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Abstract
Background: Time-course gene expression analysis has become important in recent
developments due to the increasingly available experimental data. The detection of genes that are
periodically expressed is an important step which allows us to study the regulatory mechanisms
associated with the cell cycle.

Results: In this work, we present the Laplace periodogram which employs the least absolute
deviation criterion to provide a more robust detection of periodic gene expression in the presence
of outliers. The Laplace periodogram is shown to perform comparably to existing methods for the
Sacharomyces cerevisiae and Arabidopsis time-course datasets, and to outperform existing methods
when outliers are present.

Conclusion: Time-course gene expression data are often noisy due to the limitations of current
technology, and may include outliers. These artifacts corrupt the available data and make the
detection of periodicity difficult in many cases. The Laplace periodogram is shown to perform well
for both data with and without the presence of outliers, and also for data that are non-uniformly
sampled.

Background
In the past decade, time-course gene expression datasets
have become increasingly available, and have enabled the
study of the dynamical behaviors of gene expression and
the related regulatory mechanisms, as well as the analysis
of the relationships between genes and cellular processes.
Of particular interests are the genes that regulate and that
are being regulated in relation to the cell-division cycles.
A cell-division cycle is a series of sequential steps which
are repeated throughout the lifetime of an eukaryotic cell,
and it consists of four distinct phases: G1 phase, S phase,
G2 phase, and M phase. The cell-division cycle is regulated

by a complex interaction of a set of mechanisms which
include genes such as cyclins and cyclin-dependent
kinases (CDKs). These genes are known to be expressed
periodically with respect to the cell-division cycle [1]. In
the genome-wide time-course gene expression studies per-
formed on Saccharomyces cerevisiae by [2,3], a group of
genes are shown to be periodically expressed with respect
to the cell-division cycle. Since then, other time-course
gene expression studies have been conducted on other
organisms such as Plasmodium falciparum [4] and
Schizosaccharomyces pombe [5], and similar experiments
were also conducted on human cells [6,7]. The detection
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of these periodically expressed genes is essential in the
understanding of the regulatory mechanism for the cell-
division cycle.

In recent years, many periodic signal detection algorithms
have been proposed to detect periodically expressed genes
from their time-course gene expression data. It is well
known that for uniformly-spaced samples, the classical
periodogram can be used to estimate the angular fre-
quency spectrum of the sampled signal. Given a time
sequence y1, ..., yN, the classical periodogram is computed
as

where j = , and ω is the angular frequency. Such clas-
sical periodogram has been used in various studies to
detect periodicity in experimental data [3,8-11]. Other
algorithms have also been proposed for the detection of
sinusoids in expression data. In [12], a single pulse model
is proposed to model the periodic behavior in the time-
series gene expression of Saccharomyces cerevisiae. In [13],
partial least-squares regression is used to fit the data to a
linear combination of sinusoids of various frequencies. A
gene is then represented as a point in a multidimensional
space whose coordinates are given by its coefficients for
the cosine and sine functions. The strength of periodicity
of the expression of a gene is determined by the distance
of the point from the origin. In [14], periodic time-course

gene expression are modeled by Yi = μi + βi f(ti - τi) + εi,

where f(t) is a periodic function which is modeled by a
linear combination of cubic B-spline basis. This approach
allows the modeling of periodic gene expression that take
forms other than sinusoids. In addition to periodicity
detection algorithms, various clustering algorithms have
been proposed to obtain subsets of genes that exhibit peri-
odic behavior. These methods include support vector
machine [15], singular value decomposition [16], and
independent component analysis [17].

While the above listed algorithms have achieved varying
degrees of success, they are often limited by factors such as
being developed for a specific dataset, not being able to
provide a ranking for genes, and the nature of the time-
course gene expression. In particular, one problem that
plagues the detection of periodic signals in time-course
gene expression data is that the samples are typically non-
uniformly spaced, which is caused by the cell arresting
and measurement methods employed by the experiments.
One approach to resolve non-uniform sampling is to

