
j ,

CUCS-74-83

OPTIMAL PARALLEL ALGORITHMS FOR STRING MATCHING

Zvi Galil*

Tel-Aviv University

Columbia University

*Research supported by National Science Foundation Grant

MCS-8303139.

0P'1'I!9.L p~EL ALGORITBMS FOR STRING Mi\TCHING

Zvi Galil·
Tel-Aviv University
columbia university

Abstract: Let WRAM [PRAM] be a parallel
computer with p proces.ors (RAM'.) which
share a conunon memory and are allowed sim­
ultaneous reads and writes (only simultan­
eOUS reads]. The only type of simultan­
eous writes allowed is a simultaneous AND:
several processors may write 0 simul­
taneously into the same memory cell. Let
t be the time bound 0 f the computer. We
design below families of parallel algori­
thm. that solve the string matching pro­
blem with inpuu of size n (n is the
sum of lengths of the pattern and the text)
and have the following performance in terms
of p, t and n:

1. For WRAM: pt = O(n) for
for p ~ n/log n.

2. For PRAM: pt = O(n) for
p~ n/log2n.

) . For WRAM: t ::z cons tant for

p ~ n
l+e and any c > O.

4. For WRAMI t ,. O(log n/log log n)
for p • n.

Similar families are also obtained for the
problem of finding all initial palindromes
of a given string.

1. Introduction.

We design parallel algorithms in the
following model: p sychronized processors
(RAM's) share a common memory. Any subset

*Research supported by National Science
Foundation Grant MCS-8303139.

of the processors can simultaneously read
from the same memory location. We some­
time. allow simultaneous writing in the
weakest sense: any subset of proces-
sors can write the value 0 into the same
memory location (i.e., turn off a s~itch).

We denote by WRAM [PRAM] the model that
allows (does not allow] simultaneous writ­
ing. We also consider (but only briefly)
other modelS of parallel computation. We
actually design a family of algorithms be­
cause we have a parameter p. The perfor­
mance of the family is mea.ured in term.
of three parameters: p--the number of pro­
ces.or., t--the time, and n-- the size of
the problem instance.

It is well known that every parallel
algorithm ~ith p processors and time t
can be easily converted to a sequential
algorithm of time pt. Hence the analog
of linear-time algorithm in sequential corn­
putation is a family of parallel algorithms
with pt .O(n). We therefore call such
algorithms optimal. Surprisingly, while
there are many problema for which linear­
time algorithms are known, there are very
few problems for which optimal parallel
algorithms are known for a wide range of
p. So few, that we list them here.

Every associative function of n var­
iables can be computed by a PRAM in pt s

o (n) for p ~ n/log n. (Use a binary tree.
each leaf "treats" nip inputs.) For a
certain subset of these functions includ­
ing the n variable OR (AND), ~(log n)
time is needed on the PRAM [CD], so pt s

O(n) is unattainable for p » n/log n.
consequently, the only question left is
w~th how few processors can we compute
these functions in constant time on a ~~.
The answer depends on the specific function.
The n variable OR (or AND) function can
be computed by WRAM in pt a n for p ~ n
(i.e .. in time" 1 with n processors).
The n variable MAXIMUM function can be
computed in pt ~ O(n) for p ~ n/log log n

1+ e and in constant time with n processors

(for every c > 0) (V), (SV).
Optimal parallel &lgori~ are known

tor merging two lorted &rrayl (tor p ~

n/ l~ n on a p~)~ merging can be done in
-..,. b th 1+ c constant time even Y a p~ Wl n

processorl (SV) and in log log n with n
proces.ors (V), (aM). Recently, optimal
parallel algorithml were designed for the
problem of converting an expression to its
parse tr&e (BV] and for Selection [Vi).

2

What is common to all these probleml
except Selection is that for each one of
them there is a trivial (sequential) lin­
ear-time algorithm. In this paper we de­
sign optimal parallel algorithms for string
matching. The linear-time algorithm for
string matching is by now very well under­
stood, but at one time, it was quite a ma­
jor discovery. Unlike the case of computing
n variable functions (where it is trivial)
and merging (where it is quite simple) de­
signing optimal parallel algorithms for
string matching was not immediate.

