

tr.1 s x.1). On the other hand, global variables may have to be saved/restored more

frequently. In general, the extra code nscessary to save/restore a global variable is as much

as the code saved by subsuming several copy-rules.

Static subsumption can also reduce the amount of space needed to store attribute-instances.
When an attribute X.A is statically allocated no field is needed for it in X nodes. This can
result in significant decrease both in the stack space needed for semantic tree nodes and in
the size of the semantic tree file. However, stack space will be needed whenever a right-
part occurrence of X.A is not defined by a subsumable copy-rule because then the global

value must be saved in a local variable on the stack.

3.2.1. Determining statle alloeation of attributes

LINGUIST-86's static allocation paradigm calls for us to decide, for each attribute, whether
the attribute should be statically allocated, and if so then with which other statically
allocated attributes should it be combined. In making these decisions LINGUIST-88 tries to
save as much code space as it can by eliminating copy-rules; it tries to maximize the net
code space savings of subsumed copy rules minus extra code necessary to save and restore
global variables. This is a combinatorial problem that is infeasibie to solve exactI')" for any
realistic number of attributes. Instead, LINGUIST-88 uses a heuristic in order to narrow
the search space and then uses a polynomial-time approximation on the resulting, smaller,
problem. The heuristic is that if two attributes with the same name, say X.FOO and
Y.FOO, are each statically allocated then they will be statically allocated to the same global
variable. This substantially reduces the complexity of the problem: for each attribute
X.FOO LINGUIST-88 only needs to decide whether it should be static. If it is static then

it will share storage with all the other attributes Y.FOO that are also static.

This reduced problem is still NP-complete and the way LINGUIST-88 solves it depends on
how many attributes there are with a given name. The attributes are partitioned into
classes with the same name and the members of each class are analyzed independently from
the members of any other class. If there are 13 or fewer attributes in a class then
LINGUIST-88 examines each of the 213 possible combinations looking for the ‘‘best’” one.
Otherwise, the polynomial-time approximation deseribed below is used. The ‘“‘best” solution

is the one that saves the most code space.

If there are more than 13 attributes in a given class then LINGUIST-86 starts by assuming
that all attributes in the class are statically allocated. Each attribute is then checked to see
if it costs more in code size for it to be static than it would if it were normally allocated.

This check is based on how many copy rules would no longer be subsumed if the attribute

17

were not static, versus how many times the attribute would no longer have to be saved and
restored. LINGUIST-86 assumes that it takes three subsumed copy rules to offset a single

save and restore, even though this assumption is overly pessimistic in many cases.

If so indicated, the attribute is removed from the statically allocated set. When an
attribute is changed from being statically allocated to being allocated in the semantic tree
node it can become more expensive for other attributes to be statically allocated. Hence, all
remaining static attributes must be reexamined until the process stabilizes. This is an O(n3)

algorithm and it does not always find an optimal set of attributes to statically allocate,

3.2.2, Statle allocation of significant attributes

The static subsumption paradigm does not require that the static attributes be transient;
LINGUIST-86 can statically allocate significant attributes. A significant, static attribute does
not take up space in the semantic tree except at those places where the value of an instance
of the attribute is changed, i.e. where an instance is defined by other than a copy rule.
There the previous value of the static variable is saved in the semantic tree as a temporary
value that is associated with the production, rather than associated with the symbol (i.e.

node). ’

The implementation of a significant, static attribute is the same as that of a transient static
attribute for the pass during which the attribute is defined. On later passes the treatment
is similar in that, upon entry to a production-procedure, the value in the global variable is
saved in a stack-resident temporary whenever the static attribute is redefined by a non-copy
rule. However, the treatment is different in later passes in that the global variable is
redefined with the value that was computed earlier and was saved in the semantic tree.
Figure 3-5 shows the situation of figure 3-4 if X.PRE were a significant attribute. The
production-procedure PP14 _ PPj shows the implementation of X.PRE on passes after X.PRE

is computed.

This strategy will only save code space, i.e., eliminate enough copy rules, if the value of the
attribute is not changed very often. For a significant attribute the code needed to save and
restore the global variables must be generated in several passes, whereas the copy rules that
can be eliminated still occur in only one pass - the one during which the attribute is
defined. Thus, a significant attribute will be statically allocated only when the subsumable
copy rules greatly outnumber the non-subsumable definitions. For instance, in the Pascal
AG written for LINGUIST-86, only three attributes (out of 892) are both statically allocated

and significant.

18

1 : I_attridlype;
! 1 [_attriblype;
S : S ateribIype;
PRE : PAE attriblype:
XTPaST : POST_sttridIype:

KK-(K;

procedurs P14 _PP1 (VAR XO : X _type);
/¢ this 18 s right=to~left pass ¢/
VAR

Y : Y _type;

X1 : X_sype:

X_PREZ QZr _sttridbType; /o save copy of left-part valus of X_PME o/

XTPRET_IQP : PRE_attridIype; /¢ dold oopy of right-part valus of X_PRE ¢/
begia

GetNode OX1);

/e X1.1 = x0.1 ¢/
X PREZ IQF s UniocaSetof(Y.OBJ X _PRE);
XTPRL AP s X_PRE; X_PRE = X_TRE2_IGQP:
x5
X _PRE = X_PRE_QZF:
Putfiode (X1);

Putlode(Y);

PutSipaittape X _PREZ_IOQP);
ond PL4_PPL;

proceders P14 _PP] (VAR XD : X _type);
/% this 19 & right-to-lef: pass after pass L ¢/
VAR
Y : Y_type;
X1 P X_type;
X_re Qzr :'hp_.ntrurm: /% save ocpy of left~part valus of X_PRE ¢/
XTPRES IQP : PRE” attridIype; /¢ hold copy of right=pars value of X_PIX ¢/
X_PaSTS_2QP : POST_attridIype; /¢ dold oopy of right-pars valus of X_POST o/

be
ﬁ:suunnyn o _Pr_IQP);

GotBode (X1);
X _PRE QIP s X_PRE; X_PRE % X_PRE2 _IQP;
il 1;
X MEsX PRE QZF; /¢ restore talue of XD.PRE ¢/
X~PosSta QP =X _POST; /¢ capture talue of X1.POST o it isa’t lost whea VISITing Y ¢/
Putfode 1T
Gotlode(Y);
PPl Y)
PutSode (Y);

/¢ X0.8 = X1.8; ¢/
X_POST s Incrif(IsIsQX_8.X_PREX_2QP) X _POSTI_I9);

osd PL4_PPL;
Figure 3-5: Static allocation of significant attributes.

4. Comparing the efflesey of GAG and LINGUIST-86

In order to see how well the various storage optimizations work, and to compare their

effectiveness, we would ideally like to take several attribute grammars and generate attribute

evaluators from them with both systems and then compare the results. Unfortunately, the

two systems accept quite different input forms with respect to such features as: type

structure, built-in functions, special default and short-hand notation, etc; so much so that the

existing attribute grammars for each system would have to be substantially rewritten in

order to be accepted by the other system.

