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[1] A statistical-dynamical approach to probabilistic
precipitation forecasts of southern African summer rainfall
is described and validated. An ensemble of seasonal
precipitation and circulation fields is obtained from the
ECHAM4.5 atmospheric general circulation model
(AGCM). Model output statistics (MOS) then spatially
recalibrate the AGCM fields relative to observations.
Although the MOS equations are built using the
simulation data, in which observed SSTs force the AGCM,
the same set of equations can be applied to the predicted
data, in which predicted SSTs force the AGCM. The use of
prediction data in a set of equations developed for
simulations, assumes that the AGCM forecast skill
approximates its simulation skill and that the systematic
biases of the AGCM do not change in a prediction setting;
this assumption is analogous to a perfect prognosis (PP)
approach. Probabilistic forecast skill is assessed using this
MOS-PP-recalibration scheme for 3 equi-probable
categories using a 3-year-out cross-validation approach.
High skill scores are found over the north-eastern interior of
the region, with marginal skill over the remainder of the
austral summer rainfall regions. When skill is assessed for
only the wettest and driest of the years, high skill appears
over most of the region. Citation: Landman, W. A., and

L. Goddard (2005), Predicting southern African summer rainfall

using a combination of MOS and perfect prognosis, Geophys.

Res. Lett., 32, L15809, doi:10.1029/2005GL022910.

1. Introduction

[2] Recent emphasis on research to determine the future
behaviour of the climate system has shifted from purely
empirical-statistical approaches to dynamical approaches
based on the first principles of the processes governing
the climate system. However, both methods have merit, and
most forecasts systems will benefit from their combined
use. The approach of statistically interpreting AGCM output
to improve 3-month seasonal rainfall simulations over
southern Africa has already been demonstrated [Landman
et al., 2001; Landman and Goddard, 2002].
[3] Two methods employed to statistically relate GCM

fields to observations are perfect prognosis (PP) and model
output statistics (MOS). In PP the same system of equations
used to map observed or simulated variability in one field,

or set of fields, to variability in another is applied in a
forecast setting. PP assumes that the relationships between
the variables do not change in the forecast setting. Perfect
prognosis (PP) [Wilks, 1995] performed over a 10-year
retro-active period demonstrated useful operational forecast
skill over the austral summer rainfall period of southern
Africa [Landman et al., 2001]. In MOS a system of
equations maps variability in model field(s) to variability
in observed fields in order to minimize biases in model
output. Model output statistics (MOS) [Wilks, 1995] recal-
ibration has shown improved skill over both raw AGCM-
simulated rainfall and over a simple statistical forecasting
technique using global sea-surface temperature (SST)
patterns as predictors [Landman and Goddard, 2002].
Strictly speaking, the MOS equations applied to AGCM
simulation data are not the same set of MOS equations
applied to AGCM forecast data. In a pure MOS approach a
different set of equations would be developed for each lead-
time, for a given season. Although MOS is the technique
preferred over PP recalibration for the region [Bartman et
al., 2003], the MOS approach is potentially much more
computationally expensive because separate MOS equa-
tions are constructed for the AGCM forecasts required at
different lead-times owing to the decrease in AGCM
skill with increasing lead-time. The pure MOS approach
also requires hindcasts for the AGCM that coincide with
the real-time prediction system, such as SST prediction
methodology.
[4] A new forecast method is presented here, which

combines the attributes of MOS and PP into a single
forecast system. This system uses AGCM simulation data
to construct MOS equations and subsequently uses forecast
fields of the same AGCM at various lead-times in the
simulation-MOS equations. The AGCM biases are therefore
taken into account in a much more representative way than
the case of a ‘‘pure’’ PP system. This process of using
retrospective forecast data in a set of equations based on
simulation data makes the assumption that the skill with
which the AGCM can produce forecasts at certain lead-
times is as good as skill obtained from simulation data
and also that the model biases do not change in a forecast
setting. This new system is henceforth referred to as
MOS-PP. The probabilistic forecast skill of the MOS-PP
during austral summer is subsequently demonstrated in
this paper.

