1} \ldots n_{X_{np}}\) such that \(n_{X_1} + n_{X_2} + \ldots + n_{X_{np}} \leq k\) is NP-complete.

Proof: Certainly the problem is in NP. Guess valid protocols \(\pi_{X_1} \ldots \pi_{X_{np}}\) for the grammar symbols. Verification can be done in p-time. To show that it is NP-complete we will show that if this problem could be solved in p-time, the shortest common supersequence problem, described below, could also be solved in p-time.

Given a string \(S\) over an alphabet \(\Sigma\), a supersequence \(S'\) of \(S\) is any string \(S' = w_1 \ldots w_k\) over \(\Sigma\) such that \(S_{-1} \ldots S_{-n}\) and each \(w_i\) belongs to \(\Sigma\); we also say that \(S\) is a subsequence of \(S'\). A common supersequence of a set of strings \(\gamma = \{S_1, \ldots, S_f\}\) is a string \(S\) over \(\Sigma\) such that \(S\) is a supersequence of each \(S_i\). We shall refer to the \(k^{th}\) symbol of \(S\) as \(S_{k}\). The shortest common supersequence problem is defined as follows: given an alphabet \(\Sigma\), a finite set \(\gamma\) of strings from \(\Sigma^*\), and a positive integer \(k\), is there a common supersequence of \(\gamma\) of length \(\leq k\)? This problem was shown to be NP-complete by Maier (3), provided that the size of the alphabet \(\Sigma\) is \(\geq 5\). The result was sharpened to include any alphabet with at least 2 elements in (4).

The reduction will be as follows: given an instance of the common supersequence problem (a set of strings \(\gamma = \{S_1, \ldots, S_f\}\) over \(\Sigma = \{a_1, \ldots, a_n\}\)) we will create a graph \(Dp[\delta_{X_0}, I_{X_1} \ldots I_{X_{np}}]\) such that there will exist a common supersequence for \(\gamma\) of length \(\leq k\) iff there exists valid protocols for \(X_1, \ldots X_{np}\) of total length \(\leq k\). The graph \(Dp[\delta_{X_0}, I_{X_1} \ldots I_{X_{np}}]\) can be specified by giving the attributes of each symbol \(X_i\), \(0 \leq i \leq n\), the edges in \(\delta_{X_0}\), the edges in \(I_{X_i}\), \(1 \leq i \leq n\), and the edges in \(Dp\).

Let \(\gamma = \{S_1, \ldots, S_f\}\) be given. Create \(Dp[\delta_{X_0}, I_{X_1} \ldots I_{X_{np}}]\) such that \(X_0\) has 2 attributes \(X_0\).inh and \(X_0\).syn. The protocol graph \(\delta_{X_0}\) will contain the single edge (inh.syn). Every other symbol \(X_i\), \(1 \leq i \leq n\), will have an inherited and a synthesized attribute (called an attribute pair) for each occurrence of \(a_i\) in any string \(S_i\). Hence if \(a_i\) appears 5 times in
strings of \(j \) then the context-free symbol \(X_i \) will have 5 inherited and 5 synthesized attributes. If \(a_i \) appears as the \(k \)th symbol of the string \(S_j \) then the corresponding inherited and synthesized attributes added to \(X_i \) will be \(X_i.S_i^j \text{inh} \) and \(X_i.S_i^j \text{syn} \). For example, if \(S_j = a_5 a_2 a_3 a_5 \) then \(S_j \) would contribute an attribute pair to each of the context-free symbols \(X_2 \) and \(X_3 \) and two attribute pairs to \(X_5 \) (namely, \(X_5.S_5^j \text{inh} \), \(X_5.S_5^j \text{syn} \), \(X_5.S_5^j \text{inh} \) and \(X_5.S_5^j \text{syn} \)). For any attribute pair \((X_i.S_i^j \text{inh}, X_i.S_i^j \text{syn})\) the graph \(IOX_i \) will contain the edge \((X_i.S_i^j \text{inh}, X_i.S_i^j \text{syn})\). These are the only edges in the IO\(X_i \) graphs. The graph \(D_p \) will have one edge for each two consecutive symbols \(S_i^j.k \) \(S_i^j.k+1 \) in any string \(S_j \): Say that \(S_i^j.k = a_4 \) and \(S_i^j.k+1 = a_f \). Then \(D_p \) will have an edge from \(X_e.S_i^j \text{syn} \) to \(X_f.S_i^j \text{inh} \). The only other edges in the \(D_p \) graph are edges from \(X_0.\text{inh} \) to the inherited attributes corresponding to the first character of \(S_j^i \) (1 \(\leq j \leq r \)), and from the synthesized attributes corresponding to the last character of \(S_j^i \) (1 \(\leq j \leq r \)), to \(X_0.\text{syn} \). So, for example, if \(S_j^1 = S_j^1.1 ... S_j^1 . \text{final} \) with \(S_j^1.1 = a_e \) and \(S_j^1.\text{final} = a_f \) then \(D_p \) will have the edges \((X_0.\text{inh}, X_e.S_j^1) \) and \((X_f.S_j^1.\text{final} \text{syn}, X_0.\text{syn})\).

