2014 Articles
The Velocity Distribution of Pickup He+ Measured at 3.0 AU By Messenger
During its interplanetary trajectory in 2007–2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He+ interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He+ as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He+ may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ ∼ 0.1 AU and a He+ production rate of ∼0.05 m−3 s−1 within 0.3 AU.
Geographic Areas
Files
-
Gershman.et.al.2014a.pdf application/pdf 1.85 MB Download File
Also Published In
- Title
- The Astrophysical Journal
- DOI
- https://doi.org/10.1088/0004-637X/788/2/124
More About This Work
- Academic Units
- Lamont-Doherty Earth Observatory
- Publisher
- Elsevier
- Published Here
- September 27, 2015