
Genre Classification of Websites
Using Search Engine Snippets

Suhit Gupta

Columbia University
500 W. 120th Street
New York, NY 10027
001-212-939-7184

suhit@cs.columbia.
edu

Gail Kaiser

Columbia University
500 W. 120th Street
New York, NY 10027
001-212-939-7081

kaiser@cs.columbia.
edu

Salvatore Stolfo

Columbia University
500 W. 120th Street
New York, NY 10027
001-212-939-7080

sal@cs.columbia.
edu

Hila Becker

Columbia University
500 W. 120th Street
New York, NY 10027
001-212-939-7100

hb2143@cs.colu
mbia.edu

ABSTRACT

Web pages often contain clutter (such as ads, unnecessary images
and extraneous links) around the body of an article, which
distracts a user from actual content. Automatic extraction of
“useful and relevant” content from web pages has many
applications, including browsing on small cell phone and PDA
screens, speech rendering for the visually impaired, and reducing
noise for information retrieval systems. Prior work has led to the
development of Crunch, a framework which employs various
heuristics in the form of filters and filter settings for content
extraction. Crunch allows users to tune these settings, essentially
the thresholds for applying each filter. However, in order to
reduce human involvement in selecting these heuristic settings,
we have extended this work to utilize a website’s classification,
defined by its genre and physical layout. In particular, Crunch
would then obtain the settings for a previously unknown website
by automatically classifying it as sufficiently similar to a cluster
of known websites with previously adjusted settings - which in
practice produces better content extraction results than a single
one-size-fits-all set of setting defaults. In this paper, we present
our approach to clustering a large corpus of websites by their
genre, utilizing the snippets generated by sending the website’s
domain name to search engines as well as the website’s own text.
We find that exploiting these snippets not only increased the
frequency of function words that directly assist in detecting the
genre of a website, but also allow for easier clustering of
websites. We use existing techniques like Manhattan distance
measure and Hierarchical clustering, with some modifications, to
pre-classify websites into genres. Our clustering method does not
require prior knowledge of the set of genres that websites fit into,
but instead discovers these relationships among websites.
Subsequently, we are able to classify newly encountered websites
in linear-time, and then apply the corresponding filter settings,
with no noticeable delay introduced for the content-extracting
web proxy.

Categories and Subject Descriptors

I.7.4 [Document and Text Processing]: Electronic Publishing;
H.3.5 [Information Storage and Retrieval]: Online Information

Services – Web-based Services

General Terms

Human Factors, Algorithms, Standardization.

Keywords

Website classification, clustering, content extraction,
reformatting, HTML, context, accessibility, speech rendering.

1. INTRODUCTION

Web pages are cluttered with guides and menus attempting to
improve the user’s efficiency, but they often end up distracting
from the actual content. These “features” may include script- and
flash-driven animation, menus, pop-up ads, obtrusive banner
advertisements, unnecessary images, or links scattered around the
screen. The automatic extraction of useful and relevant content
from web pages has many applications, including enabling end
users to access the web more easily over constrained devices like
PDAs and cellular phones, providing better access to the web for
the visually impaired, providing less noisy data for information
retrieval and summarization algorithms, and generally improving
the web surfing experience.

Gupta et al. [4] [5] [6] have developed a framework, Crunch,
which employs various heuristics in the form of filters and filter
settings for content extraction. In order to analyze a web page for
content extraction, they pass it through an HTML parser, which
corrects the markup and creates a Document Object Model tree.
The Document Object Model (www.w3.org/DOM) is a standard
for creating and manipulating in-memory representations of
HTML (and XML) content. The Crunch system applies the
relevant filters and their appropriate settings to this DOM tree and
the resulting HTML page provided to the user is a clean, clutter-
free page.

