Academic Commons

Presentations (Communicative Events)

Contextual Phrase-Level Polarity Analysis using Lexical Affect Scoring
and Syntactic N-grams

McKeown, Kathleen; Agarwal, Apoorv; Biadsy, Fadi

We present a classifier to predict contextual polarity of subjective phrases in a sentence. Our approach features lexical scoring derived from the Dictionary of Affect in Language (DAL) and extended through WordNet, allowing us to automatically score the vast majority of words in our input avoiding the need for manual labeling. We augment lexical scoring with n-gram analysis to capture the effect of context. We combine DAL scores with syntactic constituents and then extract ngrams of constituents from all sentences. We also use the polarity of all syntactic constituents within the sentence as features. Our results show significant improvement over a majority class baseline as well as a more difficult baseline consisting of lexical n-grams.

Subjects

Files

More About This Work

Academic Units
Computer Science
Published Here
April 29, 2013
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.