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ABSTRACT 

Web pages often contain clutter (such as ads, unnecessary images 
and extraneous links) around the body of an article, which 
distracts a user from actual content. Automatic extraction of 
“useful and relevant” content from web pages has many 
applications, including browsing on small cell phone and PDA 
screens, speech rendering for the visually impaired, and reducing 
noise for information retrieval systems. Prior work has led to the 
development of Crunch, a framework which employs various 
heuristics in the form of filters and filter settings for content 
extraction. Crunch allows users to tune these settings, essentially 
the thresholds for applying each filter. However, in order to 
reduce human involvement in selecting these heuristic settings, 
we have extended this work to utilize a website’s classification, 
defined by its genre and physical layout. In particular, Crunch 
would then obtain the settings for a previously unknown website 
by automatically classifying it as sufficiently similar to a cluster 
of known websites with previously adjusted settings - which in 
practice produces better content extraction results than a single 
one-size-fits-all set of setting defaults. In this paper, we present 
our approach to clustering a large corpus of websites by their 
genre, utilizing the snippets generated by sending the website’s 
domain name to search engines as well as the website’s own text. 
We find that exploiting these snippets not only increased the 
frequency of function words that directly assist in detecting the 
genre of a website, but also allow for easier clustering of 
websites. We use existing techniques like Manhattan distance 
measure and Hierarchical clustering, with some modifications, to 
pre-classify websites into genres. Our clustering method does not 
require prior knowledge of the set of genres that websites fit into, 
but instead discovers these relationships among websites. 
Subsequently, we are able to classify newly encountered websites 
in linear-time, and then apply the corresponding filter settings, 
with no noticeable delay introduced for the content-extracting 
web proxy. 

Categories and Subject Descriptors 

I.7.4 [Document and Text Processing]: Electronic Publishing; 
H.3.5 [Information Storage and Retrieval]: Online Information 

Services – Web-based Services 

General Terms 

Human Factors, Algorithms, Standardization. 

Keywords 

Website classification, clustering, content extraction, 
reformatting, HTML, context, accessibility, speech rendering. 

1. INTRODUCTION 

Web pages are cluttered with guides and menus attempting to 
improve the user’s efficiency, but they often end up distracting 
from the actual content. These “features” may include script- and 
flash-driven animation, menus, pop-up ads, obtrusive banner 
advertisements, unnecessary images, or links scattered around the 
screen. The automatic extraction of useful and relevant content 
from web pages has many applications, including enabling end 
users to access the web more easily over constrained devices like 
PDAs and cellular phones, providing better access to the web for 
the visually impaired, providing less noisy data for information 
retrieval and summarization algorithms, and generally improving 
the web surfing experience. 

Gupta et al. [4] [5] [6] have developed a framework, Crunch, 
which employs various heuristics in the form of filters and filter 
settings for content extraction. In order to analyze a web page for 
content extraction, they pass it through an HTML parser, which 
corrects the markup and creates a Document Object Model tree. 
The Document Object Model (www.w3.org/DOM) is a standard 
for creating and manipulating in-memory representations of 
HTML (and XML) content. The Crunch system applies the 
relevant filters and their appropriate settings to this DOM tree and 
the resulting HTML page provided to the user is a clean, clutter-
free page. 

Crunch allows users to tune the settings, essentially the thresholds 
for applying each filter. However, while the proxy works very 
well on a large variety of webpages, the filters sometimes need to 
be manually configured by the user in order to properly extract 
content for a given site. We found that the settings for the proxy 
needed to be adjusted only when the user moved from one class 
of site to another. In order to reduce human involvement in 
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selecting the heuristic settings for the appropriate content 
extraction, we considered utilizing a website’s classification. 
Crunch could then obtain the settings for a previously unknown 
website by automatically classifying it as sufficiently similar to a 
cluster of known websites with previously adjusted settings - 
which in practice produces better content extraction results than a 
single one-size-fits-all set of setting defaults. To come up with the 
classification for any site, we decided to use its genre as one of 
the two criteria; the other was its physical layout. We noted that 
filter settings did not change when browsing among sites that 
belonged to the same genres. For example, the link density, 
table/cell structure and advertisement layout remained consistent 
among sites with news genre vs. shopping genre. Therefore, 
settings that worked well for the various genres could be 
dynamically loaded once the genre for a site was identified.  