Crunch allows users to tune the settings, essentially the thresholds
for applying each filter. However, while the proxy works very
well on a large variety of webpages, the filters sometimes need to
be manually configured by the user in order to properly extract
content for a given site. We found that the settings for the proxy
needed to be adjusted only when the user moved from one class
of site to another. In order to reduce human involvement in

__

Copyright is held by Suhit Gupta, Gail Kaiser, Salvatore Stolfo, and Hila
Becker
SIGIR August 15-19, 2005 Salvador, Bahia, Brazil.

mailto:suhit@cs.columbia.edu
mailto:suhit@cs.columbia.edu
mailto:kaiser@cs.columbia.edu
mailto:kaiser@cs.columbia.edu
mailto:sal@cs.columbia.edu
mailto:sal@cs.columbia.edu
mailto:hb2143@cs.columbia.edu
mailto:hb2143@cs.columbia.edu
http://www.w3.org/DOM

selecting the heuristic settings for the appropriate content
extraction, we considered utilizing a website’s classification.
Crunch could then obtain the settings for a previously unknown
website by automatically classifying it as sufficiently similar to a
cluster of known websites with previously adjusted settings -
which in practice produces better content extraction results than a
single one-size-fits-all set of setting defaults. To come up with the
classification for any site, we decided to use its genre as one of
the two criteria; the other was its physical layout. We noted that
filter settings did not change when browsing among sites that
belonged to the same genres. For example, the link density,
table/cell structure and advertisement layout remained consistent
among sites with news genre vs. shopping genre. Therefore,
settings that worked well for the various genres could be
dynamically loaded once the genre for a site was identified.

With a good document clustering method, computers can
automatically organize a document corpus into a meaningful
cluster hierarchy, which enables an efficient browsing and
navigation of the corpus. [17] However, performing genre
analysis in real-time is too computationally expensive for web
applications. Additionally, most current clustering algorithms
require a priori knowledge of the number of clusters to properly
classify a set of documents; however, given the vast quantity and
enormous variety of documents on the web, this does not seem
like a suitable approach. So, the tractability of classifying a
document at runtime into an indeterminate number of categories
remains vague at best. We found it necessary to identify a basic
set of clusters so that new websites encountered could simply be
compared to sites in those pre-defined sets.

Our goal was to use a simple algorithm for the pre-clustering of a
large corpus of web documents. Our key insight was utilizing the
results (defined as “snippets”) generated by sending the website’s
domain name to search engines as well as the website’s own text
towards determining the genre of websites. We find that
exploiting these snippets not only increased the frequency of
function words that directly assist in detecting the genre of a
website, but also allow for easier clustering of websites. We found
snippets to be descriptive of the function of the websites being
accessed and especially useful since they added relevant
knowledge in the form of function words which could then be
used in the analysis of the appropriate genre. We use existing
techniques like Manhattan distance measure and Hierarchical
clustering, with some modifications, to pre-classify websites into
genres. Our clustering method does not require prior knowledge
of the set of genres that websites fit into, but instead discovers
these relationships among websites. Subsequently, we are able to
classify newly encountered websites in linear-time, and then
apply the corresponding filter settings, with no noticeable delay
introduced by our content-extracting web proxy. In this paper, we
explain our method for clustering websites and briefly describe
the ensuing classification of individual new websites in order to
get good content extraction results.

The following sections describe the related work in the field of
information retrieval and document clustering, followed by our
approach and the associated implementation details, and we will
conclude with results from our experiments and a summary of our
contributions.

2. RELATED WORK

Document clustering has been extensively investigated over the
years for many domains [3] [16].The use of clustering in IR
appears mostly to be driven by the cluster hypothesis, which
states that “closely associated documents tend to be related to the
same requests”. [1] Xu et al. point out that document clustering
methods can be mainly categorized into two types: document
partitioning (flat clustering) and agglomerative (bottom-up
hierarchical) clustering. Although both types of methods have
been extensively investigated for several decades, accurately
clustering documents without domain-dependent background
information is still a challenging task. [17] They provide a novel
document partitioning method using non-negative factorization of
the term-document matrix. However, we have found that web
document clustering can be done with little or no background
information available about the domains, so long as there are
enough function words available to help classify the documents.

There is a large body of related work in information retrieval and
genre classification. Lee et al. [7] describe their method for text
genre classification by using two different class sets, genre classes
and subject classes, in the training data. However, their method
would not work well for web documents since the number of
genres need to be identified and fixed before the categorization.
This, as pointed out before, is an impediment for the vast number
and incredible variety of the corpus of web documents. For the
same reason, traditional partitioning methods like K-Means
clustering [9] will not work. Similarly, clustering using sequential
information maximization, presented by Slonim et al. [14]
requires prior knowledge of the number of clusters for the data to
be classified.

