Theses Doctoral

High Performance Local Oscillator Design for Next Generation Wireless Communication

Chuang, Tsung-Hao

Local Oscillator (LO) is an essential building block in modern wireless radios. In modern wireless radios, LO often serves as a reference of the carrier signal to modulate or demod- ulate the outgoing or incoming data. The LO signal should be a clean and stable source, such that the frequency or timing information of the carrier reference can be well-defined. However, as radio architecture evolves, the importance of LO path design has become much more important than before. Of late, many radio architecture innovations have exploited sophisticated LO generation schemes to meet the ever-increasing demands of wireless radio performances.
The focus of this thesis is to address challenges in the LO path design for next-generation high performance wireless radios. These challenges include (1) Congested spectrum at low radio frequency (RF) below 5GHz (2) Continuing miniaturization of integrated wireless radio, and (3) Fiber-fast (>10Gb/s) mm-wave wireless communication.
The thesis begins with a brief introduction of the aforementioned challenges followed by a discussion of the opportunities projected to overcome these challenges.
To address the challenge of congested spectrum at frequency below 5GHz, novel ra- dio architectures such as cognitive radio, software-defined radio, and full-duplex radio have drawn significant research interest. Cognitive radio is a radio architecture that opportunisti- cally utilize the unused spectrum in an environment to maximize spectrum usage efficiency. Energy-efficient spectrum sensing is the key to implementing cognitive radio. To enable energy-efficient spectrum sensing, a fast-hopping frequency synthesizer is an essential build- ing block to swiftly sweep the carrier frequency of the radio across the available spectrum. Chapter 2 of this thesis further highlights the challenges and trade-offs of the current LO gen-
eration scheme for possible use in sweeping LO-based spectrum analysis. It follows by intro- duction of the proposed fast-hopping LO architecture, its implementation and measurement results of the validated prototype. Chapter 3 proposes an embedded phase-shifting LO-path design for wideband RF self-interference cancellation for full-duplex radio. It demonstrates a synergistic design between the LO path and signal to perform self-interference cancellation.
To address the challenge of continuing miniaturization of integrated wireless radio, ring oscillator-based frequency synthesizer is an attractive candidate due to its compactness. Chapter 4 discussed the difficulty associated with implementing a Phase-Locked Loop (PLL) with ultra-small form-factor. It further proposes the concept sub-sampling PLL with time- based loop filter to address these challenges. A 65nm CMOS prototype and its measurement result are presented for validation of the concept.
In shifting from RF to mm-wave frequencies, the performance of wireless communication links is boosted by significant bandwidth and data-rate expansion. However, the demand for data-rate improvement is out-pacing the innovation of radio architectures. A >10Gb/s mm-wave wireless communication at 60GHz is required by emerging applications such as virtual-reality (VR) headsets, inter-rack data transmission at data center, and Ultra-High- Definition (UHD) TV home entertainment systems. Channel-bonding is considered to be a promising technique for achieving >10Gb/s wireless communication at 60GHz. Chapter 5 discusses the fundamental radio implementation challenges associated with channel-bonding for 60GHz wireless communication and the pros and cons of prior arts that attempted to address these challenges. It is followed by a discussion of the proposed 60GHz channel- bonding receiver, which utilizes only a single PLL and enables both contiguous and non- contiguous channel-bonding schemes.
Finally, Chapter 6 presents the conclusion of this thesis.


  • thumnail for Chuang_columbia_0054D_14424.pdf Chuang_columbia_0054D_14424.pdf application/pdf 14.4 MB Download File

More About This Work

Academic Units
Electrical Engineering
Thesis Advisors
Krishnaswamy, Harish
Ph.D., Columbia University
Published Here
May 15, 2018