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Abstract

We discuss four image understanding problems: 2 1/2 D sketch, three-dimensional
reconstruction from projections, shape from shading, and optical flow. We point out how
known general optimality resuits may be applied to the first three problems. We indicate
some preliminary results and work in progress, concerning the numerical solution of all four

problems. Algorithms which differ from those currently used in practice are proposed.

1. Introduction
Information-based complezity is a field whose goal is to solve problems optimally with

-1

limited or contaminated information. We appl( | the optimality results of the theory to image
1

understanding problems. We also discuss numerical algorithms for these problems. We first

review briefly the relevant part of the theory and then discuss the following problems in

turn: 2 1/2 D sketch, three-dimensional reconstruction from projections, shape from

shading, and optical flow.

We approximate an element f in a normed space F, with norm [||l. We have information
about f: N{f) = {L/(f), =, LM}, where L, is a functional on F, and N: F — R® An
algorsthm ¢ uses this information to construct an approximation @(N(f)) € F, where ¢: Ro©
— F is an arbitrary mapping. Since any 7, such that N(f*) = N(f), could be the element

we want to approximate, and since in practice, we only consider {* in a subset of F, | I

the worst case algorithm error is defined as



(@ Nf) = sup IE* - s(NEDIEL £ € F.
i"eF, (1)
N(f")=N(f)

We seek a strongly optsmal algorsthm, which minimizes the algorithm error, amorg all

algorithms, for each f in F.

In the following discussion of image understanding problems, we use the notation and

terminology given above.

2.2 1/2 D Sketch
2 1/2 D sketch is to recover the surface based on a finite set of depth values, obtained

from direct ranging. binocularity etc., see Grimson {81).

We assume that the class of real world surfaces F is smooth and is viewed from a position
free of accidental slignments. Formally, F = {ff D — R, D € R? { and its first and
second order partial derivatives are all square integrable}. Information is depth data:

N = (L0, Ly(h] = [y, fxgy, ) (@)
A natural constraint from practice is the surface consistency constraint, which states that
the surface cannot change in a radical manner between known data. The change of a surface

1s quantified by its variation 8, defined as

R IR P SIS @)
D

We confine ourselves to the class of surfaces Fs . which has bounded surface variation.

Without loss of generality, we assume that the bound is 1, ie., Fo={feF & <1}



Grimson [81] further explored the surface consistency constraint and proposed epline
interpolation, which interpolates the data and minimizes §. This is the spiine algorithm. It

is known (see e.g. Traub and Wozniakowski [80] ch.2 and 4.5) that

Proposition 2.1 The spline algorithm ¢* is strongly optimal and linear. It has the form:

PS(N(f)) = N E f(xi, Yi) a ., (4)

Lo |

where o, 15 a basts spline, t.e., a function of minimal surface variation such that oix;, ;)

= 6i.i , and 5iJ is the Kronecker deita.

Constructing the spline is mmportant in practice and has been the subject of much work,

see Grimson [81] and Terzopoulos [84].

We now briefly discuss two different approaches. From (4), (_te spline is a linear

!

combination of basis splines &, , and the coefficients are known débth values. The basis

[
splines are data independent and can be precomputed. However, for large n, it may not be
feasible to compute and store all basis splines because of time and space limitations. To

implement the spline algorithm using this approach, one has to further explore efficient ways

of storing and retrieving the basis splines.

Another approach 15 to use the reproducing kernel, where one has to solve a large system
of linear equations. The coefficient matrix is dense, but regularly structured. For a regular
grid, 1t is a block Toeplitz matrix. Based on the work by Meinguet [83], Boult {85] is seeking

an efficient numerical solution.

The information in (2) is depth data. This is nonadaptive information, since the sampling
location (x;, y;) of the sth depth value does not depend on the previously computed (i-1)

depth values. If the sth sampling location does depend on the (i-1) depth values obtained,



then we call it adaptive in formation. More precisely, adaptive information is defined as

NYf) == z = [z, =, 2], (3)

where z, = f(x,, y,} and

xi, = xi(z’p " z‘i-])r yl = yi(zlr Y zi.l)r l = 2! ™y .

Adaptive information has a richer structure than nonadaptive information. One might
hope that the previously computed (i-1) depth values supply additional information for
determining where to sample for the +th depth value. Counter-intuitively, adaptive
information cannot aid 2 1/2 D sketch and some other image understanding problems, see
Traub and Wofniakowski [80] ch.2 and Traub, Wasilkowski and Wofniakowski [83] <h.4.
Therefore, in seeking the best places to sample, we can confine ourselves to nonadaptive

information only, which is simple and favorable for parallel or distributed computation.

3. Three-dimensional Reconstruction from Projections

The problem of reconstructing three-dimensional objects from a set of two-dimensional
projected images has arisen and been studied independently in fields ranging from medicine
and electron microscopy to holographic interferometry. By using a source of radiation
external to the object, we obtain a transmission picture of projection of the three-
dimensional object onto a two-dimensional surface such as the film of an ordinary electron
micrograph or x-ray. The reconstruction problem is: given a set of projections of an object,

estimate its internal density distribution. Much work has been done, see Gordon and Herman



[74] for a survey and also Logan and Shepp [75]. We propose using a different algorithm,

which is provably optimal, and we also briefly discuss its implementation.

We assume that the class of density distributions F consists of smooth functions supported
on the unit disc D in the zy-plane, ie, F = {ff D — R, the second order partial
derivatives of [ are square integrable}. As in Section 2, we observe the consistency
constraint by confining ourselves to a subset of elements in F, ie, Fy = {f € F: &I) < 1},
where & is given n (3). Information is given by the projections of f along the line: x cosf +

y sin§ = t. More precisely, N(f) = {LEJ(f)} where the linear functional L;; is

i
1
L = / f(t; cos§; - s sing; , t; sin§; + s cos§) ds, (8)
-1
where 0 S § < m -1 <t <l i=1~mj=1-n
As in Section 2, it i1s known that

Proposition 3.1 The spline algorithm ¢° which interpolates the data and minimizes 8, is

strongly optimal and linear. It has the form

FIND) = oy = ) ), Lidh oy (

1=l ;=1

=1
—

where 0,; is a basts spline, e, a function of minimal variation such that Lijo ) =

6 0

0 and éi,j is the Kronecker delta.

Here, as in Section 2, there are a number of alternatives for constructing the spline. One

could use precomputation of the basis splines. Then the discussion of Section 2 applies.

Another possible approach is to use the reproducing kernel. It 1s known, Atteia [70], that
there exists a reproducing kernel w{x.y ; u,v), delined on DxD, which is useful for

representation of splines. An analytic form of the reproducing keroel 1s derived n Atteia



(70}, which also includes an ALGOLS0 program for its numerical computation. The spline is

then of the form

Tref0v) = Z: 3y Ly () -5 0, V) (8)

Therefore, we only have to compute the coefficients 2, in (8). Applying L;; to both sides

of (8); since i interpolates the projection data, we have

; Lij(ge) ay = Liy(h), (9)

where gy (u,v) = L, (w{-, - ; u, v)). Thus the problem is reduced to solving a system of
linear equations in 3y, - If the number of projection data is not large, then this system c¢an
be easily solved. If it is very large, standard numerical methods are not feasible due to their
high cost. Since the coefficient matrix is a well structured Gram matrix, it might be possible

to devise an efficient numerical algorithm for solving (9).

4. Shape from Shading

Research in shape from shading explores the relationship between image brightness and
cbject shape. A great deal of information is contained in the image brightness values, since
image brightness is related to surface orientation. Information can also be obtained from
occluding boundaries and other boundary conditions, see Ikeuchi and Hornm [81]. To
determine surface orientations, lkeuchi and Horn used the spline-smoothing approach and
reduced the problem to solving a system of non-linear equations, and proposed an iterative
algorithm for solving it. We discuss the numerical solution of this system of pon-linear

equations.



The relation between the surface orientation and brightness is specified by the image-

trradignce equation:

R(£n) = E{xy), (10)
where £ = §(x,y) and n = n{x,y) represent the surface orientation at the point {x,y),
E(x,y} is the brightness measured at the point (x,y), anad R{" , ) can be determined

experimentally or theoretically, see Horn and Sjoberg [79), and Nicodemus et al. 77]. The

goal is to recover § and n.

lkeuchi and Horr used spline-asmoothing, see Laurent (72], and seek € and n, which
. minimize

f CLIER + (67 + (00 + (0,2 ] + A[R(En) - Exy) 2 } dxdy, 1y

D
where D is the image domain of the object and \ is a penalty parameter.

After discretization, with mesh size h, and applying the method of Lagrange multipliers, we
have a system of non-linear equations in Ei.j and 7,; - An iterative method was proposed in
Horn and Schunck [81] for solving this system of equations. The initial values are supplied
by the boundary conditions, i.e., Ei‘j and n,; ore known if (1]} belongs to the oceluding
boundaries or other boundary points. The existence and ngiqueness of the solution remain a

problem. Furthermore, the convergence of the iterative method has not been established.

We will use a new iterative algorithm, which, for a range of A, converges to the unique
solution of the system, see Lee [85]. For arbitrary X, the convergence of the algorithm needs

further study.

Let N = h® where h is the mesh size. To implement the iterative algorithm. one has to



multiply a dense matrix by a vector, with cost O(N?), using conventional matrix
multiplication. However, we can use Fast Fourier Transforms (FFT) to reduce the cost to
O( N log N ). If the error bound is O(h), then one performs (log N) iterative steps, with

the total cost O{ N (log N3 ).

When the data are noisy, the spline-smoothing approach is appropriate. However, when the
data are relatively precise, the snterpolating spline approach is preferable. In that approach,
one seeks a spline, which interpolates the data and minimizes the first part of (11). This is
an fnterpolatory algorithm and is therefore almost strongly optimal, ie., strongly optimal
within a factor of 2, see Traub and Wozniakowski [80] ch.1. The uniqueness of the spline

and its construction need further investigation.

5. Optical Flow

Biological systems typically move relatively continuously through the world, and the images
projected on their retinas vary essentially continucusly while they move. Such continuous
flow of the imaged world across the retina is called optical flow. The optical flow assigns to
every point cn the visual field a two-dimensional “retinal velocity”, at which 1t is moving
across the visual field. We study approximation of the optical flow, or velocity freld, based

on a sequence of images.

Assume that D is a fioite image domain of interest. We denote the image brightness,
projected by a point on a moving object at time t, by E(x.,y,t), and the velocity field by

(u{x,y,t),v(x,y.t)). Then we have (Cornelius and Kanade [83], Horn and Schunck [81]):

wix.yt) = plxy.t} u(xyt) + qlxy.t) v(xyt) + r{xy.t), (12)



where p =JE/3x, @ =2E/3y and r =3E/fst can be computed directly. The function w is

the total rate of chapge of brightness, which i1s not known.

From (12) alone, one cannot determine u, v and w uniquely. Assume that the partial
derivatives of u, v and w are square iategrable. In addition to requiring that (12) be
satisfied, a consistency constraint is imposed in Cornelius and Kanade [83] and Horn and

Schunck [81], which is the minimization of the following:

f ()2 + (v, + (v + (v,)%] dx dy and [ {(w )2 + (w, )} dx dy. (13)
D D

Then u, v and w are uniquely determined. We discuss two approaches for approximating
u, v and w in Subsections 5.1 and 5.2, respectively: spline-smoothing and :’nrerpo!at:'ng-
spline. We approximate the velocity field at an arbitrary instance t; , and we omit the

time factor t in the following discussion.

5.1. Spline-smoothing
This approach was used by Horn and Schunck [81] (where w=0), and by Cornelius and

Kanade [83]. They seek {u,v,w), which minimizes

[ {M{? + () + (7,2 + (v, 7] + pllw? + ()] (14)
D

+ [pu + qv + r - w]* } dx dy,

where XA and g are penalty parameters.

After discretization, with mesh size h, to solve the minimization problem, one has to solve

a system of linear equations. To solve this system of linear equaticms, the Gauss-Seidel
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iterative method was proposed in Cornelius and Kanade [83] and Horn and Schumck [B1].
The convergence of the algorithm remains to be analyzed, since the coefficient matrix is not
symmetric. Furthermore, even if the Gauss-Seidel iterative method converges for this case, it

converges slowly.

We propose using the conjugate gradient iterative method, see Hageman and Young [81]
ch.7, based on the following observations. With appropriate algebraic manipulations, without
increasing the condition number, we can reduce the problem to solving a system of linear
equations with symmetric and positive definite coefficient matrix, which is sparse, see Lee
[85]. The conjugate gradient method converges much faster than Gauss-Seidel and is strongly

optimal, see Tranb and Wozniakowski [84].

On the other hand, algorithms with simple, local and parailel operations are preferable in .
image understanding, since they are suitable for parallel computation and feasible for a
biological system. Conjugate gradient method requires global interaction, which might not

be desirable.

We estimate the minimal and maximal eigenvalues of the matrix, and its condition
number, see Lee [85]. We can use the Chebyshev method, which also converges much faster
than Gauss-Seidel and involves only simple, local and parallel operations. Chebyshev method
is also optimal, see Traub and Wozniakowski [84].  For Chebyshev methods, see Hageman

and Young [81) ¢h.4 - 8 and Appendix A, which includes FORTRAN subroutines.

5.2, Interpolating Splines
In this approach, we seek (u,v,w), which satisfy the information constraint {12) exactly and
minimize

[ { M + () + (v)? + (v 7] + Al(w)* + (w, )7 } dx dy, (15)
D
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where X\ is a chosen parameter. (There is a short discussion of this approach, for w = 0

L3

in Horn and Schunck {81]).

After discretization, and applying the method of Lagrange multipliers, we have to solve a
system of linear equations. The coefficient matrix is neither symmetric nor positive definite.
However, we can reduce the problem, without increasing the condition number of the
coefficient matrix, to solving a system of linear equations, with symmetric and positive
definite coefficient matrix. Therefore, the conjugate gradient iterative method can be used.
We also estimate the minimal and maximal eigenvalues of the matrix, and its condition

number, see Lee [85]. Therefore, as before, the Chebyshev method can be used.

The coefficient matrix is dense, and each iterative step requires multiplying this matrix by
a vector, which could cost O(N?), where N = h2  However, we can use the FFT, to

reduce it to O N {leg N} ).
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