Spectral clustering, an approach demonstrated by Ng. et al. [10],
clusters points using eigenvectors of matrices derived from the
data contained in the documents. However, like with K-Mean
clustering, the number of clusters is expected to be a known
quantity before the process. Additionally, spectral clustering
works hard at performing tight fitting of all data points within a
cluster, and later experiments clearly show that this is not a hard
requirement when classifying web documents by genre.

Cutting et al. [3] describe a cluster based approach to browsing
large document collections, called Scatter/Gather. It provides a
mechanism for user-driven organization of data in a fixed number
of clusters, but the users need to be in the loop and the computed
clusters do not guarantee accuracy. Moreover, the technique is
designed to work well for finding similarity between articles
based on subject. We are interested in identifying broad topic
genres, like news, shopping, and sports, for top-level domains.

Zhang et al. [21] present BIRCH, a clustering method for
extremely large databases. The main optimizations in this
technique are made to reduce the number of I/O transactions and
to increase space efficiency. In order to truly gain the benefits
from this model, multiple passes on the data are required.
However, this increases the runtime complexity of the system.
Additionally, we observed that a relatively small number of
documents (as few as two, as demonstrated later in this paper)
were enough to define a cluster and its associated genre.

Siersdorfer et al. [13] show an interesting approach to clustering
by working on only a subset of the available data. The key
element to their approach is to construct restrictive meta-methods
at the moderate cost loss of uncertain samples. However, their
approach, called restrictive clustering, which clusters with high
accuracy, is prone to miss recognizing failed clustering attempts.

Zamir et al. [20] describe Grouper, a clustering system that
employs term based clustering, an approach that is similar to ours.
They use Suffix Tree Clustering, which is shown to be fast and
domain independent. However, they have applied their methods
to only grouping the results returned by search engine by
analyzing the snippets produced by the appropriate search. We
would like to actually like to automatically classify whole
websites.

Lastly, Crammer et al. [2] describe a technique for performing
online classification that focuses on online additive algorithms for
classification tasks. Their approach was designed to save a user
from needing vast computational resources. We tend not to suffer
from this problem either since we define a fixed range of words
(described in Sections 3 and 4) to classify the various websites.
Additionally, the system described needs a training period to
produce the level of classification achieved while we use a static
set of data and are able to achieve similar results.

Finally, most of the work described here tends to be used towards
analysis and clustering of documents or search engine results, but
not for web pages. One general problem with using the strategies
mentioned here is that most web pages contain extremely noisy
data that may lead to incorrect clustering results and our results,
which had to be used for the purpose of content extraction, had to
be resilient to such noise.

3. APPROACH

Clustering involves the grouping of similar objects, and has been
practiced, consciously or unconsciously, for many thousands of
years. [16] Distance coefficients, such as Euclidean distance, have
been used very extensively in cluster analysis, owing to their
simple geometric interpretation. Our solution employs multiple
techniques that incorporate the advantages of the previous work
on clustering and information retrieval. However, in order to
motivate the clustering, let us briefly describe the application.

3.1 Crunch

Extraction of “useful and relevant” content from web pages has
many applications, including cell phone and PDA browsing,
speech rendering for the visually impaired and reducing noise for
information retrieval systems. Gupta et al. [4] [5] [6] suggested
the key insight to work with DOM trees, rather than raw HTML
markup. Access to various tunable heuristics, in the form of
filters, are provided to the user through Crunch, their content
extraction web proxy. Crunch extracts content from webpages
based on filter settings that are typically applied by the user,
based on the site they are browsing and the content they wish to
see. Figure 2 shows an example of a typical CNN page without
and with filtering.

Figure 1 - Crunch Control Panel

However, the Crunch settings (shown in Figure 1) require manual
tweaking for various sites. Our goal was to automate the
application of filter settings for a varied range of websites by
detecting the classification of websites – defined by content
genres and the physical layout. We noticed that, while certain
settings worked well for particular genres of sites, for example
most news sites shared the same filter settings that produce the
best extraction of content; those same settings did not work well
with other genres like shopping, sports or astronomy. This was
mainly due to two reasons – (i) sites from the same genre
generally followed similar layouts; and (ii) users defined content
similarly across various genres. Therefore, we developed the
hypothesis that detecting the genre for a site would enable better
content extraction.