As for the problems mentioned above,
we deSigned other parallel algorithms that
perform string matching on WRAM in constant

. . h 1 l+c . h tlme Wlt on y n processors. As In t e
cases above the time lS proportional to
lie. If only n processors are available
the time needed is O(log nllog log n).

The families of algori~~s we design
have several appealing features:

1. They are not der1'/ed from any of
the variants of the li~ear-time sequential
algorithms ([KMP) , [BM]). The latter do
not seem to be parallelLzable, because
t:"ey construct sequer.t~ally tables which are
used sequentially. So, eVen giving the
tables for free does not seem to help much.
Two known algorithms are parallelizable
but do not yield optimal parallel algori­
thms: the O(n log n) algorithm in [KMR)
yields tp = O(n log2 n) and the probabilis­
tic linear-time algorithm in [KR) yields
a probabilistic family with tp 2 O(n log n).

2. The algorithms we design are all
derived from ~ algorithm: it is an al­
gorithm for WRAM ~ith P = nand t = log n
for the case that the text is twice longer
than the pattern.

3. The algorithms make 'ue of pro­
perties of periodicities 1n str1ngs derived
fr~ ~~e Periodicity Le~ma which states
that two different periodicities cannot co­
exist long enough (if they do, then there
is a common refinement). Similar proper­
tles were used in a different way to de.ign
a linear-time algori~~ for string matching
which use. only constant (five) registers
[GS). Therefore, we have here an example
for a relationship between sequential space

&nd parallel time in the loweat level.

4. ~I in the algorithm in (GS), it
il pollible to write a very short program
(for each processor), but a longer explan­
ation ia needed mainly because the algo­
rithm uses implicitly propertiel of perio­
dicitiel several timel.

S. The algorithms use what seems to
be a novel method of communication among
the varioul processors, a. ~ill be indi­
cated below.

String matching is the follOWing pro­
blem. The input consists of two strings,
x (the pattern) and y (the text), OVer
a given alphabet of a !ixed size. The out­
put is a Boolean array indicating all the
occurrences ot x in y.

In Section 2 we prove several sim­
ple fact. on periodicities of atrinqs used
by the algorithm. In Section 3 we sketch
the main algorithm which il non optimal
(p • 3n t • log n) and only deals with
a special case (\yl = 2\x\ ·2n). In
Section 4 we complete the details ot the
algorithm. In Section 5 we show how the
four familiel of parallel algorithms men­
tioned above are derived from the main
algorithm. In Section 6 we briefly dis­
cuss other models of parallel computation
and the problem of finding all initial
palindromes of a given string.

2. Periodicity in Strings.

A string u is a ceriod of a string
~ if w is a prefix of uk for some k
or equivalently if w is a prefix of uw.
We call the shortest perlod of a string
w the period of w. Thus a is the
period of aaaaaaa while aa,aaa, etc are
also periods of w. We say that w has
perlod size ? if the length of the per­
iod of w is P. If w is at least
twice longer than its period we say that
w is ceriodic.

We wlll consider pref:xes of the pat­
tern x of increasing length, Assume we
consider a prefix u and then a prefix
v. In the case that u is periodic we
will say that the periodicity continues
in " if the period of './ is the same as
the period of u (e.g. u = abcabcab.
v = abcabcabcabcabcaJ and that ~he perio­
diclty terminates otherwlse (e.g. the same
u, v • abcabcabcd ...).

We will need some simple facts about
periodicities.

,:'act l (The Periodicity Lemrnal[LS): If
w has two periods of size ? and Q and
Iwl 2 P + Q, then w has a period of Slze
gcd(P,Q).

For a one line proof see [GS].
In the re.t of thi. .ection an occur­

rence at j will mean an occurrence at
po.ition j iA. given fiXed .tring z.

A

Fact 2: If v occur. at j and j + P,
p ~ Iv!/2, then (l~ v i. periodic with a
period of length p, and (2) v occur. at
j + P, where P is the period size of v.
The first half of Fact 2 follow. from the
alternative definition of period. The se­
cond half of Fac~ 2 hold •• ince by Fact 1
P must diVide P.