19

The next best form of comparison would be to take a pair of attribute grammars that
describe the same (or very similar) translations and look at how much cach system can
improve the time-efficiency and space-efficiency of the attribute evaluators it generates over
the efficiency of unoptimized versions of those evaluators. However, it can be misleading to
compare these figures for GAG and LINGUIST-88 because the two systems are targeted to
such widely different computer systems. GAG generates evaluators for large main-frame
computers with 32-bit words, multi-megabyte address spaces, and virtual memory.
LINGUIST-88 generates evaluators for micro-computers with 16-bit words, address space in
the range of 100-500 kilobytes, and no virtual memory. For example, when we find that
LINGUIST-86's storage optimizations have no perceivable effect on running time, is it
because too few instructions were saved! or because LINGUIST-86-generated attribute
evaluators run in an environment where they are I/O bound anyway and have no

mechanism for trading space for time (i.e. a virtual memory system)!

The comparison we do think meaningful is to relate the effects of storage optimization in
terms of the input attribute grammar, i.e. the attributes and semantic functions. Shown
below are such statistics for two attribute grammars for Pascal, one designed to be input to
GAG and the other designed for LINGUIST-88. Keep in mind that these are.different,
attribute grammars. Although other attribute grammars have been written for both
systems, these two are the ones that describe most nearly the same transiation and for
which reasonably compatible figures are available. The figures for GAG’s grammar are from

(10, 1]; those for LINGUIST-88's grammar are from [5].2

GAQ LINGUIST-08
total § attrids 388 898
$ attride ia nodes 83 (139) 168 (10%)
(1.9. 30¢ optimized)
0 attrids as glodal var 208 (78%) -
o attride as stacks 43 (11%) -
§ transieat attride -— 732 (#2%)
8 static attride -— 387 (41%)
total & semaatic rules L] 2030
¢ copy-rules 727 (14%) 1147 (879)
¢ copy-rules slimisated 372 748
§ of all semaatic rules > | 37y
§ of copyrules 61% (1]

This data immediately suggests two observations:

- the strategies of each system are reasonably effective,

2'I‘he GAG figures reflect the o’Ftions of expanding INCLUDINGs, and uniting a stack
together with a global variable. hese are the choices most nearly compatible with what
LINGUIST-86 does.

20

- the degree of optimization performed is quite similar between the two systems.

This second point should not be too surprising for both systems have much the same

underlying philosophy. The essentials of this philosophy, as contrasted to other approaches
suggested in the literature, are:

- Both GAG and LINGUIST-88 systems are satisfied to minimize storage
requirements even if they cannot find the best solution to the problem. Contrast
this to the exhaustive analysis of global storage allocation presented in [8].

- Neither system will evaluate any attribute-instance twice, hence there is no
space/time tradeoff. On the contrary, some of the optimizing techniques (static
subsumption of copy rules) also eliminate the need to copy duplicate values
around the tree. Compare this to the algorithms given by Reps [14] which bound
the number of attributes ever needed to be stored and accessed simultaneously
but which may require muitiple evaluation of attribute-instances.

- Both GAG and LINGUIST-868 build ‘“static”” tree-walk evaluators, with the
evaluation order at each production completely determined. Contrast this with
the attribute evaluation paradigm described by Katayama [11], or with the similar
paradigm implemented by Jourdan [8]. This paradigm also calls for transient
attributes to be allocated on a stack in much the same way as for LINGUIST-88.
However, this paradigm deals with significant attributes by re-evaluating theni on
each VISIT during which they are used. Furthermore, this is a more “dynamic”
paradigm that does much less analysis of ultimate evaluation order, and hence
does not do as much storage optimization; nothing similar to copy rule
subsumption is done, for example.

- The optimizations used in GAG and LINGUIST-88 are precompiled into the code
of the evaluator and are tree-independent; no extra run-time analysis of a
semnantic tree is needed to apply the optimizations.

- Both approaches are flexible: they allow attributes to share storage cells even if
not all of their occurrences will have the same value or disjoint lifetimes.

- Both, although GAG moreso than LINGUIST-86, take their evaluation strategy
into consideration when deciding upon which attributes should share storage.

Despite these similarities in underlying strategy, GAG and LINGUIST-88 are different in
many respects. Most of these differences are incidental and contribute little to the total
effectiveness of the systems. However, there are a few substantive differences that suggest
how one or the other, or both, systems can be improved. These will be discussed in
section 4.2. But first, let us examine the important features of storage optimization as

performed by both GAG and LINGUIST-88.

4.1. Analysls of storage optimizations

For both GAG and LINGUIST-88 the issues for storage optimization can be characterized as:
1. Whether instances of an attribute should be implemented as:

a. components of semantic tree nodes, or
b. elements of a stack, or

¢. values assigned to a global, static variable.

?Q

For attributes implemented as stacks, how deep will the stacks grow, i.e. how
much memory will they require.

3. Which of the attributes that are implemented as stacks or variables can be
combined together in order to:

- eliminate copy rules, or

- reduce the number of stacks and variables.

These optimizations affect how much memory is needed for the evaluator’s data, as well as
the code size of the evaluator (eliminated copy rules, pushing and popping stacks, etc.). It
is our opinion that the effects on data storage are far more important than the effects on
the evaluator’s code, either the memory needed to store this code, or the time needed for its

execution.

The evaluator’s code is independent of the size of the semantic tree; it does not grow with
the size of the input string being processed. Experience with both GAG and LINGUIST-88
is that memory needed for the evaluator’s code is much less a problem than the memory

needed for the semantic tree.

The time savings of eliminated copy rules is also not significant; in [2| the effect on running
time of not eliminating any copy-rules is reported as being too small to notice. The GAG
researchers also report (1], [10], p.87 that the effect on run-time of GAG’s attribute storage

optimizations was minimal.

The most important goal for these optimizations is to keep attributes from being components of
semantic tree nodes. The big savings in space comes from not having to keep all instances of

an attribute simultaneously allocated in the semantic tree.

Next in importance is to keep the stacks from growing too large. This is especially
important if the generated evaluator processes lists of elements (e.g., lists of statements) by
recursively VISITing the elements on the list rather than iteratively VISITing them. The
best way to keep stacks small is to implement an attribute as a global variable rather thaa

as a stack. Eliminating copy rules also helps to keep stacks small since a copy rule that

22

can be eliminated is pushing a [redundant] value onmto some stack. By this reasoning,

eliminating copy rules whose source and target are both the same global variable is not very

useful.

Combining global variables and combining stacks is not very effective except when it
eliminates copy rules between stacks. The storage overhead for using one more global
variable or onme more stack is quite small - a couple of words at most. The number of
different attributes is quite small, relative to the number of attribute-instances in a semantic
tree. The decrease in storage possible by combining stacks and global variables is probably
no more than 400-500 words, and is likely much less. Combining stacks is only useful when

it allows us to eliminate copy rules; combining global variables does not save much storage.

Thus, we feel that the following should be the major goals of an attribute storage

optimization strategy, listed in order of importance.
1. allocate as few attributes as possible in the semantic tree nodes,
2. implement as many attributes as possible as giobal variables,
3. keep attribute stacks shallow,
4. combine attributes implemented as stacks so as to eliminate redundant PYSH
operations, and so help keep stacks shallow.

Let us now consider how GAG and LINGUIST-88 differ from one another in achieving these
goals. We will also consider how one system may be able to borrow more effective ideas

and techniques from the other.

