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Abstract: Let WRAM [PRAM] be a parallel 
computer with p proces.ors (RAM'.) which 
share a conunon memory and are allowed sim­
ultaneous reads and writes (only simultan­
eOUS reads]. The only type of simultan­
eous writes allowed is a simultaneous AND: 
several processors may write 0 simul­
taneously into the same memory cell. Let 
t be the time bound 0 f the computer. We 
design below families of parallel algori­
thm. that solve the string matching pro­
blem with inpuu of size n (n is the 
sum of lengths of the pattern and the text) 
and have the following performance in terms 
of p, t and n: 

1. For WRAM: pt = O(n) for 
for p ~ n/log n. 

2. For PRAM: pt = O(n) for 
p~ n/log2n. 

) . For WRAM: t ::z cons tant for 

p ~ n 
l+e and any c > O. 

4. For WRAMI t ,. O(log n/log log n) 
for p • n. 

Similar families are also obtained for the 
problem of finding all initial palindromes 
of a given string. 

1. Introduction. 

We design parallel algorithms in the 
following model: p sychronized processors 
(RAM's) share a common memory. Any subset 
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of the processors can simultaneously read 
from the same memory location. We some­
time. allow simultaneous writing in the 
weakest sense: any subset of proces-
sors can write the value 0 into the same 
memory location (i.e., turn off a s~itch). 

We denote by WRAM [PRAM] the model that 
allows (does not allow] simultaneous writ­
ing. We also consider (but only briefly) 
other modelS of parallel computation. We 
actually design a family of algorithms be­
cause we have a parameter p. The perfor­
mance of the family is mea.ured in term. 
of three parameters: p--the number of pro­
ces.or., t--the time, and n-- the size of 
the problem instance. 

It is well known that every parallel 
algorithm ~ith p processors and time t 
can be easily converted to a sequential 
algorithm of time pt. Hence the analog 
of linear-time algorithm in sequential corn­
putation is a family of parallel algorithms 
with pt .O(n). We therefore call such 
algorithms optimal. Surprisingly, while 
there are many problema for which linear­
time algorithms are known, there are very 
few problems for which optimal parallel 
algorithms are known for a wide range of 
p. So few, that we list them here. 

Every associative function of n var­
iables can be computed by a PRAM in pt s 

o (n) for p ~ n/log n. (Use a binary tree. 
each leaf "treats" nip inputs.) For a 
certain subset of these functions includ­
ing the n variable OR (AND), ~(log n) 
time is needed on the PRAM [CD], so pt s 

O(n) is unattainable for p » n/log n. 
consequently, the only question left is 
w~th how few processors can we compute 
these functions in constant time on a ~~. 
The answer depends on the specific function. 
The n variable OR (or AND) function can 
be computed by WRAM in pt a n for p ~ n 
(i.e .. in time" 1 with n processors). 
The n variable MAXIMUM function can be 
computed in pt ~ O(n) for p ~ n/log log n 

1+ e and in constant time with n processors 



(for every c > 0) (V), (SV). 
Optimal parallel &lgori~ are known 

tor merging two lorted &rrayl (tor p ~ 

n/ l~ n on a p~)~ merging can be done in 
-..,. b ...... th 1+ c constant time even Y a p~ Wl n 

processorl (SV) and in log log n with n 
proces.ors (V), (aM). Recently, optimal 
parallel algorithml were designed for the 
problem of converting an expression to its 
parse tr&e (BV] and for Selection [Vi). 
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What is common to all these probleml 
except Selection is that for each one of 
them there is a trivial (sequential) lin­
ear-time algorithm. In this paper we de­
sign optimal parallel algorithms for string 
matching. The linear-time algorithm for 
string matching is by now very well under­
stood, but at one time, it was quite a ma­
jor discovery. Unlike the case of computing 
n variable functions (where it is trivial) 
and merging (where it is quite simple) de­
signing optimal parallel algorithms for 
string matching was not immediate. 

As for the problems mentioned above, 
we deSigned other parallel algorithms that 
perform string matching on WRAM in constant 

. . h 1 l+c . h tlme Wlt on y n processors. As In t e 
cases above the time lS proportional to 
lie. If only n processors are available 
the time needed is O(log nllog log n). 

