2007 Reports
Optimizing Frequency Queries for Data Mining Applications
Data mining algorithms use various Trie and bitmap-based representations to optimize the support (i.e., frequency) counting performance. In this paper, we compare the memory requirements and support counting performance of FP Tree, and Compressed Patricia Trie against several novel variants of vertical bit vectors. First, borrowing ideas from the VLDB domain, we compress vertical bit vectors using WAH encoding. Second, we evaluate the Gray code rank-based transaction reordering scheme, and show that in practice, simple lexicographic ordering, obtained by applying LSB Radix sort, outperforms this scheme. Led by these results, we propose HDO, a novel Hamming-distance-based greedy transaction reordering scheme, and aHDO, a linear-time approximation to HDO. We present results of experiments performed on 15 common datasets with varying degrees of sparseness, and show that HDO- reordered, WAH encoded bit vectors can take as little as 5% of the uncompressed space, while aHDO achieves similar compression on sparse datasets. Finally, with results from over a billion database and data mining style frequency query executions, we show that bitmap-based approaches result in up to hundreds of times faster support counting, and HDO-WAH encoded bitmaps offer the best space-time tradeoff.
Subjects
Files
- cucs-026-07.pdf application/pdf 307 KB Download File
More About This Work
- Academic Units
- Computer Science
- Publisher
- Department of Computer Science, Columbia University
- Series
- Columbia University Computer Science Technical Reports, CUCS-026-07
- Published Here
- April 27, 2011