.2. Substantive differences between GAG and LINGUIST-88

4.2.1. Transient attributes.

The most important goal is to keep attributes from being implemented as components of
semantic tree nodes. The attributes GAG will implement as either stacks or global variables
must be transient, but not all transient attributes can be so implemented. On the other
hand, LINGUIST-88 implements all transient attributes either on the stack or as static
variables, and can also do so for a few significant attributes. Thus one might think that
LINGUIST-88 would allocate fewer attributes in the semantic tree. Nonetheless, GAG
optimizes 87% of its attributes, versus 82% for LINGUIST-88. We believe this is because
GAG's strategy of ordered attribute evaluation is much more flexible than LINGUIST-88's
alternating-pass evaluation. An attribute that is significant under alternating-pass evaluation
can be transient under ordered evaluation. For example, in figure 4-1, since Y.i references
X.i but must be defined on a later pass than X.i, X.i is not a transient attribute under

alternating pass evaluation. An ordered evaluator could visit first X, then X, and then Y,

23

I 1 1 e |
W i
X e T |
I L1 o | ! 40 I L 11 e 132

Figure 4-1: X.i is transient only using an ordered evaluation strategy

and so make X.i into a transient attribute.

4.2.2. Global variables.

GAG can implement a transient attribute as a global variable rather than as a stack.
LINGUIST-88 only uses stacks; it does not implement attributes as global variables. Even
when an attribute could be implemented as a global variable the best LINGUIST-88 does is

to statically sllocate it. This results in saving and restoring attribute-instances needlessly.

LINGUIST-88 should implement attributes as global variables. This would substantially
improve LINGUIST-88’s stack requirements, especially for list constructs that are VISITed
recursively. One way to do this within LINGUIST-88’s framework is to determine when a
statically-allocated variable need not be saved and restored. However this would require
that information describing how attributes are used be propagated from one production to
another and LINGUIST-86 does not do this. An alternative is to incorporate GAG’s
algorithm for finding global variables into LINGUIST-88. This would also be a non-trivial
change to LINGUIST-88 since the evaluation order at a production would need to be
computed before storage optimization is done. Either way, LINGUIST-86 needs to do more

global analysis.

4.2.3. Popping from above versus popping from below.

LINGUIST-88 allocates and deallocates space for attribute-instances in the same procedure,
and saves and restores static variables in the same procedure; GAG pushes values onto an
attribute stack in onme production and pops values off the stack in a different production.
Let us refer to this difference as popping from above versus popping from below. Each strategy
bhas advantages and disadvantages. Popping from below, implemented by GAG, can save a lot
of stack space as illustrated by figure 4-2. In this example, GAG implements X.i as a
stack. Since X can derive itself, the stack could grow as the height of the tree. By
popping Xg.i off the stack from ‘“below” before visiting X, the stack will have height 1
whenever X; is VISITed. However, “popping from below” can cause many attributes not to
be implemented as a stack that could be so implemented if GAG would pop from above
instead. Figure 4-3 illustrates such a case. In this example, GAG would not make X.i into

a stack as Xl.i’s value is needed after the visit to X1. Furthermore, as was discussed in

24

section 2.1, this strategy also inhibits the elimination of many copy rules.

p: Illllxo
| I S B I 41 & |
G —

V'S' s (EVAL Y.1) (VISIT Y) (EVAL Xx.i) (VISIT X,) QIVAL Xqy.8) (VISITy)

Figure 4-2: An example where popping from below is advantageous

V!q s (IVAL X,.1) (VISIT Xy) (EVAL Y.14) (VISIT Y) (EVAL Xq.8) ('V!l"o)

Figure 4-3: An example where popping from adove is advantageous

On the other hand, the reason that LINGUIST-88 is able to stack all transient attributes is
because it keeps those attribute-instances on the stack for a relatively long time. For
instance, LINGUIST-88 allocates stack space for a synthesized attribute-instance before
VISITing the sub-tree that will define that attribute-instance, even though that value will
not be defined until just before the end of that VISIT. In the interim, which can be quite
a long time, that place on the stack is not being used. GAG would avoid pushing that
value onto the stack until just prior to finishing the VISIT, if it was able to stack the

attribute in the first place.

The diagram of figure 2-1 showed which attribute-instances would be on a stack when GAG
was visiting a node. [t is reproduced below in figure 4-4, changed to show which attribute-
instances LINGUIST-88 would have on its stack when visiting that node. There are many
more stacked nodes for LINGUIST-86.

For GAG there is a simpie addition that gets the best of both techniques: use a fourth way
of implementing attributes, global stacks that are popped from adove. If an attribute can not
be implemented as a stack if it is popped from below then check to see if it can be stacked if
the pop from above convention is used. This does not increase the stack space needed by any
attribute that is stacked by GAG’s current policy, but it does allow more attributes to be

stacked.

25

X0 ::® X1 X2. X ::s TERNM A. X ::s TERN B.
X{.1 % X0.1 ¢ 2, X.S = X.I nod 18 X.5=X.I wod §
x2.1 2 X0.1 - x1.8,
X0.5 3 29X1.5 ¢ X2.§
G e ——
P1rsi
/ .
7 \—-——0
I T1si 1118l
—A‘ L
| 1 | | (IS N 118t
A NS Lo
| IR A E N R | | [[r 1 ¢ 1 1 rrist 1risi
T TG TS - S NG
b Figure 4-4: What attributes are on the stack for LINGUIST-86 ?

The path indicates evaluation order; labelled attribute-instances are on the

stack when the evaluators locus of control is at the tip of the path.

4.2.4. Comblining attributes to eliminate copy rules.

GAG combines attribute stacks and global variables (section 2.3); LINGUIST-88 statically
allocates different attributes to the same variable (section 3.2.1). Both of these optimizations
allow copy rules between different attributes to be subsumed. GAG’s policy “for such
combinations is a simple first fit, whereas LINGUIST-86 analyzes how many copy rules can
be subsumed by various combinations, and combines only attributes with the same name.
Because it does more analysis LINGUIST-88 subsumes more of these copy rules. Of course,
since LINGUIST-86 only subsumes copy rules between attributes with the same name, it
would never subsume one such as [X.A == Y.B] and GAG could. Looking at the figures for
the two Pascal attribute grammars, though, GAG subsumed 51% of its copy rules and
LINGUIST-86 subsumed 85% of its copy rules; thus indicating that this latter situation is

relatively rare.

GAG decides how to group stacks together without considering how many copy rules will be
eliminated as a result of this grouping. LINGUIST-88 analyzes many different possibilities
looking for one that saves the most code in the evaluator. By ignoring copy rules in its
strategy for grouping attributes together, GAG misses many opportunities to subsume copy
rules and hence to conserve stack space. However LINGUIST-88’s strategy of optimizing the
code size of the evaluator can also cause it not to subsume copy rules and hence to use

more stack space.

Ideally, both systems should combine attributes so as to minimize the space needed for
stacks, however this is an intractable problem. The difficulty is that the number of times a

copy rule is executed depends on the structure of the semantic tree (i.e. input program) and

26

so the “best” copy rule to eliminate may vary (rom one input to another. Nocetheless,
both systems can be improved. GAG should combine attributes only if it will eliminate
some copy rules. LINGUIST-88 should combine attributes based on how much stack space

is saved, rather than the amount of code saved.

4.2.5. More thorough giobal analysls using evaluation order.

GAG does storage optimization analysis after the evaluation order has been determined and
it uses this information in its analysis. LINGUIST-88 does its analysis (i.e. which attributes
to statically allocate [together]) before the complete evaluation order has been fixed. As a
result, LINGUIST-88 is too pessimistic about the cost of statically allocating some attributes
and so misses out on potential optimizations. LINGUIST-88 should decide how to statically
allocate attributes after the evaluation order is known. This would also make it easy to

incorporate GAG's strategy for finding attributes that can be global variables.