Figure 2 - Content Extraction results on a typical cnn.com

article (original page vs. extracted page)

Since this is a web application, detection of the content genre
needs to be done in near real-time, for the overall content
extraction to be done in a reasonable amount of time. However, as
pointed out before, performing genre-analysis on individual
documents can be extremely computationally expensive. But, if
the content extraction proxy already had data on the existence of
various genre clusters (and the various heuristic filter settings that
work well for those genres), then matching individual websites to
those clusters and applying the appropriate settings could be an
efficient process. Therefore, we focused on the offline
identification of clusters of genres from a large corpus of
websites.

3.2 Clustering

We found very few classification algorithms applied to the
clustering of web documents (as shown in Section 2). These few
algorithms suffered from two basic problems – (i) they had high
run-time complexity (cubic or higher running time), and/or (ii)
they classified webpages into a fixed number of pre-determined
clusters rather than finding the affinity among websites and
discovering where the clusters lay. Our goal was to overcome
these two basic constraints.

We use an external module as a preprocessor to classify almost
200 unique and frequently visited (by the members of our group)
websites, covering genres like news (international as well as
regional), shopping, astronomy and technical weblogs. Our key
insight was to use results returned by search engines (defined as
“snippets”), obtained only from the first page of the results
returned by the various search engines, when searching for the
domain name of the site in question, towards determining the
genre of websites. We found that snippets contain words that are
highly descriptive of the function of the websites being accessed.
Snippets are especially useful since they add relevant knowledge
in the form of function words which could then be used in the
analysis of appropriate genres. Furthermore, we found that adding
snippet data does not increase the complexity of the clustering
algorithm, instead simply adds the access time to the particular
search engine to the overall running time of the system.

For each site slated for clustering, we create a word frequency
map consisting of the textual data of the webpage as well as the
snippets produced by six popular search engines (Google, Yahoo,
Dogpile, MSN, Altavista and Excite). For instance, searching for
cnn or nypost, when accessing these sites respectively, increased
the frequency of words such as "news" and "business", while
searching for Amazon resulted in a frequency increase of the
word “shop” and “books”. From the frequency map of each
document, we prune all words deemed insignificant – a stop word
list – containing words that typically are parts of speech
(prepositions, articles, pronouns, etc.), and other words that may
appear frequently in a document but that do not add information
to the genre of the site. We also remove all non-dictionary words;
our dictionary contains 23,000 words and their variations,
including some of common prefixes, suffixes and tenses. From the
frequency maps, frequent (greater than 10) and unique words are
added to a Word Key vector, if they were not already added by a
previous site. We found that each site added, on an average, six
new words to the Word Key list.

The frequency maps are then re-graphed across this Word Key.
The re-graph against this new set of keywords produces an
accurate content genre identifier for each of the websites
(examples of graphs for the sites are shown in Figures 3 and 4
respectively). The next step, in order to perform clustering, was to
find the distance of each identifier from all the other identifiers in
our corpus. It has been pointed out that a major limitation of the
Euclidean distance in the information retrieval context is that it
can lead to two documents being regarded as highly similar to
each other, despite the fact that they share no terms at all in
common. [16] However, we found that due to the addition of
snippet data, and consequently the increase in the frequency of
genre-specific function words, we did suffer from this pitfall.

Figure 3 - Graph of CNN.com across the Word Key

Figure 4 - Graph of Amazon.com across the Word Key

With all the distances in place, we sort the sites by this distance to
create a list of sites that range from closest association to further.
Here we employ the hierarchical clustering algorithm [16], with a
slight variation (as described in the next section) to perform
clustering. The clusters created are then manually tagged by the
appropriate genre and the best heuristic settings, that produce the
best content extraction results for that genre, are stored.

At run-time, when a new unclassified site is encountered, it is put
through the same process as described above –the text from the
site and the associated snippet data is aggregated, cleaned and
graphed across the Word Key. Then using the same distance
measuring algorithm, we find the site that is a closest match to the
current webpage and its cluster is identified. The associated genre
settings are loaded in Crunch and content for the site is extracted.

4. IMPLEMENTATION

We then use the Manhattan histogram distance measure
algorithm to measure the distance between the website in question
and our original classifications. The formula is defined as

∑ −

=
−=

1

0 21211 |][][|),(
n

i
ihihhhD

The histogram (,) is represented as a vector, where is the
number of bins in the histogram (i.e., the number of words in our

Key Word Set). h and h must first be normalized in order to
satisfy the above distance function requirements. In Crunch, the
sum of the histogram’s bins is normalized before computing the
distance. We use the settings associated with the website whose
distance is closest to the one being accessed. Calculating the
Manhattan distance for every site from every other site is an O(n

1h 2h n

1 2

2)
operation.