With a good document clustering method, computers can 
automatically organize a document corpus into a meaningful 
cluster hierarchy, which enables an efficient browsing and 
navigation of the corpus. [17] However, performing genre 
analysis in real-time is too computationally expensive for web 
applications. Additionally, most current clustering algorithms 
require a priori knowledge of the number of clusters to properly 
classify a set of documents; however, given the vast quantity and 
enormous variety of documents on the web, this does not seem 
like a suitable approach. So, the tractability of classifying a 
document at runtime into an indeterminate number of categories 
remains vague at best. We found it necessary to identify a basic 
set of clusters so that new websites encountered could simply be 
compared to sites in those pre-defined sets. 

Our goal was to use a simple algorithm for the pre-clustering of a 
large corpus of web documents. Our key insight was utilizing the 
results (defined as “snippets”) generated by sending the website’s 
domain name to search engines as well as the website’s own text 
towards determining the genre of websites. We find that 
exploiting these snippets not only increased the frequency of 
function words that directly assist in detecting the genre of a 
website, but also allow for easier clustering of websites. We found 
snippets to be descriptive of the function of the websites being 
accessed and especially useful since they added relevant 
knowledge in the form of function words which could then be 
used in the analysis of the appropriate genre. We use existing 
techniques like Manhattan distance measure and Hierarchical 
clustering, with some modifications, to pre-classify websites into 
genres. Our clustering method does not require prior knowledge 
of the set of genres that websites fit into, but instead discovers 
these relationships among websites. Subsequently, we are able to 
classify newly encountered websites in linear-time, and then 
apply the corresponding filter settings, with no noticeable delay 
introduced by our content-extracting web proxy. In this paper, we 
explain our method for clustering websites and briefly describe 
the ensuing classification of individual new websites in order to 
get good content extraction results. 

The following sections describe the related work in the field of 
information retrieval and document clustering, followed by our 
approach and the associated implementation details, and we will 
conclude with results from our experiments and a summary of our 
contributions. 

2. RELATED WORK 

Document clustering has been extensively investigated over the 
years for many domains [3] [16].The use of clustering in IR 
appears mostly to be driven by the cluster hypothesis, which 
states that “closely associated documents tend to be related to the 
same requests”. [1] Xu et al. point out that document clustering 
methods can be mainly categorized into two types: document 
partitioning (flat clustering) and agglomerative (bottom-up 
hierarchical) clustering. Although both types of methods have 
been extensively investigated for several decades, accurately 
clustering documents without domain-dependent background 
information is still a challenging task. [17] They provide a novel 
document partitioning method using non-negative factorization of 
the term-document matrix. However, we have found that web 
document clustering can be done with little or no background 
information available about the domains, so long as there are 
enough function words available to help classify the documents. 

There is a large body of related work in information retrieval and 
genre classification. Lee et al. [7] describe their method for text 
genre classification by using two different class sets, genre classes 
and subject classes, in the training data. However, their method 
would not work well for web documents since the number of 
genres need to be identified and fixed before the categorization. 
This, as pointed out before, is an impediment for the vast number 
and incredible variety of the corpus of web documents. For the 
same reason, traditional partitioning methods like K-Means 
clustering [9] will not work. Similarly, clustering using sequential 
information maximization, presented by Slonim et al. [14] 
requires prior knowledge of the number of clusters for the data to 
be classified. 

Spectral clustering, an approach demonstrated by Ng. et al. [10], 
clusters points using eigenvectors of matrices derived from the 
data contained in the documents. However, like with K-Mean 
clustering, the number of clusters is expected to be a known 
quantity before the process. Additionally, spectral clustering 
works hard at performing tight fitting of all data points within a 
cluster, and later experiments clearly show that this is not a hard 
requirement when classifying web documents by genre. 

Cutting et al. [3] describe a cluster based approach to browsing 
large document collections, called Scatter/Gather. It provides a 
mechanism for user-driven organization of data in a fixed number 
of clusters, but the users need to be in the loop and the computed 
clusters do not guarantee accuracy. Moreover, the technique is 
designed to work well for finding similarity between articles 
based on subject. We are interested in identifying broad topic 
genres, like news, shopping, and sports, for top-level domains. 

Zhang et al. [21] present BIRCH, a clustering method for 
extremely large databases. The main optimizations in this 
technique are made to reduce the number of I/O transactions and 
to increase space efficiency. In order to truly gain the benefits 
from this model, multiple passes on the data are required. 
However, this increases the runtime complexity of the system. 
Additionally, we observed that a relatively small number of 
documents (as few as two, as demonstrated later in this paper) 
were enough to define a cluster and its associated genre. 