Still more global information could be effectively used by both systems for storage
optimization. In particular, it would be useful to collect summary information sbout the

effect on attributes of VISITing non-terminals. We suggest computing the following

-
0

information:

for each non-terminal, X
for each visit to X, VISIT,(X)
for each attribute YA
USE(X,;,Y.A) == true iff
a VISIT, to an X-node can_ever reference
or define some instance of Y.A
Such USE information could be used by GAG to implement more attributes as global
variables. In section 2.1, we saw that GAG would not implement an inherited tramsient
attribute X.a as a global variable if, in a production where X is the left-part, there is a
visit to a right-part node Y before the last reference to X.a, and Y derives X. This is out
of recognition that the visit to Y could cause a nested visit to X which could overwrite the
value of the left-part occurrence of X.a. With USE information GAG could determine more
precisely whether or not this particular visit to Y could actually overwrite X.a if it were
implemented as a global variable. Figure 4-5 illustrates such a case. In production r;, X.i
is referenced after the first visit to Y and therefore GAG would not implement it as a
global variable. Global analysis leads to the realization, however, that any occurrence of X.i

in Y's subtree will not be evaluated until the second visit to Y, when the former value of

X.1 i1s no longer needed.

LINGUIST-88 could exploit USE information to statically allocate more attributes. Recall

that LINGUIST-86 will subsume a copy rule between between different occurrences of a

27

r.: $emmmecanena + X le L4 Y

i U A I 41 & 1421 2 |
- -y VA
.—@_‘Y \lx
L1 e 1421 2 | I £1 8|
L e e

VS, = (EVAL Y.12) (VISIT Y) (EVAL Y. 1) (VISIT Y) (EVAL X.s) (VISITy)

VS, * (EVAL Y.32) (VISIT,) (EVAL X.1) (VISIT X) (EVAL Y.#) (VISIT,)

Figure 4-5: X.i could be implemented as a global variable

statically-allocated synthesized attribute only if the source occurrence belongs to the right-
part node that is visited last during this pass. This is because a visit to a right-part node
after the source of the copy rule is defined could cause some other attribute that is
statically-allocated to the same variable to be defined. This would overwrite the contents of
that variable and so destroy the source of the copy rule. USE information would ensable
LINGUIST-86 to tell that this could not happen, which would allow this copy rule to be
subsumed, which would make it less expensive to statically allocate this attribute, which

would cause more attributes to be statically-allocated.

Finally, if USE information were available GAG could implement some significant_attributes
as stacks or global variables. Recall that for an attribute to be a stack it is necessary that
all instances of that attribute have lifetimes that are either disjoint or properly nested. The
sufficient condition that GAG uses includes the restriction that no lifetime can contain a
VISITy. This is because GAG doesn’'t know enough about what happens “above” the
current locus of control in the semantic tree; the worst-case is assumed to happen and so no
such attributes are stacked. However, it can happen that all attribute-instance lifetimes are
either disjoint or properly nested even though the attribute is not transient. For example,
attribute X.a of figure 4-8 is not stacked by GAG as it is not transient; X.a is defined
before visiting X for the first time, but is referenced during the second visit to
X. Nonetheless, the lifetimes of instances of Xo.a and Xl.a are disjoint and X.a can be

implemented as a stack or global variable.

e e lalvloldlX

Xp-b 8 10 0);
A

X,.a 8 gX,.8,X4.0); \ G ¢
! %X lalvtieldlx
X;.e = 00X,.0); Ve et

Xg-4 = 10(,.4);

VB, = (IVAL Xq.b) (VISIT,) CEVAL X‘.l) (VISIT X,) CEVAL X,.9) (VISIT X;) (VAL Xo.d) (VISIT,)

Figure 4-8: X.a is a significant attribute but can be implemented as a stack

Situations like the one shown in figure 4-8 would be correctly detected if GAG's sufficient

conditions for stacking attributes were modified to allow a VISITj in the lifetime of 2 left-
part attribute-occurrence, say X.A, but to treat visits to any right-part node YJ {in the
same or other productions) as a reference to a right-part occurrence of X.A if during that
visit any instance of X.A could be referenced. This latter information would be supplied by

the USE computation.

5. Suggestions for Improvement

Several suggestions for improving GAG and LINGUIST-86 were presented in section 4.
Briefly, these were:

- in LINGUIST-86, implement attributes as global variables,

- in GAG, implement attributes as stacks that are popped from above,

- in both GAG and LINGUIST-88, combine attributes so as to minimize the space
requirements for stacks,

- in both GAG and LINGUIST-88 (but especially LINGUIST-88), use more thorough
global information to determine the applicability of the optimizations.

In this section we show how both GAG and LINGUIST-88, by considering storage
optimizations at an earlier time in the generation cycle, can create an evaluation paradigm

explicitly designed to optimize storage.

5.1. Computing the evaluation order for storage-efficlency.

We have shown several examples where the order of evaluation of semantic functions was
crucial in being able to implement a storage optimization. However, in neither
LINGUIST-88 nor in GAG do potential storage optimizations influence the choice of
evaluation order. This is particularly unfortunate because in both ordered evaluation and in
alternating pass evaluation there are many arbitrary choices that go into computing the
evaluation order, choices that could be made so as to facilitate storage optimizations.
Because a major source of storage savings is achieved by implementing transient attributes
as global variables or global stacks, we suggest that appropriate heuristics be used when the

evaluation order is computed in order to increase the number of transient attributes.

For most evaluation strategies, one can view the process of fixing visit sequences (VSp) for
the productions of the grammar as a two stage process: First, for each nonterminal X of

the grammar, each attribute X.a is assigned a visit number i, indicating that any occurrence

th

of X.a in any semantic tree will be evaluated on the | visit to X. Secondly, each

production p is examined and a [inal evaluation order VS_ is decided upon. This evaluation

P
order must be consistent with both the dependencies given by the semantic functions of p

29

and with the visit numbers assigned to the attributes of p. Both of these steps usually make

some arbitrary choices.

First we examine the second stage of the process. After visit numbers are assigned to all
the attributes, each production p must be assigned a visit sequence VSp. This entails
completing into a total order the partial order given by the semantic functions of p and the
visit numbers assigned to the attributes of p. The partial order is represented by an
augmented dependency graph [12], having the attributes of p as vertices and an edge (Xj.a,
Xk.b) if Xj.a. is an argument to the semantic function defining Xy.b or if j = k and Xj'a
has a lower visit number than Xj.b. This partial order is completed into a total order by
adding edges to this graph. We suggest replacing some of the arbitrary choices of this
process by heuristics that increase the number of transient attributes. In particular, one
element of choice involves the order in which the inherited attributes of a right-part node
and the synthesized attributes of a left-part node are evaluated before visiting the node.
GAG often arbitrarily decides to evaluste one attribute before another, preventing the
attribute from being implemented as a stack. This was illustrated by figure 2-4, where
GAG chose to evaluate Xl.il before Xl.i2, and by figure 2-8, where GAG chose tq evaluate
XAy sl before XAgs2. We suggest substituting this arbitrary choice by the read before nezt

write heuristic, given by Sethi in [17].