Once the distance between any two sites is determined, we sort all
distances in time O(n log n). We then proceed to find clusters
based on the assumption that similar sites contain similar words.
We do not force a specific number of clusters, but rather let
clusters form naturally using our clustering algorithm. The
clustering method that we use is a slight variation on the
hierarchical clustering algorithm that runs in time O(n2). [16]
Each cluster is viewed as a tree with the closest pair of sites as its
root. Starting with the closest pair of sites, our algorithm selects
the next closest available pair of sites at each iteration from the
set of sorted site distances. If neither site belongs to an existing
cluster, they become the root of a new cluster. However, one of
our customizations to the algorithm is that the root sites may pull
in additional sites into the cluster if the algorithm encounters a
pair of sites where one is the root and the other is not already
clustered. A site that was pulled in directly by the root may pull in
additional sites. However, any site that was not clustered directly
by the root of that cluster may not pull in any other site, even if
the algorithms encounters a site not yet been clustered. This
restriction is imposed in order to prevent chains of more than
three sites from forming in the same cluster, which ultimately
prevents all the clusters from merging into one gigantic one. We
found that sites associated with the root via more than one link are
often far enough to be potentially closer to a different cluster. In
many cases, sites that were initially rejected were still pulled into
the cluster by a site that is directly connected to the root.

If the algorithm encounters a pair of sites which belong to
different clusters, it simply proceeds to the next iteration since
each of these sites was found to be closer to one classification
than the other. The algorithm halts when the distance between the
next pair of sites exceeds a preset threshold or when all possible
pairs of sites have been examined. The threshold is used in order
to prevent extremely unrelated sites from contaminating existing
clusters. These sites are either manually inserted into an existing
genre cluster or form their own cluster.

The overall runtime complexity of the offline clustering system is
O(n2) due to the quadratic level running time of both the distance
measurements as well as the clustering. However, at runtime,
when a new site is encountered and its genre needs to be
determined, the complexity drops to O(n). This is so because once
the textual data from the site and the snippet data are collected,
the time to create the frequency graph is a constant time process
and it needs to be distance matched to the n different pre-clustered
sites to find the closest cluster that it belong to. Once this has
been determined, the associated settings are loaded into Crunch.

5. EXPERIMENT & RESULTS

We chose 171 unique sites to test our system. Most of the sites
chosen were the top sites visited by our group on a daily basis,

with a few more unusual sites chosen for comparison purposes. In
Table 1, we show results of our primary hypothesis – that using
search engine snippets towards clustering produces better and
tighter results. In Table 2, we actually show the top six clusters
produced by the clustering system. The search engines used to
extract snippets are Google, Yahoo, Dogpile, MSN, Altavista and
Excite.

 Using Snippets Without Snippets

No. of Sites 171 171

No. Search Engines 6 0

No. Clusters Found 14 5

Max. Cluster Size 71 159

Min. Cluster Size 2 2

Avg. Cluster Size 12.21 34.2

Time to cluster (min) 25 11

Table 1 - Cluster Results
From Table 1, we see that the number of clusters using snippets
far exceeds the run of the system without using snippets. While
the runtime of the system more than doubled, we found that the
increase was only due to the increase in access time and data
gathering from six more sites per website being clustered. Upon
manual inspection, we found that the sites clustered by the first
experiment, i.e. the one using snippets, categorized sites
extremely accurately. Evidence of this comes from the fact that
upon manual clustering websites into various genres, we came up
with 16 distinct clusters and using snippets identified 87.5% of
those clusters while only 31% of clusters were identified when
snippets were not used.

Cluster Type

of Sites
(w/snippets)

of Sites
(no snippets)

of Sites
(manual)

Cluster #1 International
News

71 159 65

Cluster #2 Shopping 27 - 25

Cluster #3 Regional News 10 - 13

Cluster #4 Tech News 7 - 10

Cluster #5 Tech Blogs 7 - 8

Cluster #6 Astronomy 7 6 7

Table 2 – Typical Cluster Examples

Table 2 shows some of the top clusters that are created by our
approach as well as the comparable approach without using
snippets as part of the clustering data. Additionally, we manually
inspected all the websites and assigned them to clusters based on
personal analysis. International news sites were the most common
sites and those made their way into one cluster. Other notable
genres are shopping, regional news (all the sites related to news
from India), and astronomy sites. An interesting observation was
the separation of technical news sites vs. technical blogs. They
clustered into to separate genres mainly because blogs tend to be
updated more often than general tech news sites. Overall, it is

worth pointing out that the approach without using snippets
produces results that are far worse than the approach with.
Moreover, the approach with snippets is far more in tune with
what is observed upon human-based inspection.