Siersdorfer et al. [13] show an interesting approach to clustering 
by working on only a subset of the available data. The key 
element to their approach is to construct restrictive meta-methods 
at the moderate cost loss of uncertain samples. However, their 
approach, called restrictive clustering, which clusters with high 
accuracy, is prone to miss recognizing failed clustering attempts. 

Zamir et al. [20] describe Grouper, a clustering system that 
employs term based clustering, an approach that is similar to ours. 
They use Suffix Tree Clustering, which is shown to be fast and 
domain independent. However, they have applied their methods 
to only grouping the results returned by search engine by 
analyzing the snippets produced by the appropriate search. We 
would like to actually like to automatically classify whole 
websites. 

Lastly, Crammer et al. [2] describe a technique for performing 
online classification that focuses on online additive algorithms for 
classification tasks. Their approach was designed to save a user 
from needing vast computational resources. We tend not to suffer 
from this problem either since we define a fixed range of words 
(described in Sections 3 and 4) to classify the various websites. 
Additionally, the system described needs a training period to 
produce the level of classification achieved while we use a static 
set of data and are able to achieve similar results. 

Finally, most of the work described here tends to be used towards 
analysis and clustering of documents or search engine results, but 
not for web pages. One general problem with using the strategies 
mentioned here is that most web pages contain extremely noisy 
data that may lead to incorrect clustering results and our results, 
which had to be used for the purpose of content extraction, had to 
be resilient to such noise. 

3. APPROACH 

Clustering involves the grouping of similar objects, and has been 
practiced, consciously or unconsciously, for many thousands of 
years. [16] Distance coefficients, such as Euclidean distance, have 
been used very extensively in cluster analysis, owing to their 
simple geometric interpretation. Our solution employs multiple 
techniques that incorporate the advantages of the previous work 
on clustering and information retrieval. However, in order to 
motivate the clustering, let us briefly describe the application. 

3.1 Crunch 

Extraction of “useful and relevant” content from web pages has 
many applications, including cell phone and PDA browsing, 
speech rendering for the visually impaired and reducing noise for 
information retrieval systems. Gupta et al. [4] [5] [6] suggested 
the key insight to work with DOM trees, rather than raw HTML 
markup. Access to various tunable heuristics, in the form of 
filters, are provided to the user through Crunch, their content 
extraction web proxy. Crunch extracts content from webpages 
based on filter settings that are typically applied by the user, 
based on the site they are browsing and the content they wish to 
see. Figure 2 shows an example of a typical CNN page without 
and with filtering. 

 
Figure 1 - Crunch Control Panel 

However, the Crunch settings (shown in Figure 1) require manual 
tweaking for various sites. Our goal was to automate the 
application of filter settings for a varied range of websites by 
detecting the classification of websites – defined by content 
genres and the physical layout. We noticed that, while certain 
settings worked well for particular genres of sites, for example 
most news sites shared the same filter settings that produce the 
best extraction of content; those same settings did not work well 
with other genres like shopping, sports or astronomy. This was 
mainly due to two reasons – (i) sites from the same genre 
generally followed similar layouts; and (ii) users defined content 
similarly across various genres. Therefore, we developed the 
hypothesis that detecting the genre for a site would enable better 
content extraction. 

 



 
 

 
Figure 2 - Content Extraction results on a typical cnn.com 

article (original page vs. extracted page)  

Since this is a web application, detection of the content genre 
needs to be done in near real-time, for the overall content 
extraction to be done in a reasonable amount of time. However, as 
pointed out before, performing genre-analysis on individual 
documents can be extremely computationally expensive. But, if 
the content extraction proxy already had data on the existence of 
various genre clusters (and the various heuristic filter settings that 
work well for those genres), then matching individual websites to 
those clusters and applying the appropriate settings could be an 
efficient process. Therefore, we focused on the offline 
identification of clusters of genres from a large corpus of 
websites. 

3.2 Clustering 

We found very few classification algorithms applied to the 
clustering of web documents (as shown in Section 2). These few 
algorithms suffered from two basic problems – (i) they had high 
run-time complexity (cubic or higher running time), and/or (ii) 
they classified webpages into a fixed number of pre-determined 
clusters rather than finding the affinity among websites and 
discovering where the clusters lay. Our goal was to overcome 
these two basic constraints. 

