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Abstract

Specialized silicon compilers, or module generators, are promising tools for automating the design of
custom VLSI chips. [n particular, generators for regular language recognizers seem to have many
applications. This paper identifies a problem called laich formation that causes regular expression
recognizers to be more complex than they would first appear. If recognizers are constructed in the most
straightforward way from certain regular expressions, they may contain extraneous latches that cause
incorrect operation.  After identifying the problem, the paper presents a ‘‘source-to-source’’
transformadon that converts regular expressions that cause latch formation into expressions that do not.
This transformation allows regular expression recognizers to be simpler and smaller, thus adding to the
advantages of specialized silicon compilers.




1. Introduction

One of the most important tools available to today's designers for speeding up the process of designing
custom VLSI is the specialized silicon compiler. Sometimes called module generators, specialized
silicon compilers are tools that combine knowledge of a specific application area with a set of primitive
cells and rules for combining the cells to produce a layout. Specialized silicon compilers will only
produce layouts for their specialized areas of application, but will do a very good job within those areas.
The chips that they produce will be small and fast. Specialized silicon compilers have been built for
digital signal processors [6, 14], combinational logic [16], data paths (3, 11, 13], general-purpose
processors [17], synchronizers [2, 5], and the topic of this paper, pattern matchers [9, 12]. Anything that
improves the efficiency of the chips produced by specialized silicon compilers is a worthwhile
contribution to the field of VLSI design automadon.

This paper discusses specialized silicon compilers that produce recognizers for regular expressions. A
regular expression recognizer is a pattern matchiné circuit in which the pattern is specified by a regular
expression. A specialized silicon compiler for these recognizers will accept a regular expression as input,
and produce the layout of a recognizer for that expression. Regular expressions have seen wide
application in computer science; among other tasks, they have been used to specify lexical analyzers for
programming languages, conmollers for sequential machines, filiers for on-the-fly database search,
patterns in image processing, and communication protocols. Regular expression recognizers therefore
have wide application, and are an especially promising application area for specialized silicon compilers.

The contribution of this paper is a ‘‘source-to-source’’ transformation of regular expressions that
allows more efficient recognizers to be constructed for them. The most straightforward circuits for
constructing regular expression recognizers exhibit a problem: recognizers for some expressions contain
superfluous latches due to interactions between the cells. Formation of these latches leads to recognizers
that function incorrectly. Previous solutions to the problem of latch formadon have used more
complicated circuits to eliminate or reset the latches. These more complicated circuits increase the size of
recognizers, and may make them run more slowly. The transformation introduced in this paper eliminates
the expressions that cause latch formation, and so allows the simple, straightforward circuits to be used

for all expressions. This allows specialized silicon compilers to produce efficient recognizers for regular
languages.

2. Regular Expression Recognizers

This secton gives a notation for regular expressions and describes how to compile them into circuits.
Straightforward compiladon of some regular expressions leads to a problem called latch formation, in
which extraneous latches are formed within the compiled circuit. These latches lead to incorrect

operation. This section indicates how the problem arises and mentions some techniques that have been
used to combat it.

A regular expression describes a regular language over some alphabet . A regular expression may
represent the empty set (@), the empty string (€), or any set of strings that can be built up by
concatenation, union and repettion from € and the single characters of £. A regular expression over X
may include some characters that are not in I, such as operators and parentheses. Assuming that the




characters in the set {¢ () * +} are not in Z, the syntactically correct regular expressions over L can be
defined inducdvely as follows,

¢ 0 is a regular expression over Z.

e [fae X then ais a regular expression over Z.

# If e and P are regular expressions over I, then so are o;f3, (& + B). and (ct)*.

The meaning of a regular expression can be defined inductively based on the form of the expression.
The set of saings L(p) represented by a regular expression p is:
» The empty setif p is ¢.
¢ {a}ifpisa.
o L) U L(P)if pis(c+P).
* {00, where o) € L(x)and 05 € L(B)}if pis oif.
* {e} v {0,0, .. .0, where nis any positive integer and 6; € L(a)} if p is (@)*. In this
article, A will be used as an abbreviation for *. Thus, L(A) = {&}.

This ardcle uses a regular expression to denote the set of strings it represents; for example,
abc € (a6 +c)*.

Regular expressions describe pattemns; very often one wants to build pattern recognizers for these
patterns. A recognizer circuit for a regular expression accepts a stream of characters from the alphabet of
the expression as input, and produces a stream of bits. The operaton of a recognizar circuit occurs on
discrete clock ticks, or beass. On each beat, the recognizer reads a character from the input and produces
an output bit. The first bit precedes the string of characters, then the recognizer produces one bit after
reading each character. Each bit indicates whether the stream of characters immediately precading it is in
the language of the regular expression. For example, if a recognizer for the expression (a;b + ¢)* were
given the stream ababc it would produce the bit stream Q01011

Several researchers have described tree-based techniques for compiling regular expressions into
recognizer circuits [1, 7,9, 10, 15]. All of these techniques use produce tree-structured circuits in which
the nodes of the tree correspond to characters of the regular expression. Edges of the tree carry text and
state informadon berween nodes. The nodes of the tree are usually chosen from a library of standard
cells, with the edges being the wiring between the cells.