The read before next write heuristic is illustrated in figure 5-1. If A is needed to define both
B and C, and we wish for A to share storage with C, and B and C are unrelated (i.e.
neither depends on the other), then this heuristic calls for adding an edge from B to
C. This makes it appear as though B is needed to define C and will call for the evaluation

of B before C. Since A will not be referenced after the computation of C, A and C can

share storage.
G ———
|
o
0——-—r—‘
|
Y 4 "
et
| | -7
w7

Figure 5-1: The read defore write heuristic

This heuristic can be applied to our case as follows: Say that we have a production of the

form [p: Xg == .. Xj ..] where Xy = Xj and the inherited attribute Xg.il is used to
define the inherited attributes Xj.il and Xj.i‘.!. In this case Xg.il plays the role of A. .‘(j.i'.’
plays the role of B. and Xj.il plays the role of C. As Xj.i2 would be evaluated before Xj.il,
X.i! can be made into a stack. Similarly, if the synthesized attribute Xj.sl is used to define
the synthesized attributes X,y.sl and Xg.s2, then Xj.sl plays the role of A, Xq.s2 plays the
role of B, and X,.s1 plays the role of C. This heuristic wiil allow GAG to implement many
more attributes as global stacks. Note, however, that this heuristic will not allow all
transient attributes to be implemented as global stacks; if both X,.il and Xp-12 are used to
define both Xj.il and Xj.i2 then application of this heuristic could add either the edge

(Xj.il, Xj.i2) or (Xj.i2, Xj.il) but not both.

Now we return to the first stage of determining an evaluation order, assigning visit numbers
to attributes, and we show how heuristics can operate even at this early stage to increase
the number of transient attributes. In order to determine an assignment of visit numbers to
the attributes of X, a graph Gy is formed. This graph has the attributes of X as vertices
and an edge (X.s, X.b) if X.b is directly or indirectly dependent upon X.a in some semantic
tree. This graph will result in a partial ordering on the attributes of X. In order.to make
an assignment of visit numbers to the attributes of X, this partial order must be ‘extended
so that for every inherited attribute X.i and synthesized attribute X.s, either (X.i, X.s) or
(X.s, X.i). Different evaluation strategies use different strategies to extend this partial order.
A ‘“‘greedy” strategy calls for evaluating attributes on the earliest visit possible. This
strategy is used by LINGUIST-88 in assigning pass numbers to attributes. A “lazy”
strategy calls for evaluating attributes on the last visit possible. This method is inherent in
GAG’s ordered evaluation strategy. [Each of these strategies will sometimes make an
attribute transient where the other fails to do so. In figure 5-2, the dotted lines indicate
the graph Gy. This graph gives a partial order <Y.il, Y.sl, Y.i2, Ys2> and <Y,
Y.s2>. This partial order must be extended so that either (Y.i, Y.s1) or (Y.sl, Y.i). The
greedy strategy evaluates Y.i as early as possible, extending the order to include (Y.i, Y.sl)
and resulting in the visit sequence VSp. The lazy strategy evaluates Y.i as late as possible,
extending the order to include (Y.sl, Y.i) and resulting in the visit sequence VSp’. Whereas

Y.l is a transient attribute using VSP', it is a significant attribute using VSp.

Figure 5-3 gives another attribute grammar fragment. Here also the two strategies resuit in
different visit numbers being assigned to X.i3. Whereas the greedy strategy results in the

visit sequence VS and X.i1 being a transient attribute, the lazy strategy results in the visit

P

sequence VS ! and X.il being a significant attribute. Hence we see that each strategy can

P
make some attributes transient that the other makes significant.

31

An sagmented dependency graph for a production [p Yo ::2 Y] (vhere Y, and Y, are 2 imstances
th asd nontorlin) t

* Yo
I 4 1 £1 1 st} 12 | 42 |
) R Py
SRy
A
- } Y,
[S| 11 I ot | 12 | s2 |
: TNy Tely”

b 3
VS, * QAL Y, 0GVAL Y, u)(vxsbx-r.v-) B voeD isiTp aistt v istt v,y GREEDY
(EVAL Y,.82) (VISITO)
= (EVAL Yl.il)(VstT Yl) (EVAL YO.II)WISITO)GVAL Yl'i) CEVAL Yl.u) (visit Yl) LAZY
(EVAL Y. 62) (VISIT,)

!
S

Figure 5-2: The advantage of using a lazy strategy

As sugmented dependeacy graph for s production [p: X, : ll (whare sad X, sre 2 iastaaces
of ke same aohterminail)

%o

1 t1 0 st | 12 | o2 | 131 o2 |

N > v A y N
111 F o1 1 12 1 €2 | (S| o8 |

S

X,

-
- - - e = e - w-eemea = -

VS, ® (EVAL X,.11) (VAL X,.13) (VISIT X,) (EVAL X,.61) (VAL Xo.63) (VISITQ) GVAL X,.12) ~ GREEDY
(VISIT X,) GVAL X,.02) (VISIT,)

* (VAL X;.11) (VISIT X,) GIVAL Xq.81) (VISITo) CGEVAL X,.12) GEVAL X, .13) (VISIT X,) LAZY
(EVAL Xq.52) (EVAL Xq.38) (VISIT,)

/
vs)

Figure 5-3: The advantage of using a greedy strategy

Instead of adopting a purely greedy strategy or a purely lazy strategy, we suggest that
heuristics be designed to increase the number of transient attributes. These heuristics would
describe how to extend the partial order of the Gy graphs, thereby assigning visit numbers
to the attributes of X, and would use the information contained in the Gy graphs and the
dependency graphs of the productions. In [4] Farrow describes how such heuristics could be

integrated into an algorithm for computing the evaluation order.

Figures 5-4 and 5-5 graphically illustrate one possible heuristic for adding edges to the Gy
graphs, designed to make attributes transient. To use this heuristic we need to distinguish
between two different kinds of edges that may occur in a Gy graph, transitive dosure edges
and defining edges. A defining edge (X.a3, X.b) in a Gy graph indicates that in some
production X.a is an argument to the semantic function defining X.b. A transitive closure

edge (X.3, X.b) indicates that X.a can indirectly define X.b. A defining edge in 3 Gy graph

32

is distinguished from a transitive closure edge by the word “def” which appears over tie

arrow. An arrow without a ‘“def” marker may be either a transitive closure edge or a

defining edge.
CASE 1 s and o are synthesized attridutas, b and d are {aherited attridutes,
s and d are curreatly uarelatsd: sdd (s, d)

CASE ii: ¢ and ¢ are synthasized attridutes, b and 4 are iakerited attridatses.
b asd & are carreatly aarslated: add (b, o)

Figure 5-4: A heuristic for adding edges, cases i and ii

CASE 1ii: s asd ¢ are izherited sttridutes, b and 4 are cynthesized attridutes,
c aad d are carreatly uarelated: add (4, o)

P ————— e en—————— —————
i | I) I I
T e S I S S S
I I i i I i

St ——— 0-/—————0 e

49; P4
>
P —————— 4
I rd
« 7

|
| |

Figure 5-5: A heuristic for adding edges, case iii

Case i of the heuristic states that if a and ¢ are synthesized attributes, b and d are
inherited attributes, (a, b) and (b, ¢) are edges in Gx3, (d, ¢) is a defining edge in Gy
and there is no relationship in Gy between a and d, then add the edge (s, d) to Gy. In
order to understand the logic behind this heuristic, consider the consequence of adding the
“opposite” edge (d, a) to Gy Any assignment of visit numbers to the attributes of X
based on this graph will necessarily assign an earlier visit number to d then to b, since
there exists a path from d to b. Hence d's lifetime must start on a visit prior to the one
in which b is defined. Yet since there exists an edge from b to ¢, ¢ must be defined after
b, and since there is a defining edge from d to ¢, d’s lifetime must extend into the visit
defining e. Hence d would have to be a significant attribute. To prevent this from

happening, the edge (a, d) is added. A similar logic applies to cases ii and iii of the

3_w'hen we say that (x,y) is an edge without specifying its type, then it can be either a
defining or transitive closure edge

33

heuristic.

Let us attempt to add edges to the graph Gy of figure 5-2 using this heuristic. We find
that case i can be applied to this graph, with Y.sl playing the role of a, Y.i2 the role of b,
Y.s2 therole of ¢, and Y.i the role of d. This causes the addition of the edge (Y.s1. Y.i),
resulting in the same visit sequence as produced by the lazy strategy and making all
attributes transient. If we apply the heuristic to the example of figure 5-3, once again all
the attributes are made transient. This time, however, it is the greedy visit sequence which
is produced. In this example cases ii and iii of the heuristic are found to be applicable. In
case ii, X.11 plays the role of d, X.sl plays the role of e, X.i3 plays the role of b, and X.s3
plays the role of ¢, causing the addition of the edge (X.i3, X.s1). In case iii, X.il plays the
role of a, X.sl plays the role of b, X.i2 plays the role of ¢, and X.s3 plays the role of d,
causing the addition of the edge (X.s3, X.i2) and completing the Gy graph.

Given any Gy graph which can be completed so as to make all inherited attributes
transient, this heuristic, unlike the greedy and lazy strategies, will not add any edges forcing
an inherited attribute to be significant. However, it does not guarantee to necessarily
complete the Gy graph at all. Therefore, it may still be necessary to apply o:;e of the
other strategies or another heuristic after applying this heuristic. Nonetheless, a final
example, given in figure 5-8 illustrates the power of method. In this example, both the
greedy and lazy strategies result in the visit sequence VSp, making Z.i3 signiﬁcani. The

heuristic results in the visit sequence VS ! making all attributes transient.

Ax suguented dependeacy graph for s production [p: Z4 ::* ldo(“." aad 2)un 2 {astaaces
ssne mofteratail

of
luln|u|-:|}a|u|u|u|z°
>
A +
_ o ¥ | e 2
P41 | o2 | 42 1 o2 143 1s2 1 44 | s6 1 !}

Y Ny EZA AN ’
VS, 3 (VAL Z,.11)GVAL 2,.18) (VISIT Z,) (VAL Zg.61) GEVAL Zq.88) (VISITo) QEVAL 2,.12) GREEDY / LAZY
(VAL 2,.44) (VISIT Z,) GEVAL Z4.82) GEVAL Z4.84) (VISIT,)
vs,’ * (VAL Z,.11) (VISIT 2,) (RVAL Zy.s1) (VISITy) GEVAL Z,.12) GDVAL 2,.18)(VIsI1T 2,) HEURISTIC
(VAL Z,.82) GEVAL Z,.88) (VISIT,) GIVAL Z,.14) (VISIT 2,) GEVAL Z,.84) (VIBITy)

Figure 5-6: The advantage of using the heuristic

Finally, we contemplate the following basic organization of the evaluator-generator to make

better use of heuristics for increasing storage optimizations:

34

l. partition the attributes into equivalence classes based on whether X.A is copied to
Y.B in any production. The members of an equivalence class wiil be candidates
to share storage for the heuristics of this section,

assign visit oumbers to attributes using the heuristics of this section to make as

_IQ

many attributes as possible transient,

3. determine the final visit sequence for each production using the heuristics of this
section to increase the number of attributes that can be implemented as global

variables and stacks, and

4. finally, carry out the current storage optimizations, using the improvements
suggested in section 4.

6. Concluslons

In this paper we have examined in depth the storage optimizations performed by two
significant AG-based translator-writing systems: GAG and LINGUIST-88. This examination
has been illustrated by many small, but concrete, examples showing how each system
performs. We have seen that, although there are significant differences between the two,
there are also very basic similarities that unite their approsches. We have argued that both

strategies would benefit by:
1. taking storage optimization into consideration when determining evaluation order,

2. using global analysis to increase the number of attributes that are implemented as
global variables, implemented as global stacks, and statically subsumed, and

3. combining attributes implemented by global variables or stacks based on whether
there are any copy rules between them and on how much stack space would be
saved by combining them.

AKXNOWLEDGEMENT

We would like to thank Phillip Garrison of the University of California, Berkely for helping
us run the examples through GAG and Ron Farrer of Intel Corporation for helping us run
the examples through LINGUIST-88.

33

I. APPENDIX

In this appendix we show that combining global variables and global stacks so as to
optimize the number of copy rules eliminated is an NP-complete problem. Since the
problem of combining global variables and global stacks are the same, we will focus our
attention on combining global stacks, bearing in mind that the analysis is equally valid for
global variables. Recall from section 2.3 that the main restriction on combining global
stacks is that no two inherited attributes nor two synthesized attributes of the same
context-free symbol are allowed to share the same stack. In addition, if X is the left-part
of some production p, Y is on the right-hand side, and the inherited attribute X.i is
referenced after defining the inherited attribute Y.i but before visiting Y, then the X.i and

Y.i global stacks cannot be combined.

Let us phrase the problem of combining global stacks as one of partitioning a set: Given a
set S of attributes, each which can be made into a global stack, we wish to find a partition
of the set such that all the attributes in any subset of the partition can be made into one
global stack. We call such a partition velid. We would like to find an optimal valid
partition- one which eliminates as many copy rules as possible. We shall now prove the

-

following theorem:

Theorem 1. Given an attribute grammar G and a set S of attributes, each which
: can be made into a global stack, finding whether there exists a valid
partition of the attributes into global stacks such that at least K

copy rules are eliminated is NP-complete.

Proof: Certainly the problem is in NP (Guess a partition. Verification can be done in P-

time).

To show that it is NP-complete, we shall reduce 3-satisfiability to it. This shall be done as
follows: given any instance of 3-satisfiability, we shall create an attribute grammar for that
instance in p-time and show that for a certain K, we can eliminate K copy rules from the
attribute grammar iff the given clause is satisfiable. To this end let U == {u;,...,u } and
C = {cy,-..cpy} be any instance of 3-satisfiability. (U is the set of literals, C of clauses).
Let the context-free symbols of our grammar be {X, uy, Ug, .y Up, €1y gy ooy °m} u{s}
U {TermA,, .., TermA oo} U {TermB;, .. TermBygq} U {AttA;,.. AttAgy } U
{AtBy....AutBgo Y U {(ij) [1 € i € m, 1 €] < 10}

The Term.Aj, TermBj, At.t.Aj, AttBj, and (i,j)) context-free symbols do not have any
attributes and are used only to distinguish between different productions. The symbol S is
the distinguished start symbol. The associated attributes of each symbol and the

36

productions of the attribute grammar are given i figure [-1. The context-free symbois
which do not have any attributes are not listed. Let ATTRIBUTES be the set of all of
these attributes. (There are 30 + m + 1 attributes). Note that individually, each attribute
in this set can be made into a global stack and that any two attributes of different context-
free symbols can share the same stackd. This attribute grammar doesn’t have any
synthesized attributes. This is not very realistic but they not needed for the proof. It

would be a simple matter to augment this attribute grammar with synthesized attributes.

coatext-fres sysbol {aherited traasient attridbutes
X o1, X.2, ..., X.a, X.att)
y <1< w (v .pos. 3 .20}

ey Q1 €J€w {cy.ate}

There vill de 4 types of productioss ia sddition to a siagle start production of type O:

Type 0: 8 ::s X.

X.a = eoiunt H
X.att s coastalt

aeot’

Type 1A: X i:8 uy TermA). 1 €1<s; 1 €4 < 100
Yy .pos 8 X.4;
4 -36g & constaat;

Trpe 18: X ::s u; Tersd,. 1 €1<€1; 1 €5 < 100
‘1'”‘ S constaat;
B .0eg X.4;

rn.u:x::-uinuj. ISISI:ISjSWI
L, .pos & X.ate;
uy.30¢ = constaat;

Trpe 28: X ::is uy Ared,. 1€1< 1€ < 50
T .pos & constaat;
b .aeg 5 X.ate;

Type 3: X ::s ¢y (1.)). {1 uy or -1' trtae. 1 <4 <0
¢y-att = X 4]

Type &: LTEEEL BT 11 .y or l!, is ia 9.

9;-8%% = 1 .pos if w, 1a 9y, 0y.att ¥ u,.2eg if IJ i ¢.
Figure I-1: The attribute grammar constructed from an instance U = {up,up},
C = {cj,...cy} of satisfiability

The basic ides behind the proof will be as follows: we will attempt to partition the

attributes into n + 1 subsets corresponding to n + 1 global stacks. For i = 1,..n if u; is

4Actually. in the attribute grammar as given, each attribute could be made into a global
variable. But by adding one production for each of these attributes the grammar can be
easily modified so that these attributes must be global stacks, not globai variables. The
gfagxina.{ xisleft as is to show the applicability of the theorem to global variables as well as
global stacks.

37

th

true, u;.pos will be in the i"" subset with X.i along with the clause attributes c|-att

corresponding to- the clauses which u; satisfies. If u; is false, u;.neg will be in the B subset

with X.i along with the clause attributes cp.att corresponding to the clauses which ui'

satisfies. All the remaining attributes will be in the (n + 1)5* subset along with the
attribute X.att. There will exist such a partition eliminating the proper number of copy

rules iff C is satisfied.

Formally, we claim that C is satisfiable iff there exists a valid partition of ATTRIBUTES
into subsets S1.89,..-,8, corresponding to t global stacks such that at least 150mn + 1lm

copy rules are eliminated.

150mn copy rule eliminations will come from productions of type 1 and 2 and will insure a
partition into n + 1 subsets with, for each i (1 € i < n), either u;.pos in S; and u;.neg in
s* (== Sn+l) or u;.neg in S; and u;.pos in s*. 10m copy rules will come from productions
of type 3 and will insure that each clause attribute cj.att (1 < | < m)is in some S;, 1 < i
< n. m copy rules will come from productions of type 4 and will insure that if c|-att is in
S; then e€ither u;.pos is in S; and u; is in ¢ or u;.neg is in S; and ui' is in ¢j-, We can
define a truth assignment r to be such that nu;) = T if u;pos is in S; and Ay;) = F if
uj.neg is in S;. In this way we will develope a 1-1 correspondance between valid partitions

eliminating 150mn + 11m copy rules and truth assignments which satisfy U.

Hence if the copy rule elimination problem were solvable in p-time, so would be the
satisfiability problem. Given U and C, create the AG as above, containing 30 + m + 1
attributes and 300nm + 33m + 1 productions with 300mn + 33m copy rules. This
reduction can be done in p-time. The attributes of the attribute grammar make up a set of
inherited transient attributes, each which can be made into a global stack. Then find
whether a valid partition of the 3n + m + 1 attributes exists such that at least 150mn +
11m copy rules are eliminated. If one can be found then there exists a truth assignment

satisfying U, otherwise not.
Proof of claim:
For the proof, it helps to keep the following in mind:

1. If u;.pos and X.i are in the same subset (stack), then we can eliminate 100m copy rules

from productions of type 1A.
2. 1f ujneg and X.i are in the same subset, then we can eliminate 100m copy rules from

38

productions of type 1B.

3. If u.pos and X.att are in the same subset, then we can eliminate 50m copy rules from
. 3

productions of type 2A.

4. If uj.neg and X.att are in the same subset, then we can eliminate 50m copy rules from

productions of type 2B.

5. If X.i and c).att are in the same subset, where u; or ui’ is in °, then we can eliminate

10 copy rules from productions of type 3.

8. 1If u;.pos and cj-att are in the same subset, where u; is in | then we can eliminate 1

copy rule from a prod of type 4.

7. If u;neg and ¢j.att are in the same subset, where “i’ is in ¢|, then we can eliminate 1

copy rule from a production of type 4.

8. X.i and X.j cannot be in the same subset if i f= j and similiarly X.i cannot be in the
same subset with X.att. Also, u;.pos and uj.neg cannot be in the same subset since they are

attributes of the same context-free symbol.

=) Say there exists a truth assignment r to U satisfying C. The following partition of
ATTRIBUTES eliminates 150mn + 1lm copy rules:

To each clause c| associate an integer int{c)) == i such that either y; or ui’ satisfies ¢| under
r, and if u; or uj' satisfies ¢| under r then j > i (If int{c;) == i then u; or “i, is the

smallest numbered literal satisfying ¢ under r).

Let our partition be S,, ..., Sn,S‘ where S; = {X.i} U {catt | int{c)) = i} U {u;.pos | if
fu;) = T} U {u;neg | if fu;) = F}. S" - {X.att} U {ujpos | if fu;) = F} U {ujneg |

Certainly this partition is valid as it doesn’t violate having 2 attributes of the same context-
free symbol in the same subset. To see that the required number of copy rules are
eliminated, note that since X.i and u;pos or u;neg are in the same subgroup, we can
eliminate 100m copy rules from productions of type 1 for each i, 1 € i <€ n. This totals
100mn copy rule eliminations. Furthermore, since each c.att is in the partition S;, where i
= int{¢)), ¢j.att is in the same partition with X.i and u;pos (if u; is in ¢|) or in the same

partition with X.i and and u;.neg (if ui’ is in ¢)). Hence each ¢ eliminates 10 copy rules of

39

type 3 and 1 of type 4. All m clauses therefore cause an elimination of Ilm copy rules.
Finally, as S" contains X.att and either u;.pos or u;.neg for each i, 1 < i < n, we can
eliminate 50mn copy rules from productions of type 2. for an elimination of an additional
50mn copy rules. So a total of 150mn + 1lm copy rule eliminations is achieved. Figure
-2 gives a set of clauses C, a truth assignment r, and the attribute partition induced by the
above method. For the attribute grammar derived from C and U, this partition would

result in the elimination of 150*4®*3 + 11*3 copy rules.

The set of clauses C = (ay.95), (ny,n), (|2’.\3l)).
The truth assignment r(x;, 4, 3y, v) = (I,I,F,D).

*
5 53 3 5 s

Q.l.nl.pol.cx) X.2,25.pos) OX.3.n4.20g,c4) O.4.0.p08,05) (x.l‘t.ll.l.‘,lz.lt‘,ls.)o..l‘.li‘)

Figure I-2: A partition of attributes induced by r

e=) If there exists a partition of ATTRIBUTES into subsets S1:59:---,5¢ such that at least
150mn + 1lm copy rules are eliminated, then there exists a truth assignment r to U
satisfying C.