extrapolate a continuous signal from the available sam-
ples, and obtain a set of uniformly-spaced samples of the
data from the extrapolated signal. Various works have
explored this option, such as linear interpolation [18],
cubic interpolation on the log of the expression levels
[19], and B-spline interpolation [20]. However, errors can
be introduced during interpolation, which can lead to
inaccuracies in ranking the periodicity of genes. To mod-
ify the classical periodogram so that it can treat observa-
tions obtained with non-uniform spacing, it was
proposed in [21] to fit the data to sinusoidal signals with
least-squares. The asymptotic distribution of the proposed
periodogram is derived in [22]. In [23], it is shown that
the Lomb-Scargle periodogram outperforms methods
based on interpolation. The Lomb-Scargle periodogram is
also used to detect periodicity or to estimate the angular
frequency spectrum of non-uniformly spaced biological
samples in [24,25], and it is used to detect genes exhibit-
ing periodic time-course gene expression in [26].

While using the least-squares fitting to sinusoidal func-
tions allows the treatment of non-uniformly spaced sam-
ples, it is also well known that the least-squares method is
non-robust in the presence of heavy-tailed noise and out-
liers due to its assumption that noise is independently and
identically Gaussian distributed [27]. It is shown in [28]
that the performance of Lomb-Scargle periodogram
degrades in the presence of heavy-tailed non-Gaussian
noise. In [29], robust periodicity detection algorithms
using three different estimators – the M-estimator with
Tukey's biweight function, the least trimmed squares, and
the minimum covariance determinant estimator – are
proposed to detect periodic genes in the mussel species
Mytilus californianus. These robust regression methods are
shown to outperform the Lomb-Scargle periodogram in
the presence of outliers.

In this paper, we propose the use of the Laplace periodo-
gram [30] as an alternative to the Lomb-Scargle periodog-
ram for the detection of periodic genes from time-course
gene expression data. The Laplace periodogram, which we
describe in the Methods Section, employs the least abso-
lute deviation (LAD) fit to sinusoidal functions instead of
the least squares used in the Lomb-Scargle periodogram.
As we will show in the following sections, the Laplace per-
iodogram achieves better performance than the Fourier-
based algorithm proposed in [31] and the M-estimator-
based algorithm proposed in [29] when impulsive noise
is present in the Saccharomyces cerevisiae datasets of [2,3].

Results and discussion
Periodic gene detection without outliers
In this section, we compare the periodicity detection per-
formance of the Fourier-score-based algorithm [31], M-
estimator [29], and the Laplace periodogram using two
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sets of real data. First, we use the Saccharomyces cerevisiae
Alpha (6075 genes), CDC15 (5673 genes), and CDC28
(6214 genes) experiments from [2,3]. The time-course
gene expression datasets of these three experiments are
obtained from Cyclebase.org http://www.cyclebase.org.
The expression datasets obtained have been normalized
to a common scale based on the percentage of the cell
division cycle where the sampling occurs. Furthermore,
the magnitudes of the gene expression have also been nor-
malized to have a standard deviation of one [32]. Next, we
compare the performance of the Fourier-score-based algo-
rithm and the Laplace periodogram using the circadian
oscillation dataset for auxin signaling in Arabidopsis[33].

Saccharomyces cerevisiae datasets
We use the same three sets of benchmarks described in
[31]. Set B1 contains 113 genes identified to be periodi-
cally expressed by the small scale experiments of [3,13].
Set B2 contains genes identified in the Chromatin IP stud-
ies in [34], with 50 genes that are in common with the
benchmark set B1 removed, leaving a total of 352 genes.
Set B3 contains genes identified by MIPS [35] as "cell cycle
and DNA processing" related genes. Genes that are also
annotated as meiosis and genes that are in common with
set B1 are removed, resulting in a total of 518 genes in this
benchmark set. In B2 and B3, the genes selected based on
their association with other genes that are associated with
the cell cycle, or genes that play a role in the cell cycle.
Thus, it is expected that most of the genes in B2 and B3 are
not periodic, and should not be detected as periodic by
the algorithms.

For each experiment, we ranked the time-course expres-
sion of the genes at the normalized cell-division-cycle fre-
quency using the p-values of the scores computed by each
of the three algorithms. Since we have very small number
of samples, we estimated the p-values of the scores at the
normalized cell-division-cycle frequency by a bootstrap
method similar to [36], that is, for each gene, we fix the
sampling times and permute the expression values. A total
of 1000 permutations are generated, and for each per-
muted time series the score is computed. The p-value is
simply the ratio of the permuted sequences that produced
scores higher than from the original time-course expres-
sion. By permuting the expression values with respect to
their sampling times, we aimed to destroy the periodicity
that may exist within the time series. If periodicity exists
within the time series, it is unlikely that a randomly per-
muted sequence will recover that periodicity, thus the
magnitude of the spectrum at the tested period will be
reduced and unlikely to achieve greater magnitude than
the magnitude of the original time series. If on the other
hand periodicity does not exist in the time series, then nei-
ther the original nor the permuted sequences will likely to
have large magnitude at the test period, therefore, the pos-

sibility of the permuted sequence having higher magni-
tude than the original sequence is quite high. Thus the
lower the p-value, meaning that only a small ratio of the
permuted sequences resulted in higher magnitude than by
the original sequence, the more likely that the gene is peri-
odically expressed.

Since the three benchmark sets discussed above include
genes that are known to be or potentially periodically
expressed, we will evaluate their performance by search-
ing for the genes in these benchmark sets from amongst
the highly ranked genes. We search within the top K-
ranked genes for those genes that are present in the bench-
mark sets B1, B2, and B3. This search is performed for
each of the three datasets, Alpha, CDC15, and CDC28.
Thus we have a total of 9 "dataset – benchmark" combi-
nations. For each combination, we plot the top K-ranked
genes against the ratio of benchmark genes found in those
top K-ranked genes, for K = 5 to K = 700. The plots for the
9 "dataset – benchmark" combinations are given in Fig-
ures 1, 2, 3.

The figures plot the ratio of periodic genes as indicated by
the B1, B2, and B3 benchmark sets discovered in a subset
of the top scoring genes scored by the three algorithms. As
the subset of top scoring genes (number of genes in the
subset) increases, the ratio of benchmark periodic genes
contained in these subsets also increases.

From Figures 1, 2, 3, we can see that the Fourier score
method consistently produces the best performance out
of the three methods. The Laplace periodogram is able to
detect periodically expressed genes at detection ratio that
is comparable to the Fourier score for some experiment-
benchmark combinations, and less for others. In particu-
lar, the Laplace periodogram has the biggest drop-off in
performance compared to the Fourier score for the combi-
nations of CDC15-B1 and CDC28-B1. For the other com-
binations, the Laplace periodogram either has
comparable detection performance for all values of K, or
is able to bridge the performance gap as K approaches
700. For each of the combinations, the M-estimator-based
method achieves the worst performance, with large drop-
offs in performance from both the Fourier score and the
Laplace periodogram. Also note that the results in Figures
2 and 3 meet with our expectation that most of the genes
in B2 and B3 are not periodic, leading to a very low ratio
of genes from those two sets being detected as periodic.

Arabidopsis dataset
For this comparison, we use the experimental data pro-
vided by [33], which includes the expression of 22810
genes in Arabidopsis, 1677 of which are determined to fol-
low a circadian fluctuation in mRNA abundance. Total of
12 samples of the time-series gene expression is taken for
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Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the Laplace periodo-gram for the Alpha dataset with no random impulse added for (a)B1, (b)B2, and (c)B3 benchmark setsFigure 1
Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the 
Laplace periodogram for the Alpha dataset with no random impulse added for (a)B1, (b)B2, and (c)B3 bench-
mark sets.
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Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the Laplace periodo-gram for the CDC15 dataset with no random impulse added for (a)B1, (b)B2, and (c)B3 benchmark setsFigure 2
Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the 
Laplace periodogram for the CDC15 dataset with no random impulse added for (a)B1, (b)B2, and (c)B3 bench-
mark sets.
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Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the Laplace periodo-gram for the CDC28 dataset with no random impulse added for (a)B1, (b)B2, and (c)B3 benchmark setsFigure 3
Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the 
Laplace periodogram for the CDC28 dataset with no random impulse added for (a)B1, (b)B2, and (c)B3 bench-
mark sets.
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each gene, which covers approximately two cycles of the
circadian oscillation.