We use an external module as a preprocessor to classify almost 
200 unique and frequently visited (by the members of our group) 
websites, covering genres like news (international as well as 
regional), shopping, astronomy and technical weblogs. Our key 
insight was to use results returned by search engines (defined as 
“snippets”), obtained only from the first page of the results 
returned by the various search engines, when searching for the 
domain name of the site in question, towards determining the 
genre of websites. We found that snippets contain words that are 
highly descriptive of the function of the websites being accessed. 
Snippets are especially useful since they add relevant knowledge 
in the form of function words which could then be used in the 
analysis of appropriate genres. Furthermore, we found that adding 
snippet data does not increase the complexity of the clustering 
algorithm, instead simply adds the access time to the particular 
search engine to the overall running time of the system. 

For each site slated for clustering, we create a word frequency 
map consisting of the textual data of the webpage as well as the 
snippets produced by six popular search engines (Google, Yahoo, 
Dogpile, MSN, Altavista and Excite). For instance, searching for 
cnn or nypost, when accessing these sites respectively, increased 
the frequency of words such as "news" and "business", while 
searching for Amazon resulted in a frequency increase of the 
word “shop” and “books”. From the frequency map of each 
document, we prune all words deemed insignificant – a stop word 
list – containing words that typically are parts of speech 
(prepositions, articles, pronouns, etc.), and other words that may 
appear frequently in a document but that do not add information 
to the genre of the site. We also remove all non-dictionary words; 
our dictionary contains 23,000 words and their variations, 
including some of common prefixes, suffixes and tenses. From the 
frequency maps, frequent (greater than 10) and unique words are 
added to a Word Key vector, if they were not already added by a 
previous site. We found that each site added, on an average, six 
new words to the Word Key list. 

The frequency maps are then re-graphed across this Word Key. 
The re-graph against this new set of keywords produces an 
accurate content genre identifier for each of the websites 
(examples of graphs for the sites are shown in Figures 3 and 4 
respectively). The next step, in order to perform clustering, was to 
find the distance of each identifier from all the other identifiers in 
our corpus. It has been pointed out that a major limitation of the 
Euclidean distance in the information retrieval context is that it 
can lead to two documents being regarded as highly similar to 
each other, despite the fact that they share no terms at all in 
common. [16] However, we found that due to the addition of 
snippet data, and consequently the increase in the frequency of 
genre-specific function words, we did suffer from this pitfall. 



 
Figure 3 - Graph of CNN.com across the Word Key 

 
Figure 4 - Graph of Amazon.com across the Word Key 

With all the distances in place, we sort the sites by this distance to 
create a list of sites that range from closest association to further. 
Here we employ the hierarchical clustering algorithm [16], with a 
slight variation (as described in the next section) to perform 
clustering. The clusters created are then manually tagged by the 
appropriate genre and the best heuristic settings, that produce the 
best content extraction results for that genre, are stored. 

At run-time, when a new unclassified site is encountered, it is put 
through the same process as described above –the text from the 
site and the associated snippet data is aggregated, cleaned and 
graphed across the Word Key. Then using the same distance 
measuring algorithm, we find the site that is a closest match to the 
current webpage and its cluster is identified. The associated genre 
settings are loaded in Crunch and content for the site is extracted. 

4. IMPLEMENTATION 

We then use the Manhattan histogram distance measure 
algorithm to measure the distance between the website in question 
and our original classifications. The formula is defined as 
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The histogram ( , ) is represented as a vector, where is the 
number of bins in the histogram (i.e., the number of words in our 

Key Word Set). h and h  must first be normalized in order to 
satisfy the above distance function requirements. In Crunch, the 
sum of the histogram’s bins is normalized before computing the 
distance. We use the settings associated with the website whose 
distance is closest to the one being accessed. Calculating the 
Manhattan distance for every site from every other site is an O(n
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operation. 