The above description shows how to form, in \(p \)-time, the graph \(D_p[\delta X_0, IOX_1, ... IOX_n] \) from an instance of the common supersequence problem \(j \). Figure 27 gives the augmented dependency graph \(D_p[\delta X_0, IOX_1, IOX_2, IOX_3] \) for the grammar formed from strings \(j = \{S^1, S^2\} \) over the alphabet \(\Sigma = \{a_1, a_2, a_3\} \), where \(S^1 = a_1 a_2 a_3 a_1 \) and \(S^2 = a_2 a_3 a_2 \).

![Figure 27: An augmented dependency graph formed from a set of strings](image)

We now must show that there exists valid protocols for \(X_1, ..., X_n \) (protocols whose graphs \(\delta X_1, ..., \delta X_n \) are such that the graph \(D_p[\delta X_0, \delta X_1, ..., \delta X_n] \) is acyclic and such that every edge in \(D_p[\delta X_0, IOX_1, ..., IOX_n] \) is in \(D_p[\delta X_0, \delta X_1, ..., \delta X_n] \)) and of total length \(\leq k \) iff there exists a common supersequence for \(j \) of length \(\leq k \). Assume that we had valid protocols for \(X_1, ..., X_n \) of total length \(k \). Then we could write a procedure to evaluate the attributes of \(p \) based on these protocols (this would be done as given in sections 5 and 6). This procedure would mix evaluation of the attributes of \(p \) with visits to the children nodes (these visits would yield synthesized attributes of the node) and would obey the dependency relations given in \(D_p[\delta X_0, IOX_1, ..., IOX_n]^{13} \). There would be EXACTLY \(k \) visit instructions in this

\(^{13}\)A procedure obeys the dependency relations of an augmented dependency graph if before an attribute \(X_i \) is evaluated all of its dependencies have already been evaluated. If it is dependent upon a synthesized attribute \(X_s \) \((k \geq 0)\) then \(X_s \) must be visited before evaluating \(X_i \) and at the time of visiting \(X_s \) all of \(X_s \)'s dependencies must have already been evaluated. This last condition means that if the attribute is dependent upon a synthesized attribute of \(X_k \) then that synthesized attribute has been yielded on a previous visit to \(X_k \).
procedure. This is because a protocol for X of length m requires m visits to X in order to evaluate all of its attributes. Similarly, if we are given a procedure containing k VISIT instructions which evaluates all the attributes of p and obeys the dependencies of $Dp[\delta X_0, IO X_1, \ldots, IO X_n]$ then we can find the valid protocols for X_1, \ldots, X_n of total length $= k$ corresponding to this procedure. This fact is fairly intuitive: from valid protocols we can construct procedures which do not violate any dependencies and from procedures which obey dependencies we can extract valid protocols. This fact allows us to express our proof a little differently: we will show that there exists a procedure to evaluate all the attributes of p (assuming only that X_0.inh has already been evaluated upon entry into the procedure) using k visit instructions and obeying all the dependencies of $Dp[\delta X_0, IO X_1, \ldots, IO X_n]$ iff there exists a common supersequence of ς of length k. In particular, if the procedure contains the sequence of instructions VISIT, \{EVAL instructions\} VISIT \{EVAL instructions\} ... VISIT$_m$ then $a_1, a_k \ldots, a_m$ will be a common supersequence of ς. As there exists a 1-1 correspondence between the visit sequence of a procedure and strings in Σ^* we shall refer to the visit sequence simply by the string it corresponds to; e.g., if a procedure contains a sequence of visit instructions VISIT$_j$ VISIT$_k$ VISIT$_m$ we shall refer to it as the string $a_j a_k a_m$.