Figures 5-6 show the graphs and their general similarity of
various websites that were determined as being part of a cluster.
Figure 5 shows international news websites (the news genre) like
CNN.com, drudgereport.com, washingtontimes.com and
chicagotribune.com. Here, Crunch’s heuristic settings would be
far more text specific and would aggressively remove links and
advertisements. Figure 6 shows popular shopping sites (the
shopping genre) like Amazon.com, ebay.com, pricewatch.com
and streetprices.com. Here, the settings would be sensitive to
associated link-heavy sites with large amounts of form data and
advertisements.

Figure 5 - Cluster containing CNN and other news sites

Figure 6 - Cluster containing Amazon and other shopping

sites

While our system for classification is able to cluster similar sites,
it is also able to clearly distinguish between singular sites that do
not fit into any cluster, both in the pre-classification stage as well
as the subsequent genre matching phase. Skinheadz.com is an
example of such a site, and its frequency graph along the Word
Key is shown in Figure 7. Similarly, sec.gov, whose frequency
graph is shown in Figure 8, is a site that remained unmatched to
the identified genres. (These two sites presumably fit into certain
genres, but not those visited regularly by our group so their
clusters do not appear in our base data.)

Our algorithm was also successfully able cluster sites whose
frequency graphs look visually different but whose genre is
similar. Examples of this are shown in Figures 9 and 10 in the
Appendix.

Figure 7 - Graph of skinheadz.com across the Word Key

Figure 8 - Graph of sec.gov across the Word Key

We have also found that using snippets also makes use resilient to
changes in the structure of clusters over time. Even though the
content on the various websites may change, the snippets tend to
remain the same. Therefore, the frequency of the most frequent
words remains the same over time causing little fluctuations.

6. SUMMARY OF CONTRIBUTIONS

In this paper, we consider the problem of clustering websites
based on their genre. However, web page classification is much
more difficult than pure-text classification due to a variety of

noisy information embedded in Web pages - which reminds of our
original motivation for content extraction. [12] Utilizing snippets
produced by search engine searches for the domain name of the
website being classified, we are able to improve the frequency of
the function words being considered to help classify that site.
With these snippets as well as the textual content on the site itself,
we use existing simple and proven techniques like Manhattan
distance and a Hierarchical clustering, albeit with a slight
variation, in order to successfully pre-cluster a large number of
websites, in an efficient manner. This pre-clustering then allows
us to classify individual new sites not already classified, in linear
time, by comparing them to the existing clusters. We extended a
content extraction proxy, Crunch [4] [5] [6], to use this
information to produce better results in its content extraction
goals. Further, our approach to identifying text genres should be
beneficial to many text-based applications. For instance, if the
genre of every document is known a priori, information retrieval
results could be better presented to the user, depending on the
user’s preferences. [7]

7. ACKNOWLEDGEMENTS

The Programming Systems Laboratory is funded in part by
National Science Foundation grants CNS-0426623, CCR-
0203876 and EIA-0202063, and in part by Microsoft Research.
Part of the work reported in this paper emanated from research
from the Columbia IDS lab, which has been supported by grants
form NSF and HS ARPA.

8. REFERENCES

[1] Javed Aslam, Ekaterina Pelehov, Daniela Rus, “A Star

Clustering Algorithm for Static and Dynamic Information
Organization", Journal of Graph Algorithms and
Applications, vol. 8, no. 1, 2004

[2] Koby Crammer, Jaz Kandola, Yoram Singer, “Online
Classification on a Budget”, Seventeenth Annual Conference
on Neural Information Processing Systems, 2003

[3] Douglass Cutting, David Karger, Jan Pedersen, John Tukey,
“Scatter/Gather: A Cluster-based Approach to Browsing
Large Document Collection”, Proceedings of SIGIR ’92,
15th ACM International Conference on Research and
Development in Information Retrieval, 1992

