Academic Commons

Theses Doctoral

Biomimetic nanoarchitectures for the study of T cell activation with single-molecule control

Cai, Haogang

Physical factors in the environment of a cell affect its function and behavior in a variety of ways. There is increasing evidence that, among these factors, the geometric arrangement of receptor ligands plays an important role in setting the conditions for critical cellular processes. The goal of this thesis is to develop new techniques for probing the role of extracellular ligand geometry, with a focus on T cell activation.
In this work, top-down molecular-scale nanofabrication and bottom-up selective self-assembly were combined in order to present functional nanomaterials (primarily biomolecules) on a surface with precise spatial control and single-molecule resolution. Such biomolecule nanoarrays are becoming an increasingly important tool in surface-based in vitro assays for biosensing, molecular and cellular studies.
The nanoarrays consist of metallic nanodots patterned on glass coverslips using electron beam and nanoimprint lithography, combined with self-aligned pattern transfer. The nanodots were then used as anchors for the immobilization of biological ligands, and backfilled with a protein-repellent passivation layer of polyethylene glycol. The passivation efficiency was improved to minimize nonspecific adsorption. In order to ensure true single-molecule control, we developed an on-chip protocol to measure the molecular occupancy of nanodot arrays based on fluorescence photobleaching, while accounting for quenching effects by plasmonic absorption. We found that the molecular occupancy can be interpreted as a packing problem, with the solution depending on the nanodot size and the concentration of self-assembly reagents, where the latter can be easily adjusted to control the molecular occupancy according to the dot size.
The optimized nanoarrays were used as biomimetic architectures for the study of T cell activation with single-molecule control. T cell activation involves an elaborate arrangement of signaling, adhesion, and costimulatory molecules organized into a stereotypic geometric structure, known as the immunological synapse, between T cell and antigen-presenting cell. Novel bifunctionalization schemes were developed to better mimic the antigen-presenting surfaces. Nanoarrays were functionalized by single molecules of UCHT1 Fab', and served as individual T cell receptor binding sites. The adhesion molecule ICAM-1 was bound to either static PEG background, or a mobile supported lipid bilayer. The minimum geometric requirements (receptor clustering, spacing and stoichiometry) for T cell activation was probed by systematic variation of the nanoarray spacing and cluster size. Out-of-plane spatial control of the two key molecules by way of nanopillar arrays was used to adjust the membrane bending and steric effects, which were essential for the investigation of molecular segregation in T cell activation.
The results provide insights into the complicated T cell activation mechanism, with translational implications toward adoptive immunotherapies for cancer and other diseases. This single-molecule platform serves as a novel and powerful tool for molecular and cellular biology, e.g., receptor-mediated signaling/adhesion, especially when multiple ligands or membrane deformation are involved.


  • thumnail for Cai_columbia_0054D_13597.pdf Cai_columbia_0054D_13597.pdf binary/octet-stream 8.64 MB Download File

More About This Work

Academic Units
Mechanical Engineering
Thesis Advisors
Wind, Shalom J.
Ph.D., Columbia University
Published Here
October 3, 2016