2. Data and MOS-PP Description

[5] December–February (DJF) rainfall totals for approx-
imately 600 southern African rainfall stations, including
South Africa, Namibia, Lesotho and Botswana, were
obtained for the period 1950/51 to 1999/2000. DJF is
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selected as the period to demonstrate the MOS-PP skill,
because AGCMs demonstrate potential predictability of the
circulation over the region in DJF when a tropical atmo-
sphere dominates [Mason et al., 1996]. Moreover, this
season is important for farmers, as, for example, flowering
and grain filling occurs then [Mjelde et al., 1997]. Thus,
potentially skilful information can be provided at a time
when climate sensitive decisions need to be made.
[6] Regional rainfall indices were computed for nine

homogeneous rainfall regions (Figure 1) [Landman et al.,
2001]. The south-western Cape is predominantly an austral
winter rainfall region and the south coast receives rain
throughout the year. These two regions are therefore not
included in the analyses presented in the paper because they
are not strongly influenced by the tropical circulation in
DJF, resulting in lower predictability during austral summer
there. Integrations were performed using the ECHAM4.5
AGCM [Roeckner et al., 1996]. An ensemble of 24 runs
was forced with simultaneous observed SSTs (SSTs
occurring during the same season as the simulated rainfall
season) [Reynolds and Smith, 1994; Smith et al., 1996] from
1950 to present but only used until 1999/2000 in this study.
At initialization ensemble members differ from each other
by one model day at the beginning of the integration. No
observed atmospheric conditions are inserted into the runs
at any time. The resulting AGCM fields are referred to as
simulation mode fields. The GCM is successful in simulat-
ing the overall pattern of maximum rainfall over the north-
east of South Africa decreasing towards the south-west, but
it displaces slightly the local maximum over these regions
and simulates lower rainfall totals than found in the
observed climatology. A second ensemble of 12 members
forced with persisted November SST anomalies was also
produced, referred to as hindcast mode fields, constituting a
0-month lead-time. In this study the hindcast fields of only
1973/74 to 1999/2000 are used (27 years). Identical initial
conditions were used for both sets, but they differ because
of the different prescribed SST anomalies: In the simulation
experiment, the DJF simulation sees the observed evolution
of December, January and February SSTs. In the hindcast

experiment, the DJF simulation sees the observed SST
anomalies of November persisted on the climatological
seasonal cycle.
[7] Canonical correlation analysis (CCA) [e.g., Barnett

and Preisendorfer, 1987] is the mathematical technique
used to set up the simulation MOS recalibration equations.
This technique identifies patterns of variability that are
highly correlated. The MOS equations are applied to each
of the 12 ensemble members from the retrospective
forecasts. The probabilistic precipitation forecasts then are
constructed from the MOS-corrected ensembles. The
following schematic illustrates the training period involved
in making 27 0-month lead-time forecasts for the DJF
season:

1950=51� 1972=73 23-year training periodð Þ ! forecasting DJF rainfall of 1973=74

1950=51� 1973=74 24-year training periodð Þ ! forecasting DJF rainfall of 1974=75

etc:

1950=51� 1998=99 49-year training periodð Þ ! forecasting DJF rainfall of 1999=2000

[8] The first step in designing the optimal MOS model is
to develop the CCA regression equations. Empirical
orthogonal function (EOF) analysis is performed first on
the predictor (DJF ECHAM4.5 ensemble mean simulated
total precipitation field) and predictand sets (DJF observed
rainfall). The domain used is from 9.8�S to 40.5�S, and
11.3�E to 70.3�E, large enough to include the part of the
south-western Indian Ocean that has an effect on southern
African austral summer rainfall [Reason, 2001]. The
number of modes retained in the CCA eigen-analysis
problem is determined over a 48-year period produced from
using 3-year-out cross-validated skill sensitivity tests. For
cross-validation, the value that is to be predicted is omitted
from the training period. Here, three years are removed from
the training period and the middle year is forecast.
The number of retained predictor and predictand EOF
modes of the fields that produced the highest averaged
cross-validation correlation for the rainfall regions of south-
ern Africa (Figure 1) is subsequently identified. The number
of CCA modes is determined by using the Guttman-Kaiser
criterion [Jackson, 1991], but with a minimum of two CCA
modes.
[9] MOS-PP forecasts are made for three equi-probable