Once the distance between any two sites is determined, we sort all 
distances in time O(n log n). We then proceed to find clusters 
based on the assumption that similar sites contain similar words. 
We do not force a specific number of clusters, but rather let 
clusters form naturally using our clustering algorithm. The 
clustering method that we use is a slight variation on the 
hierarchical clustering algorithm that runs in time O(n2). [16] 
Each cluster is viewed as a tree with the closest pair of sites as its 
root. Starting with the closest pair of sites, our algorithm selects 
the next closest available pair of sites at each iteration from the 
set of sorted site distances. If neither site belongs to an existing 
cluster, they become the root of a new cluster. However, one of 
our customizations to the algorithm is that the root sites may pull 
in additional sites into the cluster if the algorithm encounters a 
pair of sites where one is the root and the other is not already 
clustered. A site that was pulled in directly by the root may pull in 
additional sites. However, any site that was not clustered directly 
by the root of that cluster may not pull in any other site, even if 
the algorithms encounters a site not yet been clustered. This 
restriction is imposed in order to prevent chains of more than 
three sites from forming in the same cluster, which ultimately 
prevents all the clusters from merging into one gigantic one. We 
found that sites associated with the root via more than one link are 
often far enough to be potentially closer to a different cluster. In 
many cases, sites that were initially rejected were still pulled into 
the cluster by a site that is directly connected to the root. 

If the algorithm encounters a pair of sites which belong to 
different clusters, it simply proceeds to the next iteration since 
each of these sites was found to be closer to one classification 
than the other. The algorithm halts when the distance between the 
next pair of sites exceeds a preset threshold or when all possible 
pairs of sites have been examined. The threshold is used in order 
to prevent extremely unrelated sites from contaminating existing 
clusters. These sites are either manually inserted into an existing 
genre cluster or form their own cluster. 

The overall runtime complexity of the offline clustering system is 
O(n2) due to the quadratic level running time of both the distance 
measurements as well as the clustering. However, at runtime, 
when a new site is encountered and its genre needs to be 
determined, the complexity drops to O(n). This is so because once 
the textual data from the site and the snippet data are collected, 
the time to create the frequency graph is a constant time process 
and it needs to be distance matched to the n different pre-clustered 
sites to find the closest cluster that it belong to. Once this has 
been determined, the associated settings are loaded into Crunch. 

5. EXPERIMENT & RESULTS 

We chose 171 unique sites to test our system. Most of the sites 
chosen were the top sites visited by our group on a daily basis, 



with a few more unusual sites chosen for comparison purposes. In 
Table 1, we show results of our primary hypothesis – that using 
search engine snippets towards clustering produces better and 
tighter results. In Table 2, we actually show the top six clusters 
produced by the clustering system. The search engines used to 
extract snippets are Google, Yahoo, Dogpile, MSN, Altavista and 
Excite.   

 
 Using Snippets Without Snippets 

No. of Sites 171 171 

No. Search Engines 6 0 

No. Clusters Found 14 5 

Max. Cluster Size 71 159 

Min. Cluster Size 2 2 

Avg. Cluster Size 12.21 34.2 

Time to cluster (min) 25 11 

Table 1 - Cluster Results 
From Table 1, we see that the number of clusters using snippets 
far exceeds the run of the system without using snippets. While 
the runtime of the system more than doubled, we found that the 
increase was only due to the increase in access time and data 
gathering from six more sites per website being clustered. Upon 
manual inspection, we found that the sites clustered by the first 
experiment, i.e. the one using snippets, categorized sites 
extremely accurately. Evidence of this comes from the fact that 
upon manual clustering websites into various genres, we came up 
with 16 distinct clusters and using snippets identified 87.5% of 
those clusters while only 31% of clusters were identified when 
snippets were not used. 
 

  
Cluster Type 

# of Sites 
(w/snippets) 

# of Sites 
(no snippets)

# of Sites
(manual)

Cluster #1 International 
News 

71 159 65 

Cluster #2 Shopping 27 - 25 

Cluster #3 Regional News 10 - 13 

Cluster #4 Tech News 7 - 10 

Cluster #5 Tech Blogs 7 - 8 

Cluster #6 Astronomy 7 6 7 

Table 2 – Typical Cluster Examples 

Table 2 shows some of the top clusters that are created by our 
approach as well as the comparable approach without using 
snippets as part of the clustering data. Additionally, we manually 
inspected all the websites and assigned them to clusters based on 
personal analysis. International news sites were the most common 
sites and those made their way into one cluster. Other notable 
genres are shopping, regional news (all the sites related to news 
from India), and astronomy sites. An interesting observation was 
the separation of technical news sites vs. technical blogs. They 
clustered into to separate genres mainly because blogs tend to be 
updated more often than general tech news sites. Overall, it is 

worth pointing out that the approach without using snippets 
produces results that are far worse than the approach with. 
Moreover, the approach with snippets is far more in tune with 
what is observed upon human-based inspection. 