i) Say a procedure obeying the dependencies of the augmented dependency graph $Dp[\delta X_0, IO X_1, \ldots, IO X_n]$ has a visit sequence $V = a_1 a_2 \ldots a_m$. Let $S^j = S^j_1 S^j_2 \ldots S^j_m \in \varsigma$. We must show that $S^j_1 S^j_2 \ldots S^j_m = a_1 a_2 \ldots a_m$ is a subsequence of V. Let $S^j_k = a_e$ and $S^j_{k+1} = a_f$. From the way that the Dp and $IO X_i$ graphs were constructed, any procedure evaluating the attributes of p according to the dependencies of the augmented dependency graph will evaluate $X_e S^j_{k+1}$ inh only after visiting X_e yielding $X_e S^j_{k+1}$ inh and cannot visit X_e yielding that synthesized attribute until after evaluating $X_e S^j_{k-1}$ inh. Hence the procedure must evaluate the inherited attributes $X_{u_1} S^j_1$ inh, $X_{u_2} S^j_2$ inh ..., $X_{u_m} S^j_m$ inh sequentially, visiting $X_{u_1} X_{u_2} \ldots X_{u_m}$ sequentially. Hence S^j is a subsequence of V.

ii) Let $V = a_1 a_2 \ldots a_m$ be a common supersequence of ς. We must show that there exists a procedure evaluating all the attributes of p (assuming X_0.inh has already been evaluated), obeying the dependencies of the augmented dependency graph $Dp[\delta X_0, IO X_1, \ldots, IO X_n]$ and having a visit sequence of V. Create a procedure whose visit sequence is V and evaluates attributes in between visits according to the following method: Looking at each subsequence $S^j = a_1 a_2 \ldots a_m$ ($1 \leq j \leq r$) of V, have the procedure evaluate $X_{u_k+1} S^j_{k+1}$ inh before visiting X_{u_k+1} ($= S^j_{k+1}$) but after visiting X_{u_k} ($= S^j_k$). Finally evaluate X_0.syn. This procedure will obey the dependencies of the augmented dependency graph and will evaluate all of the attributes of p.

End of proof

We now turn to the question of optimal tree-walk evaluators and show that it is an NP-complete problem to construct optimal evaluators. Recall from section 2 that a visit sequence for a tree T is the sequence of VISIT$_k$ instructions used to evaluate T.

Corollary 3: Given a tree T, it is an NP-complete problem to determine...
whether or not there exists a visit sequence for T of length $\leq k$.

proof: Certainly the problem is in NP. Guess a sequence of VISIT$_k$ instructions. Verification can be done in p-time. To show that it is NP-complete we will show that if this problem could be solved in p-time, then the problem of finding minimal length protocols could also be solved in p-time.

Our reduction will be as follows: given an augmented dependency graph $Dp[\delta_{X_0}, IO_{X_1}, ..., IO_{X_{np}}]$ where δ_X has length n_X we will construct a semantic tree T and show that there exists a visit sequence for T of length $\leq (2^n_X + 2^k)$ iff there exists valid protocols for $X_1, ..., X_{np}$ of total length $\leq k$. As pointed out in the proof of the last theorem, we can state this a little differently: given $Dp[\delta_{X_0}, IO_{X_1}, ..., IO_{X_{np}}]$ we will construct a semantic tree T and show that there exists a visit sequence for T of length $\leq (2^n_X + 2^k)$ iff there exists procedures to evaluate all the attributes of p obeying the dependencies of $Dp[\delta_{X_0}, IO_{X_1}, ..., IO_{X_{np}}]$ and using $\leq k$ visit instructions.

Given the augmented dependency graph $Dp[\delta_{X_0}, IO_{X_1}, ..., IO_{X_{np}}]$ construct a semantic tree as follows. Let $<p_0: S ::= X_0>$ be the production applying at the root. Let $<p: X_0 ::= X_1, ..., X_{np}>$ apply at X_0 and let a production $<p_i: X_i ::= terminal_i>$ apply at X_i (1 $\leq i \leq np$). The semantic functions of p have dependencies as given in Dp, the semantic functions of p_0 have dependencies as extracted from δ_{X_0} and the semantic functions of p_i have dependencies as given in IO_{X_i}. Figure 28 gives the form of a semantic tree T constructed by this method.