Comparison similar to the Saccharomyces cerevisiae data-
sets is also performed for the Arabidopsis dataset. A total of
250 permutations is computed at angular frequency of π.
The prediction results for the Fourier-score-based algo-
rithm and the Laplace periodogram are shown in Figure 4.
As we can see from the figure, the performance of the two
algorithms are virtually the same up to the 700 top scoring
genes. For both algorithms, approximately 65% of the top
700 scoring genes are confirmed to be circadian according
to experiments. Furthermore, the discovery ratio in the
top 700 scoring genes for the Arabidopsis dataset is about
28%, whereas for the yeast Alpha-B1 "Dataset-bench-
mark" combination, the discovery ratio is about 82% in
the top 700 scoring genes. It would seem at first easier to
rank the gene expression correctly for Arabidopsis due to
the higher ratio of genes in the dataset following circadian
oscillation, at 7.35%, whereas for the Alpha-B1 "Dataset-
benchmark" combination, the ratio of known periodic
genes is only 1.86%. However, the Arabidopsis dataset also
contains more genes than the yeast Alpha dataset, which
increases the ranking difficulty. It should also be noted
that the 28% of known circadian genes discovered in the
top 700 genes is still a much higher detection ratio com-
pared to one from a random ranking, which would on
average discover about 3% in the first 700 genes.

Periodic gene detection in the presence of outliers
We now compare the detection performances of the Fou-
rier score, Laplace periodogram, and M-estimator on the
same Saccharomyces cerevisiae Alpha, CDC15, and CDC28

datasets from [2,3], but with added impulsive noise to the
dataset. For each gene, there is a 0.1 chance of having an
impulse noise at a random position of magnitude +7 or -
7 in its time-course gene expression, replacing its original
value. Note that the range of the peaks of the magnitude
in these experiments varies between 3 and 5. We generate
for each of the three experiments 50 such generated data-
sets with randomly placed impulse noises. We then per-
form periodicity detection with the three methods on
these randomly generated datasets and averaged the
results for each experiment. However, in our simulations,
we observed that the performance for each of the algo-
rithms when ranked using the estimated p-values is no
better than if we had randomly ranked the genes. There-
fore, instead of ranking the genes by their p-value, here we
rank them by using their magnitude instead of using the
estimated p-values. This observation can be explained by
the presence of the outlier impulsive noise, whose influ-
ence on the spectrum is not removed by the random per-
mutations, thus resulting magnitude for a periodically
expressed time series and its permutations do not differ by
a significant amount. The results of these plots are then
given in Figures 5, 6, 7.

From these figures we can see that with the addition of
impulse noise, the Laplace periodogram on average gives
better detection performance than Fourier score for most
of the combinations, and only in the CDC28-B3 combi-
nation does the Laplace periodogram achieves worse
detection accuracy than Fourier score. However, it should
be noted that a lot of the genes in benchmark set B3 are
not involved in the transcriptional regulation, thus only a
very small amount of genes in B3 are expected to be peri-
odic [31]. What is surprising in these simulations is that
even when impulse noises are added, the M-estimator-
based method, which is designed to be robust in the pres-
ence of outliers, performs the worst out of the three meth-
ods compared. A closer look at the M-estimator proposed
in [29], we see that the M-estimator is based on finding

where ρ is a symmetric function with the Tukey's biweight
function as its derivative, and σN a scaling factor. The
Tukey's biweight function is given as

where c is the constant that determines the shape of the
curve and the cutoff point above which the residual of the
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(3)Detection rate in the top scoring genes by the Fourier-score-based algorithm [31] and the Laplace periodogram for the Arabdopsis datasetFigure 4
Detection rate in the top scoring genes by the Fou-
rier-score-based algorithm [31] and the Laplace peri-
odogram for the Arabdopsis dataset.
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Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the Laplace periodo-gram for the Alpha dataset with random impulse added for (a)B1, (b)B2, and (c)B3 benchmark setsFigure 5
Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the 
Laplace periodogram for the Alpha dataset with random impulse added for (a)B1, (b)B2, and (c)B3 bench-
mark sets.
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Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the Laplace periodo-gram for the CDC15 dataset with random impulse added for (a)B1, (b)B2, and (c)B3 benchmark setsFigure 6
Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the 
Laplace periodogram for the CDC15 dataset with random impulse added for (a)B1, (b)B2, and (c)B3 bench-
mark sets.
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Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the Laplace periodo-gram for the CDC28 dataset with random impulse added for (a)B1, (b)B2, and (c)B3 benchmark setsFigure 7
Detection rate in the top scoring genes by the Fourier-score-based algorithm [31], M-estimator [29], and the 
Laplace periodogram for the CDC28 dataset with random impulse added for (a)B1, (b)B2, and (c)B3 bench-
mark sets.
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sample and the current fit contributes zero weighting,
thus completely removing the contribution of possible
outliers that exceeds a certain magnitude. However, this
approach requires a value for c which may vary from data-
set to dataset. The optimal value for c may depend on the
magnitude of the peaks and the magnitude of the outliers.
When given an unknown dataset without a benchmark set
of periodically expressed genes, it is uncertain how c can
be tuned to achieve the optimal result, thus demonstrates
a disadvantage of the M-estimator-based method. Note
that for both simulations with and without the presence
of outliers, we used the default value of c which came with
the program provided by the authors of [29].

Conclusion
Our simulation results have shown that the Laplace peri-
odogram is a useful tool for detecting periodic time-
course gene expression, particularly when the dataset con-
tains outliers and when the sampling intervals are highly
uneven. The Laplace periodogram achieves better per-
formance for the Saccharomyces cerevisiae dataset when
outliers are present, and achieves equal or comparable
performances to the Fourier-based method for both the
Saccharomyces cerevisiae and Arabidopsis datasets when no
outlier.

Methods
Laplace periodogram
For time series samples y = [y1, ..., yN ], the classical perio-
dogram is computed as

for the frequency range ω ∈ (0, 2π). For frequencies

, k = 1, 2, ..., the classical periodogram can be

alternatively written as

where  is given by

With . In other words,  is

the solution to the least-squares regression of y to the
regressor xt[37].

To overcome the weakness of classical and Lomb-Scargle
periodograms in dealing with outliers and heavy-tailed
noise, it is proposed in [30] that the L2 norm in (6) be

replaced with the L1 norm, thus replacing the least squares

with least absolute deviation (LAD). Thus, the Laplace

periodogram can be computed for , k = 1, 2, ...,

where we replace the least squares coefficient  with the

LAD coefficient,

Note here that the magnitude at each angular frequency
can be computed independent of the other frequencies,
meaning that if we know exactly the periodicity that we
are looking for, there is no need to compute the LAD coef-
ficients for the entire frequency spectrum. In [29], the pro-
posed robust estimators are used in the Fisher's g-
statistics, which has a denominator that is computed with
contribution from all the frequency components. Thus
the LAD periodogram has an advantage in terms of com-
putational complexity when the periodicity is known, by
foregoing the evaluation of the magnitudes of the rest of
the frequency components.

An implementation of the proposed algorithm in MAT-
LAB can be found at http://kuoching.googlepages.com

Method for LAD approximation
To solve for the LAD coefficients, we can convert (8) into
a set of equations and constraints to be solved using linear
programming [38]. Let γ = [γ1γ2]T, and xt = [xt,1 xt,2]T, where
xt,1 = cos(ωt), and xt,2 = sin(ωt). We first consider the fol-
lowing equation,

where ut and vt are non-negative variables. By setting γj = bj
- cj, where bj and cj are non-negative variables, we can
obtain the best L1 approximation by solving the following
linear programming problem:
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To solve the LAD approximation for non-uniformly
spaced samples, we follow the same steps to solve for the
LAD coefficient in the following,

where [t1, t2, ..., tN ] are the N non-uniformly sampled time
instants.

In this formulation, the LAD coefficients can be easily
solved using standard algorithms for solving linear pro-
gramming problems. For our implementation in MAT-
LAB, we used the LINPROG function in the Optimization
Toolbox. In terms of computational time required to
process the data, for experiment Alpha which consists of
6075 genes and 18 samples each, the total time to com-
pute 1000 permutations for the p-value analysis takes
approximately 24 hours on a Pentium Core 2 CPU at 2.66
GHz, which is similar to the amount of time taken by the
M-estimator-based method, also implemented in MAT-
LAB using the ROBUSTFIT function in the Statistics Tool-
box.
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