categories of below-normal, near-normal and above-normal
rainfall. Because the variance of the ensemble mean is lower
than that of the individual ensemble members, a variance
inflation factor [Wilks, 1995] is introduced into the fore-
casts. The terciles are subsequently calculated from the
ensemble mean: the DJF simulated total precipitation is
ranked and divided into three equal parts. The ranked
probability skill score (RPSS) [Wilks, 1995; Mason, 2004]
determines the probabilistic forecast skill of the MOS-PP
system.

3. Results

[10] Figure 2 shows the cross-validated correlation values
for the 7 pure summer rainfall regions for the various
combinations of predictor and predictand EOF modes.
The highest correlation values are found for the Lowveld
and north-eastern interior regions. Similar, albeit lower,
values are seen for the central and western interior regions.

Figure 1. The 9 homogeneous rainfall regions used in the
study. Countries shaded grey are not included.
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However, the optimal MOS model produces marginally
higher correlation values for the central interior than for
the western interior. The combination producing the best
overall results is for 3 predictand and 4 predictor EOF
modes, respectively explaining 80% and 65% of the
variance. CCA patterns analysis [Barnett and Preisendorfer,
1987] (not shown) of DJF precipitation for the 48-year
period using the ensemble mean of the simulation data,
shows the most dominant CCA predictor pattern associated
with above-normal rainfall resembles a tropical-temperate
trough system. A significant proportion of austral summer
rainfall over much of southern Africa is a result of these
synoptic-scale systems that link tropical lows and westerly
waves [Todd and Washington, 1999; Todd et al., 2004].
When these systems are well developed, above-normal
summer rainfall is generally produced by them as they
extend over southern Africa and into the adjacent Indian
Ocean [Mason and Jury, 1997]. The second CCA predictor
mode shows a dipole pattern over the north-eastern interior
of the region and the channel between Mozambique and
southern Africa. This feature may be attributed to the
influence of tropical troughs or cyclones which sometimes
find their way into, or develop in, the channel and can
occasionally persist there for extended periods of time.
These storms occur mostly in January and February. With
the presence of these tropical systems, rainfall over the
north-eastern interior of the forecast region is suppressed
owing to the associated subsidence on the periphery of these
systems [Tyson and Preston-Whyte, 2000]. However, it has
been found that the influence from tropical cyclones over
the south-western Indian Ocean results in poor model
forecast performance over the Lowveld [Mason et al.,
1996]. Owing to the relative high cross-validation MOS
skill found over the north-east (Figure 2), it can be
concluded that most of the skill comes from the AGCM’s
ability to simulate tropical-temperate trough systems. This is
also supported by the fact that the tropical-temperate trough
mode is the dominant CCA predictor mode and that the
CCA predictand mode 1 (not shown) show similar loadings
over both the Lowveld and north-eastern interior.
[11] Similar to the highest cross-validation correlations

found over the north-east, the RPSS values of Figure 3 also
show that the best 0-month lead-time MOS-PP forecast are
found for the Lowveld area, followed by the north-eastern
interior. The same conclusion about the origin of forecast