![Figure 28: The semantic tree T constructed from the augmented dependency graph $Dp[\delta_{X_0}, IO_{X_1}, ..., IO_{X_{np}}]$](image)

Say that there exists a visit sequence for T of length $2^n_X + 2^k$. We will show that there exists procedures to evaluate all the attributes of p and obeying the dependencies of $Dp[\delta_{X_0}, IO_{X_1}, ..., IO_{X_{np}}]$ of length k. Any visit sequence to evaluate T must have n_X visit instructions executed at the root. For each of these there is one VISIT$_0$ instruction executed at p to return control to the root node. Say that in addition to these visit
instructions only H are needed to evaluate the rest of the tree. For each VISIT_i instruction executed at the production p to visit the node X_j one VISIT_0 instruction is needed at p_j to return back to p. Hence $H/2 = k$ visit instructions are executed at p. Since T has all the dependencies of $D_p[I_{X_0}, I_{X_1}, \ldots, I_{X_{np}}]$ this means that procedures obeying the dependencies of $D_p[I_{X_0}, I_{X_1}, \ldots, I_{X_{np}}]$ and using k visit instructions can be constructed to evaluate the attributes of p. The only if part of the proof is left for the reader.

End of proof.
References

Semantic evaluation from left to right.
pp. 55-82.

An algebraic formulation of Knuthian semantics.

Automatic generation of near-optimal linear-time translators for non-circular attribute grammars.
In Conference Record of the Sixth ACM Symposium on Principles of Programming Languages.

Attribute Grammars and Recursive Program Schemes.

Incremental Evaluation for Attribute Grammars with Application to Syntax-directed Editors.
In Conference Record of the Eighth ACM Symposium on Principles of Programming Languages.

Simple Multi-Visit Attribute Grammars.
Technical Report, Department of Applied Mathematics, Twente University of Technology, August, 1980.

[7] Joost Engelfriet and Gilberto Filk
Passes, Sweeps and Visits in Attribute Grammars.
Technical Report, Department of Applied Mathematics, Twente University of Technology, August, 1982.

FOLDS, a declarative formal language definition system.

Cover of Attribute Grammars and Sub-Protocol Attribute Evaluators.
Experience with a Production Compiler Automatically Generated from an Attribute Grammar.

Sub-Protocol Evaluators for Attribute Grammars.
Published as Volume 19, Number 6, of *SIGPLAN Notices.*

Experience with an attribute grammar based compiler.

A Comparison of Storage Optimizations in Automatically-Generated Attribute Evaluators.

Interpretation and reduction of attribute grammars.

A Truly Generative Semantics-Directed Compiler Generator.

The intrinsically exponential complexity of the circularity problem for attribute grammars.
Communications of the ACM 18, 1975.

Alternating semantic evaluator.

Attribute-Influenced LR Parsing.
In *Lecture Notes in Computer Science 94,* Springer-Verlag, 1980.

Strongly Non-Circular Attribute Grammars and their Recursive Evaluation.
Published as Volume 19, Number 6, of *SIGPLAN Notices.*
[20] Uwe Kastens, Brigitte Hutt, and Erich Zimmermann.
GAG: A Practical Compiler Generator.

Ordered attribute grammars.

Translation of Attribute Grammars into Procedures.

Automatic generation of efficient evaluators for attribute grammars.
In Conference Record of the Third ACM symposium on Principles of Programming Languages.
ACM. 1978.

Semantics of context-free languages.
correction in volume 5, number 1.

Compiler Construction Using Attribute Grammars.

[26] B. Lorho.
Semantic attribute processing in the system DELTA.

[27] Eva-Maria M. Mueckstein.
Q-TRANS: Query Translation Into English.

Computation sequences: A way to characterize subclasses of attribute grammars.

[29] H.R. Nielson.
Using computation sequences to define attribute evaluators.
Technical Report, Aarhus University, Denmark, 1981.

An Interpreter of Attribute Grammars and its Application to Waveform Analysis.
Semantic Interpretation in the Request System.

A Family of Pass-Oriented Attribute Grammar Evaluators.

Minimizing the number of evaluation passes for attribute grammars.

[34] Thomas W. Reps.
Generating Language-Based Environments.

Interactive Proof Checking.

On constructing efficient evaluators for attribute grammars.

[37] W.A. Schulz.
Semantic analysis and target language synthesis in a translator.

The coroutine model of attribute grammar evaluation.

Rule splitting and attribute-directed parsing.
In _Lecture Notes in Computer Science_ 24, Springer-Verlag, 1980.