The families of algori~~s we design 
have several appealing features: 

1. They are not der1'/ed from any of 
the variants of the li~ear-time sequential 
algorithms ([KMP) , [BM]). The latter do 
not seem to be parallelLzable, because 
t:"ey construct sequer.t~ally tables which are 
used sequentially. So, eVen giving the 
tables for free does not seem to help much. 
Two known algorithms are parallelizable 
but do not yield optimal parallel algori­
thms: the O(n log n) algorithm in [KMR) 
yields tp = O(n log2 n) and the probabilis­
tic linear-time algorithm in [KR) yields 
a probabilistic family with tp 2 O(n log n). 

2. The algorithms we design are all 
derived from ~ algorithm: it is an al­
gorithm for WRAM ~ith P = nand t = log n 
for the case that the text is twice longer 
than the pattern. 

3. The algorithms make 'ue of pro­
perties of periodicities 1n str1ngs derived 
fr~ ~~e Periodicity Le~ma which states 
that two different periodicities cannot co­
exist long enough (if they do, then there 
is a common refinement). Similar proper­
tles were used in a different way to de.ign 
a linear-time algori~~ for string matching 
which use. only constant (five) registers 
[GS). Therefore, we have here an example 
for a relationship between sequential space 

&nd parallel time in the loweat level. 

4. ~I in the algorithm in (GS), it 
il pollible to write a very short program 
(for each processor), but a longer explan­
ation ia needed mainly because the algo­
rithm uses implicitly propertiel of perio­
dicitiel several timel. 

S. The algorithms use what seems to 
be a novel method of communication among 
the varioul processors, a. ~ill be indi­
cated below. 

String matching is the follOWing pro­
blem. The input consists of two strings, 
x (the pattern) and y (the text), OVer 
a given alphabet of a !ixed size. The out­
put is a Boolean array indicating all the 
occurrences ot x in y. 

In Section 2 we prove several sim­
ple fact. on periodicities of atrinqs used 
by the algorithm. In Section 3 we sketch 
the main algorithm which il non optimal 
(p • 3n t • log n) and only deals with 
a special case (\yl = 2\x\ ·2n). In 
Section 4 we complete the details ot the 
algorithm. In Section 5 we show how the 
four familiel of parallel algorithms men­
tioned above are derived from the main 
algorithm. In Section 6 we briefly dis­
cuss other models of parallel computation 
and the problem of finding all initial 
palindromes of a given string. 

2. Periodicity in Strings. 

A string u is a ceriod of a string 
~ if w is a prefix of uk for some k 
or equivalently if w is a prefix of uw. 
We call the shortest perlod of a string 
w the period of w. Thus a is the 
period of aaaaaaa while aa,aaa, etc are 
also periods of w. We say that w has 
perlod size ? if the length of the per­
iod of w is P. If w is at least 
twice longer than its period we say that 
w is ceriodic. 

We wlll consider pref:xes of the pat­
tern x of increasing length, Assume we 
consider a prefix u and then a prefix 
v. In the case that u is periodic we 
will say that the periodicity continues 
in " if the period of './ is the same as 
the period of u (e.g. u = abcabcab. 
v = abcabcabcabcabcaJ and that ~he perio­
diclty terminates otherwlse (e.g. the same 
u, v • abcabcabcd ... ). 

We will need some simple facts about 
periodicities. 

,:'act l (The Periodicity Lemrnal[LS): If 
w has two periods of size ? and Q and 
Iwl 2 P + Q, then w has a period of Slze 
gcd(P,Q). 



For a one line proof see [GS]. 
In the re.t of thi. .ection an occur­

rence at j will mean an occurrence at 
po.ition j iA. given fiXed .tring z. 
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Fact 2: If v occur. at j and j + P, 
p ~ Iv!/2, then (l~ v i. periodic with a 
period of length p, and (2) v occur. at 
j + P, where P is the period size of v. 
The first half of Fact 2 follow. from the 
alternative definition of period. The se­
cond half of Fac~ 2 hold •• ince by Fact 1 
P must diVide P. 

In the rest of this section we con-

sider a periodic string v a uku', k > l, 
u the period of v, u' a proper prefix of 
u, and lu! .. P. Let L = .tP, 1. '" nv \lpl. 
The next t~ facts :~llow from a simple 
counting of period. 

Fact 3 : If v occurs at j and j + mP, 

m ~ k, then k+m u' at j. u occurs 

Fact 4: v occurs at j, j + P and j + L 

iff 
k+1. u u' occurs at j. 

If 
- P, 

v occurs at 
then a is a 

j and j + t., 
mul tiple of P. 