Figures 5-6 show the graphs and their general similarity of 
various websites that were determined as being part of a cluster. 
Figure 5 shows international news websites (the news genre) like 
CNN.com, drudgereport.com, washingtontimes.com and 
chicagotribune.com. Here, Crunch’s heuristic settings would be 
far more text specific and would aggressively remove links and 
advertisements. Figure 6 shows popular shopping sites (the 
shopping genre) like Amazon.com, ebay.com, pricewatch.com 
and streetprices.com. Here, the settings would be sensitive to 
associated link-heavy sites with large amounts of form data and 
advertisements. 

 
Figure 5 - Cluster containing CNN and other news sites 

 
Figure 6 - Cluster containing Amazon and other shopping 

sites 



While our system for classification is able to cluster similar sites, 
it is also able to clearly distinguish between singular sites that do 
not fit into any cluster, both in the pre-classification stage as well 
as the subsequent genre matching phase. Skinheadz.com is an 
example of such a site, and its frequency graph along the Word 
Key is shown in Figure 7. Similarly, sec.gov, whose frequency 
graph is shown in Figure 8, is a site that remained unmatched to 
the identified genres. (These two sites presumably fit into certain 
genres, but not those visited regularly by our group so their 
clusters do not appear in our base data.) 

Our algorithm was also successfully able cluster sites whose 
frequency graphs look visually different but whose genre is 
similar. Examples of this are shown in Figures 9 and 10 in the 
Appendix. 
 

 
Figure 7 - Graph of skinheadz.com across the Word Key 

 
Figure 8 - Graph of sec.gov across the Word Key 

We have also found that using snippets also makes use resilient to 
changes in the structure of clusters over time. Even though the 
content on the various websites may change, the snippets tend to 
remain the same. Therefore, the frequency of the most frequent 
words remains the same over time causing little fluctuations. 

6. SUMMARY OF CONTRIBUTIONS 

In this paper, we consider the problem of clustering websites 
based on their genre. However, web page classification is much 
more difficult than pure-text classification due to a variety of 

noisy information embedded in Web pages - which reminds of our 
original motivation for content extraction. [12] Utilizing snippets 
produced by search engine searches for the domain name of the 
website being classified, we are able to improve the frequency of 
the function words being considered to help classify that site. 
With these snippets as well as the textual content on the site itself, 
we use existing simple and proven techniques like Manhattan 
distance and a Hierarchical clustering, albeit with a slight 
variation, in order to successfully pre-cluster a large number of 
websites, in an efficient manner. This pre-clustering then allows 
us to classify individual new sites not already classified, in linear 
time, by comparing them to the existing clusters. We extended a 
content extraction proxy, Crunch [4] [5] [6], to use this 
information to produce better results in its content extraction 
goals. Further, our approach to identifying text genres should be 
beneficial to many text-based applications. For instance, if the 
genre of every document is known a priori, information retrieval 
results could be better presented to the user, depending on the 
user’s preferences. [7] 

7. ACKNOWLEDGEMENTS 

The Programming Systems Laboratory is funded in part by 
National Science Foundation grants CNS-0426623, CCR-
0203876 and EIA-0202063, and in part by Microsoft Research. 
Part of the work reported in this paper emanated from research 
from the Columbia IDS lab, which has been supported by grants 
form NSF and HS ARPA. 

8. REFERENCES 
 
[1] Javed Aslam, Ekaterina Pelehov, Daniela Rus, “A Star 

Clustering Algorithm for Static and Dynamic Information 
Organization", Journal of Graph Algorithms and 
Applications, vol. 8, no. 1, 2004 

[2] Koby Crammer, Jaz Kandola, Yoram Singer, “Online 
Classification on a Budget”, Seventeenth Annual Conference 
on Neural Information Processing Systems, 2003 

[3] Douglass Cutting, David Karger, Jan Pedersen, John Tukey, 
“Scatter/Gather: A Cluster-based Approach to Browsing 
Large Document Collection”, Proceedings of SIGIR ’92, 
15th ACM International Conference on Research and 
Development in Information Retrieval, 1992 

[4] Suhit Gupta, Gail Kaiser, David Neistadt, Peter Grimm, 
"DOM-based Content Extraction of HTML Documents", 
12th International World Wide Web Conference, 2003 