In the rest of this section we con-

sider a periodic string v a uku', k > l,
u the period of v, u' a proper prefix of
u, and lu! .. P. Let L = .tP, 1. '" nv \lpl.
The next t~ facts :~llow from a simple
counting of period.

Fact 3 : If v occurs at j and j + mP,

m ~ k, then k+m u' at j. u occurs

Fact 4: v occurs at j, j + P and j + L

iff
k+1. u u' occurs at j.

If
- P,

v occurs at
then a is a

j and j + t.,
mul tiple of P.

~: OtheI"olise a = mP + r, 0 < r < p,
(k-m) , .

and m < k. Let w = u u. W 1S a
suffix of v, so it occurs at j + mP. It
is also a prefix of v, so it occurs at
j + 6 = j + mP + r. By Fact 2, w haa
a period of size r in addition to a
period of size P. By Fact l, it has a
period of size gCd(p,r) < P which divide.
P. Hence P cannot be the period size
of v. a

We call an occurrence of v at j
~mportant if v does not occur at j + P.

Fact 6: If there are two important occur­
rence. of v at rand s, r > s, then
r - s > Ivl - p.

proof: ~ •• ume r - s ~ Ivl - P. By Fact 5.
k+m r - s • mP. By Fact 4. u u' occurs at

r. and hence v occurs at r + P, and the
occurrence at r cannot be important. a
3. A sketch of the main algorithm.

The input is a string z ~ x S Y of
length 3n + 1. x is ~he pattern, Ix! = n,
and y is the text. \yl '" 2n. Both are
Over a given alphabet of ~ size which
doe. not contain S. The output is a Boo­
lean array of length 3n + 1 called SWITCH.
The final value of SWITCH[i] is 1 iff an
occurrenCe of x starts with z .. The W~~

1

3

hal 3n + 1 proce •• or.. Proce •• or i i.
re.pon.ible for %i and SWlTCH[i].

Given a string u of length 1. we
say that we te.t for u ~ (po.ition) i
(of z) if we execute AND(u

l
'" z. , .•• ,u

1. 1.

• zi+1.-1)·
at i and
WRAM. The

Such a te.t finds if u occurs

takes one unit of time on the
straight fOI"olard algorithm that

2
at all i's needs n proce.-te.t. for x

sor.. (i)
Let X be the prefix of x of size

2 i d 1 t (i+1) (i) (i) • an e x a X y •
rithm con.ists of log n stage •.
stag_ i SW!TCH (j] 3 1 if and

x(i) occurs at j.

The algo­
After

only if

We now deacribe stage i + 1, which
takea a conatant (at moat~) step.. The
taak of the stage i. to test whether each

occurrence of x(i) i. followed by an oc­

currence of y(i). In ca.e the answer is
negative the corresponding 1 in SWITCH is
turned off.

w. divide the array SWITCH into blocks
i-l of size 2 . We .ay that property i

~ if each block has at most one 1. We
distinguish between two cases: the regular
~, and the periodic caSe.

The regular CUe is the one in which
the !i!!S block of SNITCH has only one 1
(at position 1). By induction, the other
blocks may have at most two l's. In a
block with two l's, the 1 at the smaller
position is turned off. (This occurrence

of xli) is not a beginning of an occurrenCe

f (i+l» 1 t' ox. As a resu t, proper y 1

i-l hold.. There are 2 processors respon-
sible for the block. Hence, in t~o steps

f (i) h . they can test or y at t e appropr~ate
position if they knew which comparisons
they ought to perform. We will explain
below how this is done. We call it a ~
lar step.

In the periodic case that follows a
regular case the first block has two l's;
the second of which at position P + 1. It

follows from Fact 2 that xli) is periodic
with period size P. In the periodic case
we test whether the periodicity of

xli) continues in x(i+ll. We do it in t~o
steps u.ing xli) as a yardstick. If x(i.l)
has the same period we similarly find all
its occurrenCes. Then we start stage i + 2
. . . (Hl)
1n the p.r~od~c case. If x doe. not
have the same period we turn off (justifi-

a.b1~) many 1'1 in Slf'ITCB. AI a relul t, pro­
pertY-- i hola. and w. complete the Itage
with a reqular Itep. Each part in the dis­
cUllion above malte. lome use of preputi ••
ot periodiciti ...

During the algorithM the proce.lorl
need to communi cat.. For glooal communica­
tion we have a bulletin board, BS, where
Soml announcements are POlted: e.g. it the
caae is periodic and the size ot the period.
Also, the proceslors relponsible for II.

block need to communicate in order to find
which comparisons they ought to make in II.

regular step. For this purpose we have
local bulletin boards, lbo's. We can ule
an additional array to store the lbo's.
Alternatively, each loa can b. stored at
the last element of its olock. At the end
of each stage one of every CwO consecutive
lbb's diel and may transfer some informa­
tion to the survlvlng one before it pas.es
away. (See Figure 1.)

4. The Details.

The flow chart of the algorithm is
given in Figure 2. In this section we give
the details of each one of the seven boxes
in the flow chart. The rirst and last
stage are slightly different and are dis­
cussed at the end of the section.

We enter box 1 after a regular step
in stage i. Consider blOCKS numbers
2j-l and 2j at the end of stage i. They
contain at moat one 1. The Ibb of the
first block dies at the end of the stage.
The processor responsible for the second

Ibb (number 2j.2 i - 2) looks at the dying
Ibo and if it is not empty, it triea to
transfer its contents to its lbb. Two l's
per blOCK are discovered when its Ibb il
already nonempty.

Box 1 deals with the caae j a 1. If
two l's are discovered in the (new) firat
block we are in the periodic case, which
is explained below. Boxea 2, 3 deal with
the cale j > 1. If two l's are discovered
the first is turned off by the processor
responsible for the surviving Ibb. (It
is the proceaaor that discovers the two
l' s.)

To understand box 4, the regular
step, consider Figure 1. If the occurrence
starts at Z l' then the lbo contains A.

~+

Procelsor j in the group that correspond.
to the block makes cwo comparisons:

~ .. ~+c/ for k € (j+2
i

,j+2
i

+2
i
-

l
). If

one of the answers is negative it turns off
the 1 at SWITCH (A+l). This is the only
place where the concurrent write is used.

The test in box 1 is actuatty handled

4

ditferently. Since SWlTCH(l) • 1, th_
procea.or reaponsiole for the .econd Ibb
ot .tag_ i (th. first of stage i+1)
looka at ita lbb. If.it i. nonempty it
containa P: i.e., X(l) is ?eriodical ~ith
period size P. The processor pests P on BB.

During the periodic loop (boxea 5,6)
the lbb's are not updated and are not Uled.
BS will contain P and L = £p, where

t • r2 i /pl. When we enter box 5 from box 1

t c (2,3J (2
i

-
2 < P + 1 ~ 2

i
-

1).
Updating L in the loop is ea.y: L ~ if

i+l
2L - P > 2 then 2L - Pels. 2L.

-(i+l) . Let x be the preflx of x of

size 2i + L (lx(i+l)I" 2i+1 ~ Ix(i+1) <
2 i + l + Pl. In box 5 we test whether the

periodicity continues in ~(i+l) by using

xli) aa a yard.tick. (Fact 4 v a xli) ,
. -(i+l) k+t .
J 3 1, x .. U U')I the f~rst pro-
cea.or teats whether SWITCH (P+l) • 1
and swtTCH(L+1) a 1. Recall that P and
L are poa ted. The firs t tes t is redund­
ant when we come from box 1. Similarly,

in Box 6, we find the occurenCeS of i(i+l)

as follows (Fact 4 v • x(i),~(i+ll:a uk+,u'):
proces.or Pj that seeS 1 at SWITCB(j)

checks whether SWITCH(P+j) = 1 and
SWITCH(L+j) a 1. If one of the tests fails
Pj turna off the 1.

Recall that an occurrence of v a xli)

at j ia called important if xli) does
not occur at j+P. Since SWITCH(l) ,. 1 and
one of SWITCH (P+l) , SWITCH(L+l) is zero,

(i)
at least one of the occurrences of x
at positions j ~ L + 1 - P is important.
By Facts 5,6, either the occurrence at 1
is important or there is exactly one im­
portant occurrence at some j 1 ~ j ~
L+l-p.