~: OtheI"olise a = mP + r, 0 < r < p, 
(k-m) , . 

and m < k. Let w = u u. W 1S a 
suffix of v, so it occurs at j + mP. It 
is also a prefix of v, so it occurs at 
j + 6 = j + mP + r. By Fact 2, w haa 
a period of size r in addition to a 
period of size P. By Fact l, it has a 
period of size gCd(p,r) < P which divide. 
P. Hence P cannot be the period size 
of v. a 

We call an occurrence of v at j 
~mportant if v does not occur at j + P. 

Fact 6: If there are two important occur­
rence. of v at rand s, r > s, then 
r - s > Ivl - p. 

proof: ~ •• ume r - s ~ Ivl - P. By Fact 5. 
k+m r - s • mP. By Fact 4. u u' occurs at 

r. and hence v occurs at r + P, and the 
occurrence at r cannot be important. a 
3. A sketch of the main algorithm. 

The input is a string z ~ x S Y of 
length 3n + 1. x is ~he pattern, Ix! = n, 
and y is the text. \yl '" 2n. Both are 
Over a given alphabet of ~ size which 
doe. not contain S. The output is a Boo­
lean array of length 3n + 1 called SWITCH. 
The final value of SWITCH[i] is 1 iff an 
occurrenCe of x starts with z .. The W~~ 
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hal 3n + 1 proce •• or.. Proce •• or i i. 
re.pon.ible for %i and SWlTCH[i]. 

Given a string u of length 1. we 
say that we te.t for u ~ (po.ition) i 
(of z) if we execute AND(u

l 
'" z. , .•• ,u 

1. 1. 

• zi+1.-1)· 
at i and 
WRAM. The 

Such a te.t finds if u occurs 

takes one unit of time on the 
straight fOI"olard algorithm that 

2 
at all i's needs n proce.-te.t. for x 

sor.. (i) 
Let X be the prefix of x of size 

2 i d 1 t (i+1) (i) (i) • an e x a X y • 
rithm con.ists of log n stage •. 
stag_ i SW!TCH (j] 3 1 if and 

x(i) occurs at j. 

The algo­
After 

only if 

We now deacribe stage i + 1, which 
takea a conatant (at moat~) step.. The 
taak of the stage i. to test whether each 

occurrence of x(i) i. followed by an oc­

currence of y(i). In ca.e the answer is 
negative the corresponding 1 in SWITCH is 
turned off. 

w. divide the array SWITCH into blocks 
i-l of size 2 . We .ay that property i 

~ if each block has at most one 1. We 
distinguish between two cases: the regular 
~, and the periodic caSe. 

The regular CUe is the one in which 
the !i!!S block of SNITCH has only one 1 
(at position 1). By induction, the other 
blocks may have at most two l's. In a 
block with two l's, the 1 at the smaller 
position is turned off. (This occurrence 

of xli) is not a beginning of an occurrenCe 

f (i+l» 1 t' ox. As a resu t, proper y 1 

i-l hold.. There are 2 processors respon-
sible for the block. Hence, in t~o steps 

f (i) h . they can test or y at t e appropr~ate 
position if they knew which comparisons 
they ought to perform. We will explain 
below how this is done. We call it a ~ 
lar step. 

In the periodic case that follows a 
regular case the first block has two l's; 
the second of which at position P + 1. It 

follows from Fact 2 that xli) is periodic 
with period size P. In the periodic case 
we test whether the periodicity of 

xli) continues in x(i+ll. We do it in t~o 
steps u.ing xli) as a yardstick. If x(i.l) 
has the same period we similarly find all 
its occurrenCes. Then we start stage i + 2 
. . . (Hl) 
1n the p.r~od~c case. If x doe. not 
have the same period we turn off (justifi-



a.b1~) many 1'1 in Slf'ITCB. AI a relul t, pro­
pertY-- i hola. and w. complete the Itage 
with a reqular Itep. Each part in the dis­
cUllion above malte. lome use of preputi •• 
ot periodiciti ... 

During the algorithM the proce.lorl 
need to communi cat.. For glooal communica­
tion we have a bulletin board, BS, where 
Soml announcements are POlted: e.g. it the 
caae is periodic and the size ot the period. 
Also, the proceslors relponsible for II. 

block need to communicate in order to find 
which comparisons they ought to make in II. 

regular step. For this purpose we have 
local bulletin boards, lbo's. We can ule 
an additional array to store the lbo's. 
Alternatively, each loa can b. stored at 
the last element of its olock. At the end 
of each stage one of every CwO consecutive 
lbb's diel and may transfer some informa­
tion to the survlvlng one before it pas.es 
away. (See Figure 1.) 