skill therefore holds when using the MOS-PP forecast
system. The high skill found over this area is encouraging
since important agricultural activities such as corn, tea,
citrus and other fruit production take place there. Negative
RPSS values are found for both the KwaZulu-Natal coast
and the northern Namibia/western Botswana regions. The
latter region receives most of its rainfall in the months
immediately following the DJF season, with very little
rainfall during December and January. Forecast skill over
the KwaZulu-Natal regions is not stationary in time, how-
ever, and improves significantly over the most recent
decade [Landman and Goddard, 2002]. By considering
only the 6 wettest and 6 driest years (12 in total) of
the 27-year forecast period, high RPSS values are seen
(Figure 4). These high values are the result of the forecast
system being better able to predict for ‘‘extreme’’ years as
opposed to ‘‘average’’ years and because of the small
number of years considered extreme. The largest RPSS
increase is found for Northern Namibia/western Botswana
where the predictability of extremes may be higher owing to
the low recorded DJF rainfall totals over this area. As was
found when considering all the years (48) (Figure 2) and all
the forecast years (27) (Figure 3), the highest ‘‘extreme’’
season (12 years) forecast skill is again evident over the
north-eastern interior (Figure 4).

4. Discussion and Conclusions

[12] Previous work has demonstrated recalibrated AGCM
forecast skill over the region, and has shown that
recalibrated forecasts are superior to raw AGCM forecasts
[e.g., Landman and Goddard, 2002]. However, using a pure
MOS forecast system for all lead-times may be too expen-
sive to develop and run operationally. In this paper,
ECHAM4.5 archived simulation DJF rainfall fields have
been statistically recalibrated using a MOS approach to
observed DJF rainfall indices for 7 summer rainfall regions
of southern Africa. Retrospective forecasts from
ECHAM4.5 with 0-month lead-time are subsequently used
as predictors in the simulation-MOS equations to produce
MOS-PP forecasts for the 7 regions over a 27-year retro-
active [Landman et al., 2001] forecast period. The MOS-PP
system combines the advantages of the MOS and PP
techniques by better addressing the GCM biases problem
found with PP techniques, and requiring only one set of
prediction equations for all lead-times as apposed to a new

Figure 2. Correlations obtained from the various predictor
and predictand EOF mode combinations over the 48-year
3-year-out cross-validated ECHAM4.5-MOS simulations for
the 7 rainfall regions (TRA: Transkei; KZC KwaZulu-Natal
coast; LOW: Lowveld; NEI: north-eastern interior; CIN:
central interior; WIN: western interior; NWB: northern
Namibia/western Botswana).

Figure 3. RPSS over the 27-year retro-active forecast
period for the 7 rainfall regions (for region definitions, see
Figure 2).
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set for each forecast lead-time when using a traditional
MOS system. The main disadvantage of the MOS-PP
system is that the AGCM forecast fields are generally not
as good as the simulation fields. However, previous work
[Landman and Goddard, 2002; Goddard and Mason, 2002]
has shown that at short lead-times, little skill is lost for
the austral summer rainfall season over southern Africa.
Importantly, the MOS-PP system’s high forecast skill
derives from a physical mechanism - the AGCM’s ability
to correctly simulate tropical-temperate trough systems over
the region. High skill is particularly evident when forecast-
ing the 6 wettest and 6 driest years of the 27-year forecast
period, again with the north-eastern interior exhibiting the
highest skill values. One can therefore conclude that the
existence or absence of modelled tropical-temperate trough
systems mostly contributes to extreme season forecast skill.
This conclusion is supported by the CCA predictor pattern
of the 6 wettest and 6 driest years that shows similar
features as mode 1 CCA predictor for the entire period
discussed above (not shown).
[13] This paper has demonstrated the usefulness of using

a hybrid dynamical-statistical system. More work will be
conducted to investigate the predictability of rainfall using a
MOS-PP system for rainfall seasons additional to DJF and
for lead-times that can be considered more beneficial to the
users of these forecasts than the 0-month lead-time demon-
strated here. In addition, the predictability of extreme
seasons in particular should be investigated.
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Figure 4. RPSS over the 6 wettest and 6 driest years of the
27-year retro-active forecast period for the 7 rainfall regions
(for region definitions, see Figure 2).
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