[5] Suhit Gupta, Gail E Kaiser, Peter Grimm, Michael F Chiang, 
Justin Starren, "Automating Content Extraction of HTML 
Documents", Columbia Univ. Dept. of Comp. Sci. TR 
CUCS-001-04, 2004 

[6] Suhit Gupta, Gail Kaiser, "CRUNCH - Web-based 
Collaboration for Persons with Disabilities", W3C Web 
Accessibility Initiative, Teleconference on Making 
Collaboration Technologies Accessible for Persons with 
Disabilities, 2003 

[7] Yong-Bae Lee, Sung Hyon Myaeng, “Text Genre 
Classification with Genre-Revealing and Subject-Revealing 
Features”, Proceedings of SIGIR ’02, 25th ACM 



[20] Oren Zamir, Oren Etzioni, “Web Document Clustering: A 
Feasibility Demonstration”, Proceedings of SIGIR ’98, 21st 
ACM International Conference on Research and 
Development in Information Retrieval, 1998 

International Conference on Research and Development in 
Information Retrieval, 2002 

[8] Tao Li, Sheng Ma, Mitsunori Ogihara, “Document 
Clustering via Adaptive Subspace Iteration”, Proceedings of 
SIGIR ’04, 27th ACM International Conference on Research 
and Development in Information Retrieval, 2004 

[21] Tian Zhang and Raghu Ramakrishnan and Miron Livny, 
“BIRCH: an efficient data clustering method for very large 
databases”, ACM SIGMOD International Conference on 
Management of Data, 1996 

[9] Tom Mitchell, “Machine Learning”, McGraw-Hill 
Science/Engineering/Math, March, 1997 

[10] Andrew Ng, Michael Jordan, and Yair Weiss, “On spectral 
clustering: Analysis and an algorithm”, In Advances in 
Neural Information Processing Systems, 2001 

9. APPENDIX 

 

[11] Fabrizio Sebastiani, “Text categorization”, In Alessandro 
Zanasi (ed.), Text Mining and its Applications, WIT Press, 
Southampton, UK, 2005 

[12] Dou Shen, Zheng Chen, Qiang Yang, Hua-Jun Zeng, Benyu 
Zhang, Yuchang Lu, Wei-Ying Ma, “Web-page 
Classification through Summarization”,  Proceedings of 
SIGIR ’04, 27th ACM International Conference on Research 
and Development in Information Retrieval, 2004 

[13] Stefan Siersdorfer, Sergej Sizov, “Restrictive Clustering and 
Metaclustering for Self-Organizing Document Collections”, 
Proceedings of SIGIR ’04, 27th ACM International 
Conference on Research and Development in Information 
Retrieval, 2004 Figure 9 - Cluster containing tech blog sites like 

DigitalMediaThoughts, PocketPCThoughts, 
SmartphoneThoughts and MSDN Blog 

[14] Noam Slonim, Nir Friedman, Naftali Tishby, “Unsupervised 
Document Classification using Sequential Information 
Maximization”, Proceedings of SIGIR ’02, 25th ACM 
International Conference on Research and Development in 
Information Retrieval, 2002 

 

[15] C.J. van Rijsbergen, “Information Retrieval”, Butterworths, 
London, 2nd ed., 1979 

[16] Peter Willett, “Recent Trends in Hierarchic Document 
Clustering: A Critical Review”, Journal Information 
Processing and Management, 1988 

[17] Wei Xu, Xin Liu, Yihong Gong, “ Document Clustering 
Based on Non-negative Matrix Factorization”, Proceedings 
of SIGIR ’03, 26th ACM International Conference on 
Research and Development in Information Retrieval, 2003 

[18] Yiming Yang, Jian Zhang, Bryan Kisiel, “A scalability 
analysis of classifiers in text categorization”, Proceedings of 
SIGIR ’03, 26th ACM International Conference on Research 
and Development in Information Retrieval, 2003 

Figure 10 - Cluster containing several astronomy related sites 
like spacetoday.com, spaceflightnews.com, spacedaily.com 

and spaceflightnow.com 
[19] Oren Zamir, Oren Etzioni, “A Dynamic Clustering Interface 

to Web Search Results”, Proceedings of Eighth World Wide 
Web Conference, 1999 

 


	INTRODUCTION
	RELATED WORK
	APPROACH
	Crunch

	IMPLEMENTATION
	EXPERIMENT & RESULTS
	SUMMARY OF CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX

