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ABSTRACT

Optimal Stopping and Switching
Problems with Financial Applications

Zheng Wang

This dissertation studies a collection of problems on trading assets and deriva-

tives over finite and infinite horizons. In the first part, we analyze an optimal

switching problem with transaction costs that involves an infinite sequence

of trades. The investor’s value functions and optimal timing strategies are

derived when prices are driven by an exponential Ornstein-Uhlenbeck (XOU)

or Cox-Ingersoll-Ross (CIR) process. We compare the findings to the results

from the associated optimal double stopping problems and identify the con-

ditions under which the double stopping and switching problems admit the

same optimal entry and/or exit timing strategies.

Our results show that when prices are driven by a CIR process, optimal

strategies for the switching problems are of the classic buy-low-sell-high type.

On the other hand, under XOU price dynamics, the investor should refrain

from entering the market if the current price is very close to zero. As a result,

the continuation (waiting) region for entry is disconnected. In both models, we

provide numerical examples to illustrate the dependence of timing strategies

on model parameters.

In the second part, we study the problem of trading futures with transac-

tion costs when the underlying spot price is mean-reverting. Specifically, we

model the spot dynamics by the OU, CIR or XOU model. The futures term

structure is derived and its connection to futures price dynamics is examined.



For each futures contract, we describe the evolution of the roll yield, and com-

pute explicitly the expected roll yield. For the futures trading problem, we

incorporate the investor’s timing options to enter and exit the market, as well

as a chooser option to long or short a futures upon entry. This leads us to

formulate and solve the corresponding optimal double stopping problems to

determine the optimal trading strategies. Numerical results are presented to

illustrate the optimal entry and exit boundaries under different models. We

find that the option to choose between a long or short position induces the

investor to delay market entry, as compared to the case where the investor

pre-commits to go either long or short.

Finally, we analyze the optimal risk-averse timing to sell a risky asset.

The investor’s risk preference is described by the exponential, power or log

utility. Two stochastic models are considered for the asset price – the geomet-

ric Brownian motion (GBM) and XOU models to account for, respectively,

the trending and mean-reverting price dynamics. In all cases, we derive the

optimal thresholds and certainty equivalents to sell the asset, and compare

them across models and utilities, with emphasis on their dependence on asset

price, risk aversion, and quantity. We find that the timing option may ren-

der the investor’s value function and certainty equivalent non-concave in price

even though the utility function is concave in wealth. Numerical results are

provided to illustrate the investor’s optimal strategies and the premia associ-

ated with optimally timing to sell with different utilities under different price

dynamics.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Many trading and investment decisions involve choosing when to buy and/or

sell an asset. Concomitant to this central problem are the following questions:

1. How is optimality defined? 2. How does price dynamics affect the optimal

strategies? 3. What happens when one optimizes over an infinite sequence

of trading decisions? 4. How to trade derivatives over a finite horizon? 5.

How does the investor’s optimal trading strategies depend on his/her risk

preference?

In this dissertation, we seek to address these questions using optimal stop-

ping theory. In the subsequent sections, we describe the motivation and

methodology for each chapter in this thesis.

1.1 Optimal Switching under XOU and CIR

Dynamics with Transaction Costs

The fluctuation of prices about constant values, a phenomenon known as mean

reversion, has been witnessed in many assets. Evidence of mean-reverting be-

haviors have been identified in equities (see Poterba and Summers [1988];

Malliaropulos and Priestley [1999]; Balvers et al. [2000]; Gropp [2004]), for-
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eign exchange rates (see Engel and Hamilton [1989]; Anthony and MacDonald

[1998]; Larsen and Sørensen [2007]), commodities (see Schwartz [1997]) and

volatility indices (see Metcalf and Hassett [1995], Bessembinder et al. [1995],

Casassus and Collin-Dufresne [2005], and references therein).

Schwartz [1997] proposed the XOU process as a way to model commodity

prices. Since then, the XOU model has become a favored choice for modeling

mean-reverting price processes due to its analytic tractability. Moreover, it

serves as the foundation for more complex mean-reverting models. Another

popular choice for modeling mean reversion is the CIR process, it is first in-

troduced in Cox et al. [1985] as an extension of the Vasicek (OU) model and

is commonly used to model short interest rates. The CIR process has also

been used to model volatility (see Heston [1993]), energy prices (see Ribeiro

and Hodges [2004]) and as a model for project values in real options litera-

ture. For example, Carmona and León [2007] study an irreversible investment

problem where the interest rate follows a CIR process. In Ewald and Wang

[2010], the authors model the project value as a CIR process and solve a Dixit

and Pindyck type investment problem.

In the first part of this thesis, we consider an optimal switching problem

where the investor is assumed to alternate between market entry and exit

actions for an infinite number of times. This is in contrast to optimal double

stopping problems where the investor cannot re-enter the market after exit.

The optimal entry and exit timings will depend on the asset price dynamics,

in particular if the price process is a super/sub-martingale, then the problem

is greatly simplified and it is optimal to either exit the market immediately or

hold the asset forever. For example, this happens in the case of an underlying

asset with a geometric Brownian motion (GBM) price process (see Example

A and Shiryaev et al. [2008]). On the other hand, as a result of the signature

swinging movements, assets which demonstrate mean reversion are natural
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candidates for carrying out buy-low-sell-high investment strategies. In Chapter

2, we study the optimal timing of trades subject to fixed transaction costs

under the XOU or CIR model. Building on earlier studies of double stopping

problems (see Leung et al. [2015] and Leung et al. [2014]), we use the optimal

structures of the buy/sell/wait regions to infer a similar solution structure

for the optimal switching problems and verify using variational inequalities.

Subsequently, we compare the solution of the optimal switching problem to

that of the optimal double stopping problem.

For the XOU model, it is optimal to sell when the asset price is sufficiently

high under both double stopping and switching scenarios. However, the exact

values of the upper thresholds differ for the two problems. When it comes

to market entry, we observe that under some circumstances, it is optimal to

never enter. In this case, the optimal switching problem for an investor with a

long position degenerates into an optimal stopping problem. In the alternate

case, it is optimal under both optimal double stopping and optimal switching

problems for the investor to only enter the market when the asset price first

descends into a band above zero. Precisely, the continuation region for entry

takes the form (0, A)∪ (B,+∞), with critical price levels A and B (for details

refer to Theorems 2.2.4 and 2.2.7). In other words, the continuation region is

disconnected. This interesting observation is a result of fixed transaction costs.

In the presence of only proportional costs, it is always optimal to enter when

the price is low enough (see Zhang and Zhang [2008]).

For trading problems under the CIR model, we find that it is optimal to

liquidate when the asset price is high enough. As in the XOU model, the

exit levels differ for double stopping and switching problems. Moreover, for

the switching problem, we identify necessary and sufficient conditions under

which it is optimal to never enter. In this case, the optimal switching problem

for an investor with a long position is identical to an optimal single stopping
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problem. Chapter 2 is built on Leung et al. [2015] and Leung et al. [2014].

In a closely related study, Zervos et al. [2013] consider an optimal switching

problem with fixed transaction costs under a class of time-homogeneous dif-

fusions which encompasses the GBM, CEV and other models. Their findings,

however, cannot be applied to the XOU model as it violates Assumption 4 of

their paper (see Remark 2.3.2 below). Specifically, their model assumptions

restrict the optimal entry region to be defined by a single critical level, whereas

we show that in the XOU model the optimal entry region is actually a band

strictly above zero.

Song et al. [2009] solve for optimal buy-low-sell-high strategies over a finite

horizon by way of a numerical stochastic approximation scheme. Song and

Zhang [2013] analyze the optimal switching problem with stop-loss under OU

price dynamics. In a similar setting, Zhang and Zhang [2008] and Kong and

Zhang [2010] study the infinite sequential buying and selling/shorting problem

under XOU price dynamics with proportional transaction costs. In contrast to

these studies, we study optimal switching problems under both XOU and CIR

models with fixed transaction costs. In particular, the optimal entry timing

under XOU model with fixed costs is characteristically different from that with

proportional costs.

In addition to the works mentioned above, portfolio construction and hedg-

ing problems involving mean reverting assets have also been studied. For

instance, Benth and Karlsen [2005] consider the optimization problem of an

investor who has to allocate his wealth between a risk-free asset and a risky

asset that follows an XOU process. Jurek and Yang [2007] analyze a finite

horizon portfolio optimization problem concerning an OU spread where risk

preferences are characterized by the power utility and Epstein-Zin recursive

utility. Chiu and Wong [2012] consider the optimal trading of co-integrated as-

sets with a mean-variance portfolio selection criterion. Tourin and Yan [2013]
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derive the dynamic trading strategy for a pair of co-integrated stocks with

the objective of maximizing the expected terminal utility of wealth over a

fixed horizon. In the case of exponential utility, they simplify the associated

Hamilton-Jacobi-Bellman equation and obtain a closed-form solution.

1.2 Speculative Futures Trading under Mean

Reversion

Futures are an integral part of the universe of derivatives. In 2015, the total

volume of futures and options traded on exchanges worldwide rose by 13.5%

from 21.83 billion contracts in 2014 to 24.78 billion contracts. The largest

growth is in Asia-Pacific, where the combined volume increased by a remark-

able 33.7%. Number of futures contracts traded globally grew substantially

by 19.3% to 14.48 billion from 12.14 billion a year prior. The CME group

and the National Stock Exchange of India (NSE) are the largest futures and

options exchanges. The 2015 combined trading volume of CME group with its

subsidiary exchanges, Chicago Mercantile Exchange, Chicago Board of Trade

and New York Mercantile Exchange was 3.53 billion contracts, while NSE had

a volume of 3.03 billion contracts.1

A futures is a contract that requires the buyer to purchase (seller to sell)

a fixed quantity of an asset, such as a commodity, at a fixed price to be paid

for on a pre-specified future date. Commonly traded on exchanges, there

are futures written on various underlying assets or references, including com-

modities, interest rates, equity indices, and volatility indices. Many futures

stipulate physical delivery of the underlying asset, with notable examples of

agricultural, energy, and metal futures. However, some, like the VIX futures,

are settled in cash.

1Statistics taken from Acworth [2016].
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Futures are often used as a hedging instrument, but they are also popular

among speculative investors. In fact, they are seldom traded with the intention

of holding it to maturity as less than 1% of futures traded ever reach physical

delivery.2 This motivates the question of optimal timing to trade a futures.

In chapter 3, we investigate the speculative trading of futures under mean-

reverting spot price dynamics. Mean reversion is commonly observed for the

spot price in many futures markets, ranging from commodities and interest

rates to currencies and volatility indices, as studied in many empirical studies

(see, among others, Bessembinder et al. [1995], Irwin et al. [1996], Schwartz

[1997], Casassus and Collin-Dufresne [2005], Geman [2007], Bali and Demir-

tas [2008], Wang and Daigler [2011]). For volatility futures as an example,

Grübichler and Longstaff [1996] and Zhang and Zhu [2006] model the S&P500

volatility index (VIX) by the CIR process and provide a formula for the fu-

tures price. We start by deriving the price functions and dynamics of the

futures under the OU, CIR, and XOU models. Futures prices are computed

under the risk-neutral measure, but its evolution over time is described by the

historical measure. Thus, the investor’s optimal timing to trade depends on

both measures.

Moreover, we incorporate the investor’s timing option to enter and subse-

quently exit the market. Before entering the market, the investor faces two

possible strategies: long or short a futures first, then close the position later.

In the first strategy, an investor is expected to establish the long position when

the price is sufficiently low, and then exits when the price is high. The opposite

is expected for the second strategy. In both cases, the presence of transaction

costs expands the waiting region, indicating the investor’s desire for better

prices. In addition, the waiting region expands drastically near expiry since

transaction costs discourage entry when futures is very close to maturity. Fi-

2See p.615 of Elton et al. [2009] for a discussion.
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nally, the main feature of our trading problem approach is to combine these

two related problems and analyze the optimal strategy when an investor has

the freedom to choose between either a long-short or a short-long position.

Among our results, we find that when the investor has the right to choose,

she delays market entry to wait for better prices compared to the individual

standalone problems.

Our model is a variation of the theoretical arbitrage model proposed by

Dai et al. [2011], who also incorporate the timing options to enter and exit the

market, as well as the choice between opposite positions upon entry. Their

sole underlying traded process is the stochastic basis representing the differ-

ence between the index and futures values, which is modeled by a Brownian

bridge. In an earlier study, Brennan and Schwartz [1990] formulate a similar

optimal stopping problem for trading futures where the underlying basis is a

Brownian bridge. In comparison to these two models, we model directly the

spot price process, which allows for calibration of futures prices and provide

a no-arbitrage link between the (risk-neutral) pricing and (historical) trading

problems, as opposed to a priori assuming the existence of arbitrage oppor-

tunities, and modeling the basis that is neither calibrated nor shown to be

consistent with the futures curves. A similar timing strategy for pairs trading

has been studied by Cartea et al. [2015] as an extension of the buy-low-sell-high

strategy used in Leung and Li [2015].

In addition, we study the distribution and dynamics of roll yield, an im-

portant concept in futures trading. Following the literature and industry prac-

tice, we define roll yield as the difference between changes in futures price and

changes in the underlying price (see e.g. Moskowitz et al. [2012], Gorton et al.

[2013]). For traders, roll yield is a useful gauge for deciding to invest in the

spot asset or associated futures. In essence, roll yield defined herein represents

the net cost and/or benefit of owning futures over the spot asset. Therefore,
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even for an investor who trades futures only, the corresponding roll yield is a

useful reference and can affect her trading decisions. Chapter 3 is based on

Leung et al. [2016].

1.3 Optimal Risk Averse Timing of an Asset

Sale

In chapter 4 we consider a risk-averse investor who seeks to sell an asset by

selecting a timing strategy that maximizes the expected utility resulting from

the sale. At any point in time, the investor can either decide to sell immedi-

ately, or wait for a potentially better opportunity in the future. Naturally, the

investor’s decision to sell should depend on the investor’s risk aversion and the

price evolution of the risky asset. To better understand their effects, we model

the investor’s risk preference by the exponential, power, or log utility. In ad-

dition, we consider two contrasting models for the asset price – the GBM and

XOU models – to account for, respectively, the trending and mean-reverting

price dynamics. The choice of multiple utilities and stochastic models allows

for a comprehensive comparison analysis of all six possible settings.

We analyze a number of optimal stopping problems faced by the investor

under different models and utilities. The investor’s value functions and the

corresponding optimal timing strategies are solved analytically. In particu-

lar, we identify the scenarios where the optimal strategies are trivial. These

arise in the GBM model with exponential and power utilities, but not with

log utility or under the XOU model with any utility. The non-trivial optimal

timing strategies are shown to be of threshold type. The optimal threshold

represents the critical price at which the investor is willing to sell the asset

and forgo future sale opportunities. In most cases, the optimal threshold is

determined from an implicit equation, though under the GBM model with log
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utility the optimal threshold is explicit. Moreover, intuitively the investor’s

optimal timing strategy should depend, not only on risk aversion and price

dynamics, but also the quantity of assets to be sold simultaneously. In gen-

eral, we find that the dependence is neither linear nor explicit. Nevertheless,

under the GBM model with log utility, the optimal price to sell is inversely

proportional to quantity so that the sale will always result in the same total

revenue regardless of quantity. In contrast, under the XOU model with power

utility, the optimal threshold is independent of quantity, and thus the total

revenue scales linearly with quantity.

While all utility functions considered herein are concave, the timing option

to sell may render the investor’s value functions and certainty equivalents non-

concave in price under different models. For instance, under the GBM model

with log utility the value function can be convex in the continuation (waiting)

region and concave when the value function coincides with the utility function

for sufficiently high asset price. Under the XOU model, we observe that the

value functions are in general neither concave nor convex in price. If the

time of asset sale is pre-determined and fixed, then the value functions are

always concave. Therefore, the phenomenon of non-concavity arises due to

the timing option to sell. Mathematically, the reason lies in the fact that the

value functions are constructed using convex functions that are the general

solutions to the PDE associated with the underlying GBM or XOU process.

To better understand the investor’s perceived value of the risky asset with

the timing option to sell, we analyze the certainty equivalent associated with

each utility maximization problem. With analytic formulas, we illustrate the

properties of the certainty equivalents. In all cases, the certainty equivalent

dominates the current asset price, and the difference indicates the premium of

the timing option. The gap typically widens as the underlying price increases

before eventually diminishing to zero for sufficiently high price. As a conse-
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quence, the certainty equivalents are in general neither concave nor convex in

price. If the optimal strategy is trivial, the certainty equivalent is simply a

linear function of asset price. Chapter 4 is adapted from Leung and Wang

[2016].

In the literature, Henderson [2007] considers a risk-averse manager with a

negative exponential utility who seeks to optimally time the investment in a

project while trading in a correlated asset as a partial hedge. Under the GBM

model, the manager’s optimal timing strategy is to either invest according to

a finite threshold or postpone indefinitely. In comparison, the investor in our

exponential utility case under the GBM model may either sell immediately or

at a finite threshold, but will never find it optimal to wait indefinitely. Evans

et al. [2008] also study a mixed stochastic control/optimal stopping problem

with the objective of determining the optimal time to sell a non-traded asset

where the investor has a power utility. In our paper, we show that the optimal

timing with power utility is either to sell immediately or wait indefinitely under

the GBM model, but the threshold-type strategy is optimal under the XOU

model.

Our study focuses on the GBM and XOU models for the asset price. A

related paper by Leung et al. [2015] analyzes optimal stopping and switching

problems under the XOU model. Their results are applicable to our case with

power utility under the same model. Other mean-reverting price models, such

as the OU model (see e.g. Ekström et al. [2011]) and Cox-Ingersoll-Ross (CIR)

model (see e.g. Ewald and Wang [2010]; Leung et al. [2014]), have been used

to analyze various optimal timing problems. The recent work by Ekström and

Vaicenavicius [2016] investigates the optimal timing to sell an asset when its

price process follows a GBM-like process with a random drift. All these studies

do not incorporate risk aversion.

Alternative risk criteria can also be used to study the asset sale timing
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problem. Inspired by prospect theory, Henderson [2012] considers an S-shape

(piecewise power) utility function of gain/loss relative to the initial price. Un-

der the GBM model, the investor may find it optimal to sell at a loss. Pedersen

and Peskir [2016] solve for the optimal selling strategy under the mean-variance

risk criterion. Instead of maximizing expected utility, one can also incorporate

alternative risk penalties to the optimal timing problems. Leung and Shirai

[2015] study this problem under both GBM and XOU models with shortfall

and quadratic penalties. Other than asset sale, the problem of optimal time

to sell and/or buy derivatives by a risk-averse investor has been studied by

Henderson and Hobson [2011]; Leung and Ludkovski [2012], among others.
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Chapter 2

Optimal Switching under XOU

and CIR Dynamics with

Transaction Costs

In this chapter, we analyze an optimal switching problem that involves an infi-

nite sequence of trades, when prices are driven by an XOU or CIR process. We

compare the results with earlier works on optimal double stopping problems

and identify the conditions under which the double stopping and switching

problems admit the same optimal entry and/or exit timing strategies. In the

CIR case, the investor’s optimal strategy is characterized by a lower level for

entry and an upper level for exit. However, in the XOU case, we find that the

investor enters only when the current price is in a band strictly above zero. In

other words, the continuation (waiting) region for entry is disconnected. Nu-

merical results are provided to illustrate the dependence of timing strategies

on model parameters and transaction costs.

In Section 2.1, we formulate both the optimal double stopping and optimal

switching problems. Then, we present our analytical and numerical results in

Section 2.2. The proofs of our main results are detailed in Section 2.3. Finally,
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Appendix B contains the proofs for a number of lemmas.

2.1 Problem Overview

In the background, we fix a probability space (Ω,F ,P), where P is the historical

probability measure. In this section, we provide an overview of our optimal

double stopping and switching problems, which will involve an exponential

Ornstein-Uhlenbeck (XOU) process. The XOU process (ξt)t≥0 is defined by

ξt = eXt , dXt = µ(θ −Xt) dt+ σ dBt. (2.1.1)

Here, X is an OU process driven by a standard Brownian motion B, with

constant parameters µ, σ > 0, θ ∈ R. In other words, X is the log-price of the

positive XOU process ξ.