4. The Details. 

The flow chart of the algorithm is 
given in Figure 2. In this section we give 
the details of each one of the seven boxes 
in the flow chart. The rirst and last 
stage are slightly different and are dis­
cussed at the end of the section. 

We enter box 1 after a regular step 
in stage i. Consider blOCKS numbers 
2j-l and 2j at the end of stage i. They 
contain at moat one 1. The Ibb of the 
first block dies at the end of the stage. 
The processor responsible for the second 

Ibb (number 2j.2 i - 2 ) looks at the dying 
Ibo and if it is not empty, it triea to 
transfer its contents to its lbb. Two l's 
per blOCK are discovered when its Ibb il 
already nonempty. 

Box 1 deals with the caae j a 1. If 
two l's are discovered in the (new) firat 
block we are in the periodic case, which 
is explained below. Boxea 2, 3 deal with 
the cale j > 1. If two l's are discovered 
the first is turned off by the processor 
responsible for the surviving Ibb. (It 
is the proceaaor that discovers the two 
l' s. ) 

To understand box 4, the regular 
step, consider Figure 1. If the occurrence 
starts at Z l' then the lbo contains A. 

~+ 

Procelsor j in the group that correspond. 
to the block makes cwo comparisons: 

~ .. ~+c/ for k € (j+2
i

,j+2
i

+2
i
-

l
). If 

one of the answers is negative it turns off 
the 1 at SWITCH (A+l). This is the only 
place where the concurrent write is used. 

The test in box 1 is actuatty handled 
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ditferently. Since SWlTCH(l) • 1, th_ 
procea.or reaponsiole for the .econd Ibb 
ot .tag_ i (th. first of stage i+1) 
looka at ita lbb. If.it i. nonempty it 
containa P: i.e., X(l) is ?eriodical ~ith 
period size P. The processor pests P on BB. 

During the periodic loop (boxea 5,6) 
the lbb's are not updated and are not Uled. 
BS will contain P and L = £p, where 

t • r2 i /pl. When we enter box 5 from box 1 

t c (2,3J (2
i

-
2 < P + 1 ~ 2

i
-

1). 
Updating L in the loop is ea.y: L ~ if 

i+l 
2L - P > 2 then 2L - Pels. 2L. 

-(i+l) . Let x be the preflx of x of 

size 2i + L (lx(i+l)I" 2i+1 ~ Ix(i+1) < 
2 i + l + Pl. In box 5 we test whether the 

periodicity continues in ~(i+l) by using 

xli) aa a yard.tick. (Fact 4 v a xli) , 
. -(i+l) k+t . 
J 3 1, x .. U U')I the f~rst pro-
cea.or teats whether SWITCH (P+l) • 1 
and swtTCH(L+1) a 1. Recall that P and 
L are poa ted. The firs t tes t is redund­
ant when we come from box 1. Similarly, 

in Box 6, we find the occurenCeS of i(i+l) 

as follows (Fact 4 v • x(i),~(i+ll:a uk+,u'): 
proces.or Pj that seeS 1 at SWITCB(j) 

checks whether SWITCH(P+j) = 1 and 
SWITCH(L+j) a 1. If one of the tests fails 
Pj turna off the 1. 

Recall that an occurrence of v a xli) 

at j ia called important if xli) does 
not occur at j+P. Since SWITCH(l) ,. 1 and 
one of SWITCH (P+l) , SWITCH(L+l) is zero, 

(i) 
at least one of the occurrences of x 
at positions j ~ L + 1 - P is important. 
By Facts 5,6, either the occurrence at 1 
is important or there is exactly one im­
portant occurrence at some j 1 ~ j ~ 
L+l-p. 

When we test if the periodicity con­
tinues, first, Pl cheCKS SWITCH(P+l). rf 

it is zero, then the occurrence at 
important and Pl posts 0 on aBo 

1 is 
Other-

wi •• it tests SWITCH(P+L). If it is 1, 
the periodicity continues. Otherwise. 
each processor P

j 
tests (using SWITCH) 

whether there is an important occurrence 
at j. The unique p. that succeeds posts 

) 

j-l on BB. 
Next, each processor Pr with 

SWITCH(r) = 1 uses SWITCH and the posted 
value of j-l to check whether there is an 

(i) . 1 If important occurrence of x at r+J- . 



there i. no .uch an occurrence it turn. off 
the 1 at SWI'1"ClI(r). Thi. ia justHied 

A(i+l) t i becauae x cannot occur a r, s nce 

in x (i+l) there 18 an important occurrence 

ot xli) at j. At thia point property i 
holda by Fact 6. 

Before executing the regular step 
(box 4) the lbb'a are re.tored. Each pro­
ce.aor p with SWITCH(r) '" 1 write. r-l in 

r 
its lbb. By Claim 2. no conflict occura. 
To be able to do it, each procesaor know. 
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in each atage where is its lbb. This intor­
~ation can be eaaily precomputed or updated 
dynamically. 

The firat stage is very simple. Pro­
ceaaor Pj teata whether ZjZj+l = x l x2 . If 

the te.t succeeds. p. turns on SNITCB(j) 
::l 

and makea the j-th lbb for the second stage 
point to the l. Recall that the size of 
the blocks in the second stage is l. 

We now discuss the changea needed for 
the la.t stage, but first ~e need to elabor­
ate on the other stages. Consider stage 
. 1 d f (i) . 
~+ , an an occurrence 0 x at::l ~ n. 

. i+l (i+l) 
Asaume )+2 > n+l, so x cannot occur 
at j simply because ~t is too long. and 
the ! does not ~atch any symbol of x. In 
case the first mismatch from the left is 
the 5 the algorithm w~ll not turn off the 1 
at SWITCH (j). (It is as though the !i 
and the follOWing symbols al~ays match the 
symbols compared to them. ~s a result, a 
1 in SWITCH may stand :or an OVerhanging 
occurrence. 

In the last stage, if ?roperty i holds •. 
or if the periodicity terminates (and as a 
result of including overhanging occurrences 
it ~eans that it terminates before the 5) 
~e execute a regular step without any change. 
The only change is in the case that the 
periodicity continues. While in the other 
stage. it means that the periodicity con-

tinues to i(i+l),in the last stage it con­
tinue. only to the S. We find ourself in 

this case when L + 1i 2 n (1~ll+l)1 ~IXI). 
We call an occurrence of xli) at j special 

if j + 2i ~ n and j + ? + 2i > n + 1 (if 

the next occurrence of x(i). at j+P is the 
first overhanging occurrence). ~s ~ith im­
portant occurrencea the unique p. that finds 

) 

a special occurrence at j posts j-l on 
BB. (Note that j ::II mP + 1 for some m. 

m k 2 
x ::II U U u·u".u'u" a prefix of u.) Then 
each Pr that Seea a 1 at SWITCH(r) checks 

~hether SNITCH(r+j-l) '" 1 and if not it 

turns off the 1. I f the teat succeeda' 
it check. whether ~TCB(r+j-l+P) - 1. tf 
the t •• t aucceeda we kn~ that x occur. 

. m+k+l 
at r (aince the teat. lmply that u u' 
occura at j). If the teat fails we still 
do not know the answ.r. Note that in this 

th 
(i). 1 . caa. • occurrence at x at r+J- LS 

important and by Fact 6 if we restrict at­
tention to occurrence. at r's such that 
the occurrence at r+j-l is important. then 
property i holds. So we activate the 
lbb's and u •• a regular step to te.t whe-

ther such occurrencea of xli) extend to 
occurrence. of x. 

5. The Four Familie •. 

5.1 Using only ntlog n procesaors. 

Th. main algorithm can be implemented 
with only n/log n proce.sors using the four 
RUSsiana trick [ABU] to pack log n symbols 
into one number. 

Each processor ia reaponsible for s 
conaecutive symbols in % and in SWITCH, 
where J • clog nand c depends on the 
alphabet size: proce.sor Pr will be 

responsible for Zj' SWITCB(j) j E Ar 

3 [(r-l)s+l, •••• rs). First. each Pr packs 

each substring of Z of length s that 
starts ~ith %., j € A , into a new symbol 

) r z.. Then it compares each i., j C A_~. 
J. . ::l 

~ith %1 and if they are equal it sets 

SWITCH(j} • 1. This has ~~e effect of the 
first t '" log s stages and takes O(s) = 
o (log :1) ';i:11e. 

~ssume the next «(t+l)-st) stage is in 
the regular case. The other stages are as 
In ~~e main algorithm. The only differ­
ence is that in each regular step the pack­
ed symbols z~ are used. 

If the 1t+l)-st stage is periodical. 
then the period size P < s/2, and we need 
also to pack the bits in SWITCH. Each p~ 

packs the s consecutive segments of 
SWITCH starting with each SWITCH(j} j E ~ 

r 
When the per~odicity continues and we test 

• (i+l) 
for occurrences of x ~e can handle 
all the l's in a packed symbol of SWITCH 
simultaneously using some simple bit Vec­
tor operations On the packed symbols. Even 
if ~e disallow bit vector operations, the 
n/log n processors can prepare (in time 
O(log n» a table to implement thele oper­
ations. 



S.2 
W. now haV. an algori thIII with tPO • 

o(n) tor Po • n/l09 n. This iameciiately 

yiel~ a tamily with tp • o(n) tor P ~ 
n/l09 n because ot the w.l~ known dowmolard 
tranalation. In g6neral, ~t tpO • fen), 

then w. have a family with tp • fen) for 
p ~ PO' becau.e having only P proce •• or., 

each one will. simulate PO/p processors and 

the time will be s lOIoIed dO'Wn by a factor 
at pc/po 

we still have to deal with the ca.e 
in which Ixl and Iyl are unrelated. Let 
n • Ixl+\y\ (the length of the input) and 
M • Ixl. It p ~ 2n/M we divide y into 
p/2 equal parts. Let the i-th eiece be 
the concatenation of the i-th and (i+l)st 
parts. There are p piece. and we a •• ign 
one processor per piece. The size ot a 
piece S • 2\YI/(p/2) satisfies 4n/p 2 S 
2 2n/p 2 M. Each processor lOOKS for all 
occurrenCes of x in its piece in tiMe 
O(S) • O(n/p). Hence in this case, when 
we have a small number of processors, we 
have an optimal algori~:-J!I simply because we 
still solve the problem sequentially. 

If p > 2n/m (p ~ n/log m) we break 
y into overlapping pieces of size 2m. The 
number s ot such pieces satisfies 
n/m ~ s ~ 2n/~ < p. We assign pIs 
(~ m/log m) processors per piece. By the 
first paragraph above, all the occurrenceS 
in a piece can be found in time t such 
~~at t·p/. = Oem), or tp = Oems) = o(n). 

5 • 3 On the PRAM. 

Consider the main algorithm. The 
only case of concurrent write is the 

i-l regular steps ~~e 2 processors of a 
block compute ~n AND. If we do not allOlol 
concurrent write, we can no longer execute 
one stage in constant time. The algorithm 

2 on the ~RAM takes time O(log 0), because 
each stage tak •• 0(109 n) time. 

Fortunately, we can implement this 

algorithm with only n/1092
n proce.sors. 

Each proce •• or i. respon.ible for 
2 log n symbols or for log n pacKed symbols. 

In a regular step, the processors in a 
block make log n comparisons of packed 
symbols (in time log n). They record only 
whether all the comparisons succeed. Then 
USing the implicit tree structure, they 
'and' their results in time O(log n). 

The discussion above yields an algo-

rithm on a ~RAM with p a n/log
2 

n and 
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2 t .O(log n) .The r .. t is u in subsection 
5. 2. The algori t:.hm can b. implemented 
without simultaneous read •• 

5.4 Having many proce.sor •• 

As.ume \YI • 2\x\ .2n. As wa. noted 
. th 2 1 above, w1 n processors we can so ve 

string matching in constant (t = 2) time 
on the WR.AM. We shOIoI belOlol that if 

p • n l +llk we can solve string matching 
in time O(k). This immediately gives the 
third and fourth familie.: for the third, 
take c • 11k and the constant is k. For 
the fourth, take K • log n/log log n. !n 
this ca •• p • n log n, but by packing 
symbOls we reduce p to n. 

In this subsection we U.e a stronger 
version of WRAM. In case of a write con­
flict the processor with the minimum num­
ber is the one that writes. At the moment, 
if it is not Known whether such a WRAM can 
be simulated cy our weaker type without 
time 10... However, in our case, such sim­
ulation is possible. 

AI.ume one subset of p processors 
tries to write simultaneously into a re­
gister and the processor with the minimal 
number succeeds. It was ocserved in (FRW) 
that our weaker model of WRAM can do the 
same in four step.: the processors are 
partitioned into JP group. of size JP. 
In the first step each group computes 
whether one of its members wants to write. 
The result is a Boolean array of size JP. 
In the second step the l's in that array 
that are not first are turned off. This 
is possible because there are ~Ip processors 
for each 1. NOW, the processors in the 
corresponding group find in a similar way 
the minimal in the group. Such a simula­
tion will easily ce extended to our case. 

When we have n or more processors 

we can use them to have x(i+l) more than 
(i) 

twice larger than x and as a result, 
to have less than log n stages. Specifi-

1+1/'< 
cally, let p = 3n . The processors 

are divided into 3n groups of nl/k pro­
cessors. Each group contains one ~ 
cipal processor, and is responsible for 
one symbol of z and SWITCH. The length 

of xCi) is nilk. In the first stage (find-
. (1) 
~ng all occurrences of x ) the i-th group 
looks for an occurrence at i. 
The size of the clOCKS for seage i + 1 is 

Ix(i) \/2 • n i / k/2. A regular step is 
simple, since we have enough processors: 
the number of processors in the groups 
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. (i+1) k 
co:tlO •• pondinq to a block 1.1 n /2 ,. 
Ix{i+l) 1/2 • 

Th. parta concerninq periodicity are 
slightly different, because the size of 
blocks much mere than double. from one stage 
to the next. TO test for periodicity, each 
principal processor in the first block that 
sees 1 writes its group number minus 1 
on the same place of BB. The one with the 
minimal group number succeeds, and po.t~ 
the period size P. 

Let L
i

" lx(i)/PJp, Li can be easily 

maintained and is available in stage i + 1. 
11k 

~ote that L. 1 ~ 2n t .. To test if the 
1.+ 1. 

periodicity continues, the first group 

chedcs whether SWITCH (l+jL. )=1 for )=1, ••• , 
1. 

2:'l1/1e. 1In ~his case x li ·d ) = 2nlllcL.+xli), 

so x li+1) < Ixli"'l)1 < 3xli+1).) 1. 

If the test succeeds, a similar test 

is used to test which occurrence of xli) is 
. (i+l) 

extended to an occurrence of x . If 
the test fails, using the stronger form of 
concurrent writing the first group finds 
the first j w. th S~i'I':'CH (l+jt. J = O. The 

1. 

value of j is posted on 3B, and next 
SWITCH(r) = 1 is not turned off only if the 
r-th group finds that SWITCHlr+jL.) = O. 

1. 

and for all Ie < j SWITCHlr+kL.) = 1. 
The stronger type of coRcurrent write 

is used only within groups. and the memory 
locations are different for different 
group.. The simulation ~entioned above 
(for one group) can be obviously extended 
to our case. We left out the details of 
allocating of processors. For fixed Ie 
~~~s tasle is immediate because we can ass~e 

kr that n = 2 for some r. In the general 
case Ilxl and Iy! unrelated) the number of 

processors needed is only ~~11k and with 
p = n the time bound is O(log m/log log m). 

6. Conclusion 

We can implement the ~al.n algorithm in 
other models for parallel computation: 

1. Soolean circuits of size 

0(:'1 10g2:'1) ~nd iepth 0(10g2:'1)' 

2. Fixed connection networks (the 
k-dimensional cube) and even net­
works with fixed degree (CCC's 
[PV]) in pt ,. O(n log n). 

The details of these implementation are 
straightforward. Both use shifting net­
worles as building blocks. 

There are some que.tions unre.olved, 

1. Can we solve .tring matching on 
WRAM with n processors in con­
stant (O(log log n» time? 

2. Can we solve string matchinq 
deterministically on PRAM with 
n/loq n (or even n) processors 
in O(loq n) time? (The parallel 
version of [KR] hal p ~ n, 
t 2 O(loq n) but is probabilis­
tic.) 

3. Can we find optimal parallel al­
gori~ for string matching on 
fixed connection networks? 

Finally, families of parallel alqori­
thms corresponding to all the families men­
tioned above can be derived for finding all 
initial palindromes of a given string w. 
The reduction of ~~e latter problem to 
string matching [FP] does not help, be­
cause it makes use of the table of the KMP 
algorithm. It is not clear how to compute 
efficiently this table in parallel. In-

stead we 100le for w in wrev , recordi~q in 
SWITCH' also overhanging occurrences. The 
~ain algorithm discovers the initial palin-

i-1 i drames 0 f length 1., 2 < t ~ 2 , in stage i. 
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