-

By means of the fact that 150mn + 1lm copy rules were eliminated we can deduce what
form the partition has. Out of the 200mn copy rules in productions of type 1, we can
eliminate at most 100mn of them, as both u;.pos and u;.neg cannot be in the same partition
as X.i. Similiarly, at most 50mn of the 100mn copy rules in productions of type 2 can be
eliminated as we cannot have u;.pos and u;.neg in the same partition as X.att. So at most
150mn copy rules were eliminated from productions of types 1-2. If the partition did not
eliminate all of these 150mn copy rules it would not be able to achieve 150ma + 1lm copy
rule eliminations. To see why this is true, note that for 1 < i < n, each u;.pos and u;.neg
has associated with it either 100m, 50m, or 0 copy rule eliminations from productions of
types 1-2, depending whether it is in the partition with X.i, X.att, or neither of these, and
that the total number of eliminations can be found by summing the number of eliminations
associated with each individual u;pos and u;neg. Since the partition achieving the
maximum naumber of copy rule eliminations from these productions achieves 150mn
eliminations, any partition which causes less eliminations achieves at most 150mn - 50m
eliminations; i.e., any u;.pos or uj.neg which eliminates fewer copy rules than it does in the
maximum partition eliminates at least 50m fewer copy rules. But then the non-maximum
partition achieves at most 150man - 50m + 33m = 150mn - 17m < 150mn + llm copy
rule eliminations, as the remaining productions of types 3 - 4 contain only 33m copy rules.

Hence, we see that to achieve 150mn + 1lm copy rule eliminations, the partition must

40

achieve 130mn copy rule eliminations from productions of types 1 - 2.

Achieving 100mn copy rule eliminations from productions of type | implies that for each 1. 1
< i < n, X.iis in the same subset with either u;.pos or u;.neg. Achieving 350mn copy rule
eliminations from productions of type 2 implies that X.att is in a subset with 11, 12, ..., |n
where li = u;.neg if uj.pos is in the subset with X.i and li == uj.pos if uj.neg is in the
subset with X.i. So we know that the partition consists of at least n + 1 subsets,
SI,SQ,.....SD,S‘ where for each i, 1 <1 < 1, Si contains X.i and either uj.neg or u;.pos. s
contains X.att and 1, ..., In. The only remaining question is what subset each of the clause
attributes. cjatt, 1 < 1 < m, fall into. As we must still {find 1lm copy rule eliminations,
this choicet is also already made for us. Note that each clause attribute cj.att can appear in
a subset with at most one X.i (it cannot appear in a subset with X.i and X} if i f= j),
hence at most 10m copy rules can be eliminated from productions of type 3 (10 for each
clause ¢j). To get 1lm copy rule eliminations, each clause attribute must also contribute
one copy rule elimination from productions of type 4. For this to occur we must have each
clause attribute cj.att (1 < | < m) meet the following condition: cj.att is in the subset S;
and either i) uj.pos is in S; and u; is in ¢ or i) u;neg is in S; and uil is in ¢. To
summarize, we have found that if a valid partition achieves 150mn + 1lm ‘c'opy rule
eliminations it must be of the form Sl,...,Sn,S. with either u;.pos in S; and u;.neg in s* or
u;.neg in S; and uj.pos in S". Each clause attribute cj.att is in some S;, I £ i £ n and
the following property holds: if c.att is in Si. then either u;.pos is in S; and u; is i ¢} or

u;-neg is in S; and ui' is in c|. We can now define r to be:

| T 12 3, contaias u,.pos.
r(a,) =
I F it S, costaias u,.aeg,

This satisfies C, as for any clause ¢}, i) cj.att is in S; for some i, 1 < i < n, and i) if
uj.pos is in S; then u; is in ¢ and fy;) = T and if u;.neg is in S; then “i, is in ¢) and

End of proof

41

[1]

3]

(4]

(5]

(6]

(7l

8]

(¢}

[10]

[11])

References

B. Asbrock, U. Kastens, and E. Zimmermann.
Generating an Ef[icient Compiler Front-End.
Technical Report 17/81, Universitat Karlsruhe, Fakultat Fur Informatik, 1981.

Rodney Farrow.

LINGUIST-86 Yet another translator writing system based on attribute grammars.

In Proceedings of the SIGPLAN 82 Symposium on Compiler Construction. ACM, lJune,
1982.

Rodney Farrow.

Experience with an attribute grammar based compiler.

In Conference Record of the Ninth ACM Symposium on Principles of Programming Languages.
ACM, January, 1982.

Rodney Farrow.

Covers of Attribute Grammars and Sub-Protocol Attribute Evaluators.

Technical Report, Department of Computer Science, Columbia University, New York,
" "New York 10027, September, 1983.

Rodney Farrow.
Generating a Production Compiler from an Attribute Grammar.
[EEE Software 1(4), October, 1984. ..

H. Ganzinger.

On storage optimization for automatically generated compilers.

In K. Weirauch (editor), Theoretical Computer Science - Fourth GI Conference, . Springer-
Verlag, Berlin-Heidelberg-New York, 1979.

M. Jazayeri and K.G. Walter.
Alternating semantic evaluator.
In Proceedings of ACM 1975 Annual Conference. ACM, 19735,

Martin Jourdan.

Strongly Non-Circular Attribute Grammars and their Recursive Evaluation.

In Proceedings of the SIGPLAN '84 Symposium on Compiler Construction. ACM-SIGPLAN,
June, 1984.

Published as Volume 19, Number 8, of SIGPLAN Notices.

U. Kastens,
Ordered attribute grammars.
Acta Informatica 13:229-256, 1980.

Uwe Kastens, Brigitte Hutt, and Erich Zimmermann.

GAG:A Practical Compiler Generator.

In Lecture Notes in Computer Science 141, . Spring-Verlag, Berlin-Heidelberg-New York,
1982.

T. Katayama.
Translation of Attribute Grammars into Procedures.
ACM TOPLAS &3), July, 1984.

42

[12] K. Kennedy and S. K. Warren.
Automatic generation of efficient evaluators for attribute grammars.
In Conference Record of the Third ACM symposium on Principles of Programming Languages.

ACM, 1976.

[13] Kari-Jouko Raiha.
Dynamic allocation of space for attribute-instances in multi-pass evaluators of attribute

grammars.
In Proceedings of the SIGPLAN 79 Symposium on Compiler Conatruction. ACM, 1979.

{14) Thomas W. Reps.
Generating Language-Based Environments.
PhD thesis, Cornell University, Ithaca, New York, December, 1983.

[15] M. Saarinen.
On constructing efficient evaluators for attribute grammars.
In C. Ausiello and C. Bohm (editor), Automats, Languages, and Programming: 5th

Colloquium. Springer-Verlag, Springer-Verlag, New York, 1978.

(18] W.A. Schulz.
Semantic analysis and target language synthesis in a translator.

PhD thesis, University of Colorado, Boulder, Colorado, July, 1976.

(17] Ravi Sethi.

Pebble Games For Studying Storage Sharing. -
TheoreticalComputerScience 19, 1982.
pp. 69-84.

(18] Daniel M. Yellin.
A Survey of Tree-Walk Evaluation Strategies for Attribute Grammara.
Technical Report, Department of Computer Science, Columbia University, New York,
New York 10027, September, 1984,

43