[4] Suhit Gupta, Gail Kaiser, David Neistadt, Peter Grimm,
"DOM-based Content Extraction of HTML Documents",
12th International World Wide Web Conference, 2003

[5] Suhit Gupta, Gail E Kaiser, Peter Grimm, Michael F Chiang,
Justin Starren, "Automating Content Extraction of HTML
Documents", Columbia Univ. Dept. of Comp. Sci. TR
CUCS-001-04, 2004

[6] Suhit Gupta, Gail Kaiser, "CRUNCH - Web-based
Collaboration for Persons with Disabilities", W3C Web
Accessibility Initiative, Teleconference on Making
Collaboration Technologies Accessible for Persons with
Disabilities, 2003

[7] Yong-Bae Lee, Sung Hyon Myaeng, “Text Genre
Classification with Genre-Revealing and Subject-Revealing
Features”, Proceedings of SIGIR ’02, 25th ACM

[20] Oren Zamir, Oren Etzioni, “Web Document Clustering: A
Feasibility Demonstration”, Proceedings of SIGIR ’98, 21st
ACM International Conference on Research and
Development in Information Retrieval, 1998

International Conference on Research and Development in
Information Retrieval, 2002

[8] Tao Li, Sheng Ma, Mitsunori Ogihara, “Document
Clustering via Adaptive Subspace Iteration”, Proceedings of
SIGIR ’04, 27th ACM International Conference on Research
and Development in Information Retrieval, 2004

[21] Tian Zhang and Raghu Ramakrishnan and Miron Livny,
“BIRCH: an efficient data clustering method for very large
databases”, ACM SIGMOD International Conference on
Management of Data, 1996

[9] Tom Mitchell, “Machine Learning”, McGraw-Hill
Science/Engineering/Math, March, 1997

[10] Andrew Ng, Michael Jordan, and Yair Weiss, “On spectral
clustering: Analysis and an algorithm”, In Advances in
Neural Information Processing Systems, 2001

9. APPENDIX

[11] Fabrizio Sebastiani, “Text categorization”, In Alessandro
Zanasi (ed.), Text Mining and its Applications, WIT Press,
Southampton, UK, 2005

[12] Dou Shen, Zheng Chen, Qiang Yang, Hua-Jun Zeng, Benyu
Zhang, Yuchang Lu, Wei-Ying Ma, “Web-page
Classification through Summarization”, Proceedings of
SIGIR ’04, 27th ACM International Conference on Research
and Development in Information Retrieval, 2004

[13] Stefan Siersdorfer, Sergej Sizov, “Restrictive Clustering and
Metaclustering for Self-Organizing Document Collections”,
Proceedings of SIGIR ’04, 27th ACM International
Conference on Research and Development in Information
Retrieval, 2004 Figure 9 - Cluster containing tech blog sites like

DigitalMediaThoughts, PocketPCThoughts,
SmartphoneThoughts and MSDN Blog

[14] Noam Slonim, Nir Friedman, Naftali Tishby, “Unsupervised
Document Classification using Sequential Information
Maximization”, Proceedings of SIGIR ’02, 25th ACM
International Conference on Research and Development in
Information Retrieval, 2002

[15] C.J. van Rijsbergen, “Information Retrieval”, Butterworths,
London, 2nd ed., 1979

[16] Peter Willett, “Recent Trends in Hierarchic Document
Clustering: A Critical Review”, Journal Information
Processing and Management, 1988

[17] Wei Xu, Xin Liu, Yihong Gong, “ Document Clustering
Based on Non-negative Matrix Factorization”, Proceedings
of SIGIR ’03, 26th ACM International Conference on
Research and Development in Information Retrieval, 2003

[18] Yiming Yang, Jian Zhang, Bryan Kisiel, “A scalability
analysis of classifiers in text categorization”, Proceedings of
SIGIR ’03, 26th ACM International Conference on Research
and Development in Information Retrieval, 2003

Figure 10 - Cluster containing several astronomy related sites
like spacetoday.com, spaceflightnews.com, spacedaily.com

and spaceflightnow.com
[19] Oren Zamir, Oren Etzioni, “A Dynamic Clustering Interface

to Web Search Results”, Proceedings of Eighth World Wide
Web Conference, 1999

	INTRODUCTION
	RELATED WORK
	APPROACH
	Crunch

	IMPLEMENTATION
	EXPERIMENT & RESULTS
	SUMMARY OF CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX

