Academic Commons

Articles

Multi-Scale Visual Analysis of Trauma Injury

Imielinska, Celina Z.; Przekwas, Andrzej; Tan, X. G.

We develop a multi-scale high-fidelity biomechanical and physiologically based modeling tools for trauma (ballistic/impact and blast) injury to brain, lung and spinal cord for resuscitation, treatment planning and design of personnel protection. Several approaches have been used to study blast and ballistic/impact injuries. Dummy containing pressure sensors and synthetic phantoms of human organs have been used to study bomb blast and car crashes. Large animals like pigs also have been equipped with pressure sensors exposed to blast waves. But these methods do not provide anatomically and physiologically, full optimization of body protection design and require animal sacrifice. Anatomy and medical image-based high-fidelity computational modeling can be used to analyze injury mechanisms and to optimize the design of body protection. This paper presents novel approach of coupled computational fluid dynamics and computational structures dynamics to simulate fluid (air, cerebrospinal fluid)–solid (cranium, brain tissue) interaction during ballistic/blast impact. We propose a trauma injury simulation pipeline concept staring from anatomy and medical image-based high-fidelity 3D geometric modeling, extraction of tissue morphology, generation of computational grids, multi-scale biomechanical and physiological simulations, and data visualization.

Files

Also Published In

Title
Information Visualization
DOI
https://doi.org/10.1057/palgrave.ivs.9500137

More About This Work

Academic Units
Radiation Oncology
Published Here
August 13, 2012
Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.