The circuits of Mukhopadhyay are typical examples of tree-based recognizer circuits. These circuits
use five types of cells: one for each of the three operators (union, concatenation, and Kleene *), one for
the symbol ¢, and one to recognize individual characters. Figure 2-1 shows the comparator for individual
characters. On each beat, a character is input at the same time as the ENB signal. The RES signal is set to
true for the following beat if and only if ENB is true and the text character matches the pattern character.

The three operator cells for the expression tree recognizer are shown in Figures 2-2, 2-3, and 2-4.
These combine ENB and RES signals from their operands to produce signals for a larger expression. A
recognizer built from these cells is a tree with the same structure as the expression tree of the regular
expression, with operator cells in place of operators and compararors in place of letters of the alphabet.
For example, to build a recognizer for A:B, a comparator for A is connected to the left port of the
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Figure 2-1: Comparator for expression-tree based recognizer

concatenation cell, and a comparator for B is connected to the right port. A recognizer constructed using
these cells outputs RES on beat i if and only if some string in the language of the recognizer is input on
beats i~n through i—1 and ENB,_, is true. (The cell for ¢ is not shown, but is simply a connection t0
logical O: it always outputs O on RES.)

There is a problem with the expression tree cells in Figures 2-1 through 2-4, which was first pointed
out by Backhouse [4]. If a recognizer is constructed for an expression of the form E*, where the empty
string is contained in E, the output result will be latched to true. This can be seen most easily in the
recognizer for (a*)*, shown in Figure 2-5. The OR gates in the two Kleene star cells are cross coupled so
that they form a latch. If they are ever set to true, they can never be reset to false, Thus if ENB is true on
beat 1, and the character b is input on that beat, the recognizer will erroneously output 1 on RES during
beat 2. Using these cells then, correct recognizers can be constructed only for expressions in which the
star operator is never applied to a subexpression containing the empty string. This problem is common to
all of the tree-based recognizers that have been discussed in the literature.

Several solutions to the latching problem have been proposed. Foster [9] uses a clocked OR gate in the
Kleene closure cell in place of the OR gate. The clocked OR gate behaves like a normal OR gate. except
that it brietly sets its output to O between beats. This clears any latches formed by a loop of OR gates, and
it has been proven that recognizers built using this modified cell operate correctly for all regular
expressions (8], More recently, Anantharaman [1] has designed a set of cells that can be interconnected
to produce delay-insensidve recognizers. Among their other advantages, Anantharaman's cells avoid the
latching problem by avoiding direct feedback between OR gates. The RES signals in these cells have more
than two values; they take on a special value for matches of the empty string. The cells are designed so
that the special value cannot act as an enable signal. In particular, a match of the empty string by a
Kleene closure cell cannot re-enable the same cell.

While these techniques correct the problem of latched recognizers, they complicate the cells. The
clocked OR gate is somewhat larger than an ordinary OR gate, and it requires connection to a clock that
signals the ends of beats. The delay-insensitive circuits used in Anantharaman’s cells are much larger and
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Figure 2-5: Faulty recognizer for (a*)*

more complicated than their synchronous counterparts. In many cases in which a small, simple
recognizer is desired, the anti-latching techniques add too much overhead to the prinitive cells.

3. A Conversion Theorem for Regular Expressions

This paper provides a new method for avoiding latch formation in tree-structured recognizers. The idea
is to transform the regular expression for which a recognizer is to be built into a new expression that will
not lead to latch formation. Latch formaton occurs when the star operator is applied to an expression that
contains the empty string; that is, any recognizer for an expression E*, where € e E, will have extraneous
latches. If we could transform E into a new expression N(E) such that N(E)* = E* and £ ¢ N(E), we could
avoid latch formadon by building the recognizer for N(E)*. This recognizer would recognize the
language E*, and would operate correctly using the simple cells of Figures 2-1 to 2-4.

The obvious way to ransform E is to form the set difference E-A. Although there is no way to build a
cell for the set difference operator {8], E-A is a regular language, and so can be represented by some
regular expression D(E). Clearly D(E)* = E* and €& D(E). Unfortunately, the expression D(E) can be
much longer than E. The set difference operator is not used in regular expressions, and converting an
expression containing set difference to one that does not can greatly increase the length of the expression.
For example, there is a sequence {E_} of regular expressions of increasing length such that the shortest
expression for D(E,) is about ~/2 times as long as E,. (The first two expressions in the sequence are
a*b*, (a*b* + c*d*)(e*f* + g*h*). In general, E;,| = (E; + E"))}(E”; + E”;), where the four copies of E;




have disjoint alphabets.) Thus there is no constant bound on the rato of the length of D(E) to the length
of E. Since the size of a tree-based recognizer is proportional to the length of its regular expression,
transforming E to D(E) may lead to recognizers that are too large. We therefore need a different
transformation of E.

The following theorem provides a transformation that is appropriate for constructing recognizers, It
shows that any expression of the form E* can be transformed into a new expression N(E)* in which
latches are not formed, and which is no longer than E*. This solves the problem of latch formation in
tree-based recognizers for regular expressions. We first state without proof some easily verified facts
about regular expressions.

Lemma : If P and Q are regular expressions the following statements hold.
a p** = p*

b.(P* + Q*)* = (P + Q"

c.Ifee Pand gee Q then (P:Q)* = (P + Q)*.
d.ee (P +Q)ifand only if eitheree Poree Q.
e.ce (P;Q)ifand only ifee Pand ee Q.

These facts are used in the proof of the following theorem.
Theorem : For any regular expression R there is a regular expression N(R) such that
* N(R) does not contain the empry string,

* R¥ = (N(R)*
¢ N(R) is no longer than R,

Proof: We compute N(R) recursively, based on the expression tree of R. If £ R then N(R) =
R. (This grounds the recursion, since N(a) = a for any member of the alphabet.) Otherwise,
there are three cases, -

1.R =P*
2. R =P + Q, where either P or Q contains €

3. R = P;Q, where both P and Q contain ¢
In case 1, N(R) = N(P). Incases 2 and 3, N(R) = N(P) + N(Q). Clearly N(R) is no longer than
R. We must now show that N(R) does not contain € and that N(R)* = R*

We can show both of these facts by inducton. First, we show that N(R) does not contain €.
If R has length 1, then it must be either a letter of the alphabet, or one of the expressions ¢ or A.
N(R) is then either ¢ or a lerter of the alphabet, neither of which contains €. Thus the base case
of the induction holds. To prove the inductive step, suppose that for every expression P of
length less than i, N(P) does not contain €. Suppose R has length . If R does not contain &,
neither does N(R). If R does contain €, then N(R) is either N(P) or N(P) + N(Q), where P and Q
have length less than i, In neither case does N(R) conwin the empty string, since by the
inductve hypothesis neither N(P) nor N(Q) can contain it.

Now we show that R* = (N(R))*. We need only consider cases in which R contains the
empty string, since N(R) and R are identical otherwise. If R has length 1 and contains the
empty string, it must be A. To prove the base case, note that N(R) is then ¢, and (N(R))* = R* =
A. For the inductive step, suppose that R* = (N(R))* as long as the length of R is less than i, If
R has length i and contains the empty string, then R must be one of the three forms noted above.




1.1If R = P* then N(R) = N(P) and (N(R))* = (N(P))*. By the inductive hypothesis,
(NP))* = P*. So (N(R))* = P* = P** = R*,

2.IfR =P + Q, then N(R) = N(P) + N(Q). So (N(R))* = (N(P) + N(Q)* = (N(P))* +
(N(Q))**. By the inductive hypothesis, (N(P))* = P* and (N(Q))* = Q*, so (N(R))* =
(P* + Q*)*. But this is equal to (P + Q)*, which is R*,

3.If R = P;Q, then N(R) = N(P) + N(Q). By the same reasoning as in case 2, (N(R))* =
(P + Q)*. Now notice that, since we are assuming that R contains the empty string,
both P and Q must also contain the empty string. Thus R* = (P:Q)* = (P + Q)*.
Therefore, R* = (N(R))*.

Some examples may clarify this theorem. Given a regular expression R, we can apply the theorem
recursively to produce N(R). The reader may verify the following identities:
s N(a*)=a
e N(a*;b*;c*:d*)=a+b+c+d

o N((a*+b*)(c*+d*))=a+b+c+d
In these examples, a recognizer for N(R)* is smaller than a recognizer for R*. Although this contraction

in size may not always occur, Theorem 2 states that the recognizer for N(R)* will never be larger than the
one for R*,

A side benefit of the transformation from R into N(R) is that the cycle time of the recognizer for N(R)*
may be smaller than that for R*. The cycle time of a recognizer is proportional to the number of
combinatorial logic gates that a signal goes through between latches. A general regular expression of
length n may have O(n) gates between latches: consider the expression a***: - -* with n stars. If all
subexpressions of an expression of the form R* are replaced by N(R)*, however, the maximum number of
gates between two latches is attained in the tee of + cells needed for an expression of the form (P| + P, +
...+ Py). Since such a tree can be built with logarithmic depth, the transformation reduces the worst case
cycle time of a recognizer of size n from O(n) to O(log n).

4. Conclusion

This paper has described the problem of latch formaton in regular expression recognizers, and has
suggested a new solution, By transforming the regular expression R* into N(R)*, not only may latches be
avoided, but the corresponding recognizer may decrease in size. In addition, this transformation
decreases the worst-case cycle time of recognizers from O(n) to O(log n). This source-to-source

transformation seems to be a worthwhile addidon to silicon compilers that produce regular language
recognizers.
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