When we test if the periodicity con­
tinues, first, Pl cheCKS SWITCH(P+l). rf

it is zero, then the occurrence at
important and Pl posts 0 on aBo

1 is
Other-

wi •• it tests SWITCH(P+L). If it is 1,
the periodicity continues. Otherwise.
each processor P

j
tests (using SWITCH)

whether there is an important occurrence
at j. The unique p. that succeeds posts

)

j-l on BB.
Next, each processor Pr with

SWITCH(r) = 1 uses SWITCH and the posted
value of j-l to check whether there is an

(i) . 1 If important occurrence of x at r+J- .

there i. no .uch an occurrence it turn. off
the 1 at SWI'1"ClI(r). Thi. ia justHied

A(i+l) t i becauae x cannot occur a r, s nce

in x (i+l) there 18 an important occurrence

ot xli) at j. At thia point property i
holda by Fact 6.

Before executing the regular step
(box 4) the lbb'a are re.tored. Each pro­
ce.aor p with SWITCH(r) '" 1 write. r-l in

r
its lbb. By Claim 2. no conflict occura.
To be able to do it, each procesaor know.

5

in each atage where is its lbb. This intor­
~ation can be eaaily precomputed or updated
dynamically.

The firat stage is very simple. Pro­
ceaaor Pj teata whether ZjZj+l = x l x2 . If

the te.t succeeds. p. turns on SNITCB(j)
::l

and makea the j-th lbb for the second stage
point to the l. Recall that the size of
the blocks in the second stage is l.

We now discuss the changea needed for
the la.t stage, but first ~e need to elabor­
ate on the other stages. Consider stage
. 1 d f (i) .
~+ , an an occurrence 0 x at::l ~ n.

. i+l (i+l)
Asaume)+2 > n+l, so x cannot occur
at j simply because ~t is too long. and
the ! does not ~atch any symbol of x. In
case the first mismatch from the left is
the 5 the algorithm w~ll not turn off the 1
at SWITCH (j). (It is as though the !i
and the follOWing symbols al~ays match the
symbols compared to them. ~s a result, a
1 in SWITCH may stand :or an OVerhanging
occurrence.

In the last stage, if ?roperty i holds •.
or if the periodicity terminates (and as a
result of including overhanging occurrences
it ~eans that it terminates before the 5)
~e execute a regular step without any change.
The only change is in the case that the
periodicity continues. While in the other
stage. it means that the periodicity con-

tinues to i(i+l),in the last stage it con­
tinue. only to the S. We find ourself in

this case when L + 1i 2 n (1~ll+l)1 ~IXI).
We call an occurrence of xli) at j special

if j + 2i ~ n and j + ? + 2i > n + 1 (if

the next occurrence of x(i). at j+P is the
first overhanging occurrence). ~s ~ith im­
portant occurrencea the unique p. that finds

)

a special occurrence at j posts j-l on
BB. (Note that j ::II mP + 1 for some m.

m k 2
x ::II U U u·u".u'u" a prefix of u.) Then
each Pr that Seea a 1 at SWITCH(r) checks

~hether SNITCH(r+j-l) '" 1 and if not it

turns off the 1. I f the teat succeeda'
it check. whether ~TCB(r+j-l+P) - 1. tf
the t •• t aucceeda we kn~ that x occur.

. m+k+l
at r (aince the teat. lmply that u u'
occura at j). If the teat fails we still
do not know the answ.r. Note that in this

th
(i). 1 . caa. • occurrence at x at r+J- LS

important and by Fact 6 if we restrict at­
tention to occurrence. at r's such that
the occurrence at r+j-l is important. then
property i holds. So we activate the
lbb's and u •• a regular step to te.t whe-

ther such occurrencea of xli) extend to
occurrence. of x.

5. The Four Familie •.

5.1 Using only ntlog n procesaors.

Th. main algorithm can be implemented
with only n/log n proce.sors using the four
RUSsiana trick [ABU] to pack log n symbols
into one number.

Each processor ia reaponsible for s
conaecutive symbols in % and in SWITCH,
where J • clog nand c depends on the
alphabet size: proce.sor Pr will be

responsible for Zj' SWITCB(j) j E Ar

3 [(r-l)s+l, •••• rs). First. each Pr packs

each substring of Z of length s that
starts ~ith %., j € A , into a new symbol

) r z.. Then it compares each i., j C A_~.
J. . ::l

~ith %1 and if they are equal it sets

SWITCH(j} • 1. This has ~~e effect of the
first t '" log s stages and takes O(s) =
o (log :1) ';i:11e.

