Academic Commons

Theses Doctoral

Stochastic Networks: Modeling, Simulation Design and Risk Control

Li, Juan

This dissertation studies stochastic network problems that arise in various areas with important industrial applications. Due to uncertainty of both external and internal variables, these networks are exposed to the risk of failure with certain probability, which, in many cases, is very small. It is thus desirable to develop efficient simulation algorithms to study the stability of these networks and provide guidance for risk control. Chapter 2 models equilibrium allocations in a distribution network as the solution of a linear program (LP) which minimizes the cost of unserved demands across nodes in the network. Assuming that the demands are random (following a jointly Gaussian law), we study the probability that the optimal cost exceeds a large threshold, which is a rare event. Our contribution is the development of importance sampling and conditional Monte Carlo algorithms for estimating this probability. We establish the asymptotic efficiency of our algorithms and also present numerical results that demonstrate the strong performance of our algorithms. Chapter 3 studies an insurance-reinsurance network model that deals with default contagion risks with a particular aim of capturing cascading effects at the time of defaults. We capture these effects by finding an equilibrium allocation of settlements that can be found as the unique optimal solution of an optimization problem. We are able to obtain an asymptotic description of the most likely ways in which the default of a specific group of participants can occur, by solving a multidimensional Knapsack integer programming problem. We also propose a class of strongly efficient Monte Carlo estimators for computing the expected loss of the network conditioned on the failure of a specific set of companies. Chapter 4 discusses control schemes for maintaining low failure probability of a transmission system power line. We construct a stochastic differential equation to describe the temperature evolution in a line subject to stochastic exogenous factors such as ambient temperature, and present a solution to the resulting stochastic heat equation. A number of control algorithms designed to limit the probability that a line exceeds its critical temperature are provided.

Files

  • thumnail for Li_columbia_0054D_12964.pdf Li_columbia_0054D_12964.pdf binary/octet-stream 813 KB Download File

More Information

Academic Units
Industrial Engineering and Operations Research
Thesis Advisors
Blanchet Mancilla, Jose H.
Degree
Ph.D., Columbia University
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.