~ssume the next «(t+l)-st) stage is in
the regular case. The other stages are as
In ~~e main algorithm. The only differ­
ence is that in each regular step the pack­
ed symbols z~ are used.

If the 1t+l)-st stage is periodical.
then the period size P < s/2, and we need
also to pack the bits in SWITCH. Each p~

packs the s consecutive segments of
SWITCH starting with each SWITCH(j} j E ~

r
When the per~odicity continues and we test

• (i+l)
for occurrences of x ~e can handle
all the l's in a packed symbol of SWITCH
simultaneously using some simple bit Vec­
tor operations On the packed symbols. Even
if ~e disallow bit vector operations, the
n/log n processors can prepare (in time
O(log n» a table to implement thele oper­
ations.

S.2
W. now haV. an algori thIII with tPO •

o(n) tor Po • n/l09 n. This iameciiately

yiel~ a tamily with tp • o(n) tor P ~
n/l09 n because ot the w.l~ known dowmolard
tranalation. In g6neral, ~t tpO • fen),

then w. have a family with tp • fen) for
p ~ PO' becau.e having only P proce •• or.,

each one will. simulate PO/p processors and

the time will be s lOIoIed dO'Wn by a factor
at pc/po

we still have to deal with the ca.e
in which Ixl and Iyl are unrelated. Let
n • Ixl+\y\ (the length of the input) and
M • Ixl. It p ~ 2n/M we divide y into
p/2 equal parts. Let the i-th eiece be
the concatenation of the i-th and (i+l)st
parts. There are p piece. and we a •• ign
one processor per piece. The size ot a
piece S • 2\YI/(p/2) satisfies 4n/p 2 S
2 2n/p 2 M. Each processor lOOKS for all
occurrenCes of x in its piece in tiMe
O(S) • O(n/p). Hence in this case, when
we have a small number of processors, we
have an optimal algori~:-J!I simply because we
still solve the problem sequentially.

If p > 2n/m (p ~ n/log m) we break
y into overlapping pieces of size 2m. The
number s ot such pieces satisfies
n/m ~ s ~ 2n/~ < p. We assign pIs
(~ m/log m) processors per piece. By the
first paragraph above, all the occurrenceS
in a piece can be found in time t such
~~at t·p/. = Oem), or tp = Oems) = o(n).

5 • 3 On the PRAM.

Consider the main algorithm. The
only case of concurrent write is the

i-l regular steps ~~e 2 processors of a
block compute ~n AND. If we do not allOlol
concurrent write, we can no longer execute
one stage in constant time. The algorithm

2 on the ~RAM takes time O(log 0), because
each stage tak •• 0(109 n) time.

Fortunately, we can implement this

algorithm with only n/1092
n proce.sors.

Each proce •• or i. respon.ible for
2 log n symbols or for log n pacKed symbols.

In a regular step, the processors in a
block make log n comparisons of packed
symbols (in time log n). They record only
whether all the comparisons succeed. Then
USing the implicit tree structure, they
'and' their results in time O(log n).

The discussion above yields an algo-

rithm on a ~RAM with p a n/log
2

n and

6

2 t .O(log n) .The r .. t is u in subsection
5. 2. The algori t:.hm can b. implemented
without simultaneous read ••

5.4 Having many proce.sor ••

As.ume \YI • 2\x\ .2n. As wa. noted
. th 2 1 above, w1 n processors we can so ve

string matching in constant (t = 2) time
on the WR.AM. We shOIoI belOlol that if

p • n l +llk we can solve string matching
in time O(k). This immediately gives the
third and fourth familie.: for the third,
take c • 11k and the constant is k. For
the fourth, take K • log n/log log n. !n
this ca •• p • n log n, but by packing
symbOls we reduce p to n.

In this subsection we U.e a stronger
version of WRAM. In case of a write con­
flict the processor with the minimum num­
ber is the one that writes. At the moment,
if it is not Known whether such a WRAM can
be simulated cy our weaker type without
time 10... However, in our case, such sim­
ulation is possible.

AI.ume one subset of p processors
tries to write simultaneously into a re­
gister and the processor with the minimal
number succeeds. It was ocserved in (FRW)
that our weaker model of WRAM can do the
same in four step.: the processors are
partitioned into JP group. of size JP.
In the first step each group computes
whether one of its members wants to write.
The result is a Boolean array of size JP.
In the second step the l's in that array
that are not first are turned off. This
is possible because there are ~Ip processors
for each 1. NOW, the processors in the
corresponding group find in a similar way
the minimal in the group. Such a simula­
tion will easily ce extended to our case.

When we have n or more processors

we can use them to have x(i+l) more than
(i)

twice larger than x and as a result,
to have less than log n stages. Specifi-

1+1/'<
cally, let p = 3n . The processors

are divided into 3n groups of nl/k pro­
cessors. Each group contains one ~
cipal processor, and is responsible for
one symbol of z and SWITCH. The length

of xCi) is nilk. In the first stage (find-
. (1)
~ng all occurrences of x) the i-th group
looks for an occurrence at i.
The size of the clOCKS for seage i + 1 is

Ix(i) \/2 • n i / k/2. A regular step is
simple, since we have enough processors:
the number of processors in the groups

7

. (i+1) k
co:tlO •• pondinq to a block 1.1 n /2 ,.
Ix{i+l) 1/2 •

Th. parta concerninq periodicity are
slightly different, because the size of
blocks much mere than double. from one stage
to the next. TO test for periodicity, each
principal processor in the first block that
sees 1 writes its group number minus 1
on the same place of BB. The one with the
minimal group number succeeds, and po.t~
the period size P.

Let L
i

" lx(i)/PJp, Li can be easily

maintained and is available in stage i + 1.
11k

~ote that L. 1 ~ 2n t .. To test if the
1.+ 1.

periodicity continues, the first group

chedcs whether SWITCH (l+jL.)=1 for)=1, ••• ,
1.

2:'l1/1e. 1In ~his case x li ·d) = 2nlllcL.+xli),

so x li+1) < Ixli"'l)1 < 3xli+1).) 1.

If the test succeeds, a similar test

is used to test which occurrence of xli) is
. (i+l)

extended to an occurrence of x . If
the test fails, using the stronger form of
concurrent writing the first group finds
the first j w. th S~i'I':'CH (l+jt. J = O. The

1.

value of j is posted on 3B, and next
SWITCH(r) = 1 is not turned off only if the
r-th group finds that SWITCHlr+jL.) = O.

1.

and for all Ie < j SWITCHlr+kL.) = 1.
The stronger type of coRcurrent write

is used only within groups. and the memory
locations are different for different
group.. The simulation ~entioned above
(for one group) can be obviously extended
to our case. We left out the details of
allocating of processors. For fixed Ie
~~~s tasle is immediate because we can ass~e 

kr that n = 2 for some r. In the general 
case Ilxl and Iy! unrelated) the number of 

processors needed is only ~~11k and with 
p = n the time bound is O(log m/log log m). 

6. Conclusion 

We can implement the ~al.n algorithm in 
other models for parallel computation: 

1. Soolean circuits of size 

0(:'1 10g2:'1) ~nd iepth 0(10g2:'1)' 

2. Fixed connection networks (the 
k-dimensional cube) and even net­
works with fixed degree (CCC's 
[PV]) in pt ,. O(n log n). 

The details of these implementation are 
straightforward. Both use shifting net­
worles as building blocks. 

There are some que.tions unre.olved, 

1. Can we solve .tring matching on 
WRAM with n processors in con­
stant (O(log log n» time? 

2. Can we solve string matchinq 
deterministically on PRAM with 
n/loq n (or even n) processors 
in O(loq n) time? (The parallel 
version of [KR] hal p ~ n, 
t 2 O(loq n) but is probabilis­
tic.) 

3. Can we find optimal parallel al­
gori~ for string matching on 
fixed connection networks? 

Finally, families of parallel alqori­
thms corresponding to all the families men­
tioned above can be derived for finding all 
initial palindromes of a given string w. 
The reduction of ~~e latter problem to 
string matching [FP] does not help, be­
cause it makes use of the table of the KMP 
algorithm. It is not clear how to compute 
efficiently this table in parallel. In-

stead we 100le for w in wrev , recordi~q in 
SWITCH' also overhanging occurrences. The 
~ain algorithm discovers the initial palin-

i-1 i drames 0 f length 1., 2 < t ~ 2 , in stage i. 

Acknowledgement: I am indebted to Uzi 
Vishkin for suggestions that have led to 
several improvements. 

References: 

[ABU) A.V. Aho, J.E. Hopcroft and J.D. 
Ullman, The deSign and analysiS of 
computer algorithms. Addison Wesley, 
Reading MA, 1974. 

[BH] A. Borodin and J.E. Hopcroft, 
Routing, ~ergi~g and sorting on 
parallel models of computation, ~. 
14th AC~ STOC (1982), pp. 338-344. 

[aM] R.S. Boyer and J.S. !'!oore, A fast 
string searching algorithm. Carom. AC~ 

12 (1977), pp. 762-772. 

[BV] 1. Bar-On and U. Vishkin, op:imal 
parallel generation of a computat40n 
tree form, Manuscript, Depar~ent of 
Computer Science, Courant Institute, 
October 1983. 

[CD] S.A. Cook and C. Dworle, Bounds 
on the time for parallel RAM's to 
compute simple functions, Proc. 14th 
ACM STOC (1982), pp. 231-233. 

l:P] M.J. Fischer and M.S. Paterson, 
String-matching and other products, 
in complexity and computation, ~ 
AMS proceedings 7 IR.M. Karp, Ed.). 



W'o lLJ-U5, Aaarican Mathanatical 
Society, providence, R.I., 1974. 

8 

(FRW) P ••• rich, R.L. Ragde and A. Wiq-
dar.on, R.l.tio~ between concurrent­
write medel. of parallel computation, 
Manulcript, November 1983. 

(GS) Z. Galil and J.I. Seiferal, Time-
space-optimal string matching, JCSS 26 
(1983), pp. 280-294. 

(KMP) D.E. Knuth, J.B. Morril and V.R. 
Pratt, Fait pattern matching in 
strings, SIAM J. comput. § (1977), 
pp. 322-350. 

[KMRJ R.M. Karp, R.E. Miller, and A.L. 
Ro.enberg, Rapid identification of 
repeated patterns in string., treel 
and arrays, Proc. 4th ACM STOC (1972), 
pp. 125-136. 

(KR] R.M. Karp and M.O. Rabin, Effi-

(LS] 

cient randomized pattern-matching 
algorithm., a manuscript. 

R.C. Lyndon and M.P. Schutzen­
berger, The equation aM = bNcP in a 
free group, ~chigan ~th. J. ~ 
(1962), 289-298. 

(PV] 

( SVI 

(V] 

[ViI 

P.P. Preparata and J. Vuill.ai 
The cub n, e-connected-cycl •• , a versa-
~~le network for parall.l ccmputa­

on, prgs. 20th IEEE FOeS (1979) 
pp. 140-147. ' 

ing 
in 
of 

Y. Shiloach and U. Vishkin, Find­
the maximum, ~erging and sorting 

a parallel cOmputation ~odel, ~ 
Algorithml l (1981), pp. 86-102. 

L.G. Valiat, Parallelism in com­
parison problena, SlAM J. on comput­
ing ~ (1975), pp. 348-355. 

u. Vishkin, An optimal parallel 
algorithm for selection, Manuscript, 
Department of Computer Science, 
Courant Institute, December 1983. 

r- >tIl) --, ,---- y:~)---, 

~~ 

SWITCH [ 1 • 

L-~.l--.J~ 
Li:lb 

f (1) followed by a potential :: igure 1. An OCC'..lrrance ° x 1n z 
occurrence of y(il; a block 1:1 SclI':c.::l and 1tS lbb. 



che Eleriodl.c 
lOOEl 

\ 
(i· l) 

of )( 

Fi5!Uf' 2. Stage 

curn 
off 

~ proper'::y 

9 

i .. i. .. 1 

7 

off 

1 :~olds 