Another process considered herein is the CIR process Y that satisfies

dYt = µ(θ − Yt) dt+ σ
√
Yt dBt, (2.1.2)

with constants µ, θ, σ > 0. If 2µθ ≥ σ2 holds, which is often referred to as

the Feller condition (see Feller [1951]), then the level 0 is inaccessible by Y .

If the initial value Y0 > 0, then Y stays strictly positive at all times almost

surely. Nevertheless, if Y0 = 0, then Y will enter the interior of the state

space immediately and stays positive thereafter almost surely. If 2µθ < σ2,

then the level 0 is a reflecting boundary. This means that once Y reaches 0, it

immediately returns to the interior of the state space and continues to evolve.

For a detailed categorization of boundaries for diffusion processes, we refer

to Chapter 2 of Borodin and Salminen [2002] and Chapter 15 of Karlin and

Taylor [1981].
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2.1.1 Optimal Double Stopping Problem

Optimal double stopping problems under XOU and CIR models have been

studied in detail in Leung et al. [2015] and Leung et al. [2014] respectively. In

this chapter, we will compare the optimal strategies of double stopping prob-

lems with that of switching problems. For convenience, we shall restate the

definitions of optimal double stopping problems under XOU and CIR models

below.

Given a risky asset with an XOU price process, we first consider the optimal

timing to sell. If the share of the asset is sold at some time τ , then the investor

will receive the value ξτ = eXτ and pay a constant transaction cost cs > 0.

Denote by F the filtration generated by B, and T the set of all F-stopping

times. To maximize the expected discounted value, the investor solves the

optimal stopping problem

V ξ(x) = sup
τ∈T

Ex
{
e−rτ (eXτ − cs)

}
, (2.1.3)

where r > 0 is the constant discount rate, and Ex{·} ≡ E{·|X0 = x}.
The value function V ξ(x) represents the expected liquidation value associ-

ated with ξ. On the other hand, the current price plus the transaction cost

constitute the total cost to enter the trade. Before even holding the risky

asset, the investor can always choose the optimal timing to start the trade, or

not to enter at all. This leads us to analyze the entry timing inherent in the

trading problem. Precisely, we solve

Jξ(x) = sup
ν∈T

Ex
{
e−rν(V ξ(Xν)− eXν − cb)

}
, (2.1.4)

with the constant transaction cost cb > 0 incurred at the time of purchase. In

other words, the trader seeks to maximize the expected difference between the

value function V ξ(Xν) and the current eXν , minus transaction cost cb. The

value function Jξ(x) represents the maximum expected value of the investment
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opportunity in the price process ξ, with transaction costs cb and cs incurred,

respectively, at entry and exit. For our analysis, the transaction costs cb and

cs can be different. To facilitate presentation, we denote the functions

hξs(x) = ex − cs and hξb(x) = ex + cb. (2.1.5)

If it turns out that Jξ(X0) ≤ 0 for some initial value X0, then the investor

will not start to trade X (see Appendix A below). In view of the example

in Appendix A, it is important to identify the trivial cases under any given

dynamics. Under the XOU model, since supx∈R(V ξ(x) − hξb(x)) ≤ 0 implies

that Jξ(x) ≤ 0 for x ∈ R, we shall therefore focus on the case with

sup
x∈R

(V ξ(x)− hξb(x)) > 0, (2.1.6)

and solve for the non-trivial optimal timing strategy.

Alternatively, under the CIR price dynamics, the optimal exit and entry

problems are defined, respectively, as

V χ(y) = sup
τ∈T

Ey
{
e−rτhχs (Yτ )

}
, (2.1.7)

Jχ(y) = sup
ν∈T

Ey
{
e−rν(V χ(Yν)− hχb (Yν))

}
, (2.1.8)

where

hχs (y) = y − cs, and hχb (y) = y + cb. (2.1.9)

If it turns out that Jχ(Y0) ≤ 0 for some initial value Y0, then it is optimal

not to start at all. Therefore, it is important to identify the trivial cases. Under

the CIR model, since supy∈R+
(V χ(y) − hb(y)) ≤ 0 implies that Jχ(y) = 0 for

y ∈ R+, we shall therefore focus on the case with

sup
y∈R+

(V χ(y)− hb(y)) > 0, (2.1.10)

and solve for the non-trivial optimal timing strategy.
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2.1.2 Optimal Switching Problem

Under the optimal switching approach, the investor is assumed to commit to

an infinite number of trades. The sequential trading times are modeled by the

stopping times ν1, τ1, ν2, τ2, · · · ∈ T such that

0 ≤ ν1 ≤ τ1 ≤ ν2 ≤ τ2 ≤ . . . .

A share of the risky asset is bought and sold, respectively, at times νi and τi,

i ∈ N. The investor’s optimal timing to trade would depend on the initial

position. Precisely, under the XOU model, if the investor starts with a zero

position, then the first trading decision is when to buy and the corresponding

optimal switching problem is

J̃ξ(x) = sup
Λ0

Ex

{
∞∑
n=1

[e−rτnhξs(Xτn)− e−rνnhξb(Xνn)]

}
, (2.1.11)

with the set of admissible stopping times Λ0 = (ν1, τ1, ν2, τ2, . . . ), and the

reward functions hξs and hξb defined in (2.1.5). On the other hand, if the investor

is initially holding a share of the asset, then the investor first determines when

to sell and solves

Ṽ ξ(x) = sup
Λ1

Ex

{
e−rτ1hξs(Xτ1) +

∞∑
n=2

[e−rτnhξs(Xτn)− e−rνnhξb(Xνn)]

}
,(2.1.12)

with Λ1 = (τ1, ν2, τ2, ν3, . . . ).

Under CIR price dynamics, the optimal switching problems are similarly

defined as

J̃χ(y) = sup
Λ0

Ey

{
∞∑
n=1

[e−rτnhχs (Yτn)− e−rνnhχb (Yνn)]

}
, (2.1.13)

Ṽ χ(y) = sup
Λ1

Ey

{
e−rτ1hχs (Yτ1) +

∞∑
n=2

[e−rτnhχs (Yτn)− e−rνnhχb (Yνn)]

}
,(2.1.14)

where the reward functions hχb and hχs and are defined in (2.1.9).
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In summary, the optimal double stopping and switching problems differ

in the number of trades. Observe that any strategy for the double stopping

problems (2.1.3) and (2.1.4) (resp. (2.1.7) and (2.1.8)) are also candidate

strategies for the switching problems (2.1.12) and (2.1.11) (resp. (2.1.13) and

(2.1.14))respectively. Therefore, it follows that V ξ(x) ≤ Ṽ ξ(x) (resp. V χ(y) ≤
Ṽ χ(y)) and Jξ(x) ≤ J̃ξ(x) (resp. Jχ(y) ≤ J̃χ(y)). Our objective is to derive

and compare the corresponding optimal timing strategies under these two

approaches.

2.2 Summary of Analytical Results

We first summarize our analytical results and illustrate the optimal trading

strategies. For completeness, we shall restate the main results concerning

optimal double stopping problems in Leung et al. [2015] and Leung et al. [2014]

without proof. The method of solutions and proofs of the optimal switching

problems will be discussed in Section 2.3.

2.2.1 XOU Model

We begin with the optimal stopping problems (2.1.3) and (2.1.4) under the

XOU model. Denote the infinitesimal generator of the OU process X in (2.1.1)

by

L =
σ2

2

d2

dx2
+ µ(θ − x)

d

dx
. (2.2.1)

Recall that the classical solutions of the differential equation

Lu(x) = ru(x),
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for x ∈ R, are (see e.g. p.542 of Borodin and Salminen [2002] and Prop. 2.1

of Alili et al. [2005]):

F (x) ≡ F (x; r) :=

∫ ∞
0

u
r
µ
−1e

√
2µ

σ2
(x−θ)u−u

2

2 du,

G(x) ≡ G(x; r) :=

∫ ∞
0

u
r
µ
−1e

√
2µ

σ2
(θ−x)u−u

2

2 du.

Direct differentiation yields that F ′(x) > 0, F ′′(x) > 0, G′(x) < 0 and G′′(x) >

0. Hence, we observe that both F (x) and G(x) are strictly positive and convex,

and they are, respectively, strictly increasing and decreasing.

Define the first passage time of X to some level κ by τκ = inf{t ≥ 0 : Xt =

κ}. As is well known, F and G admit the probabilistic expressions (see Itō

and McKean [1965] and Rogers and Williams [2000]):

Ex{e−rτκ} =


F (x)
F (κ)

if x ≤ κ,

G(x)
G(κ)

if x ≥ κ.

2.2.1.1 Optimal Double Stopping Problem

We now present the result for the optimal exit timing problem under the XOU

model. First, we obtain a bound for the value function V ξ.

Lemma 2.2.1. There exists a positive constant Kξ such that, for all x ∈ R,

0 ≤ V ξ(x) ≤ ex +Kξ.

Theorem 2.2.2. The optimal liquidation problem (2.1.3) admits the solution

V ξ(x) =


eb
ξ∗−cs
F (bξ∗)

F (x) if x < bξ∗,

ex − cs if x ≥ bξ∗,

(2.2.2)

where the optimal log-price level bξ∗ for liquidation is uniquely found from the

equation

ebF (b) = (eb − cs)F ′(b). (2.2.3)
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The optimal liquidation time is given by

τ ξ∗ = inf{ t ≥ 0 : Xt ≥ bξ∗ } = inf{ t ≥ 0 : ξt ≥ eb
ξ∗ }.

We now turn to the optimal entry timing problem, and give a bound on

the value function Jξ.

Lemma 2.2.3. There exists a positive constant K̂ξ such that, for all x ∈ R,

0 ≤ Jξ(x) ≤ K̂ξ.

Theorem 2.2.4. Under the XOU model, the optimal entry timing problem

(2.1.4) admits the solution

Jξ(x) =


P ξF (x) if x ∈ (−∞, aξ∗),

V ξ(x)− (ex + cb) if x ∈ [aξ∗, dξ∗],

QξG(x) if x ∈ (dξ∗,+∞),

with the constants

P ξ =
V ξ(aξ∗)− (ea

ξ∗
+ cb)

F (aξ∗)
, Qξ =

V ξ(dξ∗)− (ed
ξ∗

+ cb)

G(dξ∗)
,

and the critical levels aξ∗ and dξ∗ satisfying, respectively,

F (a)(V ξ ′(a)− ea) = F ′(a)(V ξ(a)− (ea + cb)), (2.2.4)

G(d)(V ξ ′(d)− ed) = G′(d)(V ξ(d)− (ed + cb)).

The optimal entry time is given by

νaξ∗,dξ∗ := inf{t ≥ 0 : Xt ∈ [aξ∗, dξ∗]}.

In summary, the investor should exit the market as soon as the price reaches

the upper level eb
ξ∗

. In contrast, the optimal entry timing is the first time that

the XOU price ξ enters the interval [ea
ξ∗
, ed

ξ∗
]. In other words, it is optimal to

wait if the current price ξt is too close to zero, i.e. if ξt < ea
ξ∗

. Moreover, the

interval [ea
ξ∗
, ed

ξ∗
] is contained in (0, eb

ξ∗
), and thus, the continuation region

for market entry is disconnected.
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2.2.1.2 Optimal Switching Problem

We now turn to the optimal switching problems defined in (2.1.11) and (2.1.12)

under the XOU model. To facilitate the presentation, we denote

fs(x) := (µθ +
1

2
σ2 − r)− µx+ rcse

−x,

fb(x) := (µθ +
1

2
σ2 − r)− µx− rcbe−x.

Applying the operator L (see (2.2.1)) to hξs and hξb (see (2.1.5)), it follows

that (L − r)hξs(x) = exfs(x) and (L − r)hξb(x) = exfb(x). Therefore, fs (resp.

fb) preserves the sign of (L − r)hξs (resp. (L − r)hξb). It can be shown that

fs(x) = 0 has a unique root, denoted by xs. However,

fb(x) = 0 (2.2.5)

may have no root, a single root, or two distinct roots, denoted by xb1 and xb2,

if they exist. The following observations will also be useful:

fs(x)

> 0 if x < xs,

< 0 if x > xs,

and fb(x)

< 0 if x ∈ (−∞, xb1) ∪ (xb2,+∞),

> 0 if x ∈ (xb1, xb2).

(2.2.6)

We first obtain bounds for the value functions J̃ξ and Ṽ ξ.

Lemma 2.2.5. There exists positive constants C1 and C2 such that

0 ≤ J̃ξ(x) ≤ C1,

0 ≤ Ṽ ξ(x) ≤ ex + C2.

The optimal switching problems have two different sets of solutions de-

pending on the problem data.
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Theorem 2.2.6. The optimal switching problem (2.1.11)-(2.1.12) admits the

solution

J̃ξ(x) = 0, for x ∈ R, and Ṽ ξ(x) =


eb
ξ∗−cs
F (bξ∗)

F (x) if x < bξ∗,

ex − cs if x ≥ bξ∗,

(2.2.7)

where bξ∗ satisfies (2.2.3), if any of the following mutually exclusive conditions

holds:

(i) There is no root or a single root to equation (2.2.5).

(ii) There are two distinct roots to (2.2.5). Also

∃ ã∗ ∈ (xb1, xb2) such that F (ã∗)eã
∗

= F ′(ã∗)(eã
∗

+ cb), (2.2.8)

and

eã
∗

+ cb
F (ã∗)

≥ eb
ξ∗ − cs
F (bξ∗)

. (2.2.9)

(iii) There are two distinct roots to (2.2.5) but (2.2.8) does not hold.

In Theorem 2.2.6, J̃ξ = 0 means that it is optimal not to enter the market

at all. On the other hand, if one starts with a unit of the underlying asset, the

optimal switching problem reduces to a problem of optimal single stopping.

Indeed, the investor will never re-enter the market after exit. This is identical

to the optimal liquidation problem (2.1.3) where there is only a single (exit)

trade. The optimal strategy in this case is the same as V ξ in (2.2.2) – it is

optimal to exit the market as soon as the log-price X reaches the threshold

bξ∗.

We also address the remaining case when none of the conditions in Theorem

2.2.6 hold. As we show next, the optimal strategy will involve both entry and

exit thresholds.
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Theorem 2.2.7. If there are two distinct roots to (2.2.5), xb1 and xb2, and

there exists a number ã∗ ∈ (xb1, xb2) satisfying (2.2.8) such that

eã
∗

+ cb
F (ã∗)

<
eb
ξ∗ − cs
F (bξ∗)

, (2.2.10)

then the optimal switching problem (2.1.11)-(2.1.12) admits the solution

J̃ξ(x) =


P̃F (x) if x ∈ (−∞, ã∗),

K̃F (x)− (ex + cb) if x ∈ [ã∗, d̃∗],

Q̃G(x) if x ∈ (d̃∗,+∞),

(2.2.11)

Ṽ ξ(x) =

K̃F (x) if x ∈ (−∞, b̃∗),

Q̃G(x) + ex − cs if x ∈ [̃b∗,+∞),

(2.2.12)

where ã∗ satisfies (2.2.8), and

P̃ = K̃ − eã
∗

+ cb
F (ã∗)

,

K̃ =
ed̃
∗
G(d̃∗)− (ed̃

∗
+ cb)G

′(d̃∗)

F ′(d̃∗)G(d̃∗)− F (d̃∗)G′(d̃∗)
,

Q̃ =
ed̃
∗
F (d̃∗)− (ed̃

∗
+ cb)F

′(d̃∗)

F ′(d̃∗)G(d̃∗)− F (d̃∗)G′(d̃∗)

There exist unique critical levels d̃∗ and b̃∗ which are found from the nonlinear

system of equations:

edG(d)− (ed + cb)G
′(d)

F ′(d)G(d)− F (d)G′(d)
=
ebG(b)− (eb − cs)G′(b)
F ′(b)G(b)− F (b)G′(b)

, (2.2.13)

edF (d)− (ed + cb)F
′(d)

F ′(d)G(d)− F (d)G′(d)
=
ebF (b)− (eb − cs)F ′(b)
F ′(b)G(b)− F (b)G′(b)

. (2.2.14)

Moreover, the critical levels are such that d̃∗ ∈ (xb1, xb2) and b̃∗ > xs.

The optimal strategy in Theorem 2.2.7 is described by the stopping times
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Λ∗0 = (ν∗1 , τ
∗
1 , ν

∗
2 , τ

∗
2 , . . . ), and Λ∗1 = (τ ∗1 , ν

∗
2 , τ

∗
2 , ν

∗
3 , . . . ), with

ν∗1 = inf{t ≥ 0 : Xt ∈ [ã∗, d̃∗]},

τ ∗i = inf{t ≥ ν∗i : Xt ≥ b̃∗}, and ν∗i+1 = inf{t ≥ τ ∗i : Xt ≤ d̃∗}, for i ≥ 1.

In other words, it is optimal to buy if the price is within [eã
∗
, ed̃

∗
] and then

sell when the price ξ reaches eb̃
∗
. The structure of the buy/sell regions is

similar to that in the double stopping case (see Theorems 2.2.2 and 2.2.4). In

particular, ã∗ is the same as aξ∗ in Theorem 2.2.4 since the equations (2.2.4)

and (2.2.8) are equivalent. The level ã∗ is only relevant to the first purchase.

Mathematically, ã∗ is determined separately from d̃∗ and b̃∗. If we start with

a zero position, then it is optimal to enter if the price ξ lies in the interval

[eã
∗
, ed̃

∗
]. However, on all subsequent trades, we enter as soon as the price

hits ed̃
∗

from above (after exiting at eb̃
∗

previously). Hence, the lower level ã∗

becomes irrelevant after the first entry.

Note that the conditions that differentiate Theorems 2.2.6 and 2.2.7 are

exhaustive and mutually exclusive. If the conditions in Theorem 2.2.6 are vio-

lated, then the conditions in Theorem 2.2.7 must hold. In particular, condition

(2.2.8) in Theorem 2.2.6 holds if and only if∣∣∣∣∫ xb1

−∞
Ψ(x)exfb(x)dx

∣∣∣∣ < ∫ xb2

xb1

Ψ(x)exfb(x)dx, (2.2.15)

where

Ψ(x) =
2F (x)

σ2W(x)
, and W(x) = F ′(x)G(x)− F (x)G′(x) > 0. (2.2.16)

Inequality (2.2.15) can be numerically verified given the model inputs.

2.2.1.3 Numerical Examples

We numerically implement Theorems 2.2.2, 2.2.4, and 2.2.7, and illustrate

the associated entry/exit thresholds. In Figure 2.1 (left), the optimal entry
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levels dξ∗ and d̃∗ rise, respectively, from 0.7425 to 0.7912 and from 0.8310 to

0.8850, as the speed of mean reversion µ increases from 0.5 to 1. On the other

hand, the critical exit levels bξ∗ and b̃∗ remain relatively flat over µ. As for

the critical lower level aξ∗ from the optimal double stopping problem, Figure

2.1 (right) shows that it is decreasing in µ. The same pattern holds for the

optimal switching problem since the critical lower level ã∗ is identical to aξ∗,

as noted above.
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Figure 2.1: (Left) The optimal entry and exit levels vs speed of mean reversion µ.

Parameters: σ = 0.2, θ = 1, r = 0.05, cs = 0.02, cb = 0.02. (Right) The critical

lower level of entry region aξ∗ decreases monotonically from -8.4452 to -9.2258 as µ

increases from 0.5 to 1. Parameters: σ = 0.2, θ = 1, r = 0.05, cs = 0.02, cb = 0.02.

We now look at the impact of transaction cost in Figure 2.2. On the left

panel, we observe that as the transaction cost cb increases, the gap between

the optimal switching entry and exit levels, d̃∗ and b̃∗, widens. This means

that it is optimal to delay both entry and exit. Intuitively, to counter the fall

in profit margin due to an increase in transaction cost, it is necessary to buy at

a lower price and sell at a higher price to seek a wider spread. In comparison,

the exit level bξ∗ from the double stopping problem is known analytically to

be independent of the entry cost, so it stays constant as cb increases in the

figure. In contrast, the entry level dξ∗, however, decreases as cb increases but
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Figure 2.2: (Left) The optimal entry and exit levels vs transaction cost cb. Param-

eters: µ = 0.6, σ = 0.2, θ = 1, r = 0.05, cs = 0.02. (Right) The critical lower level

of entry region aξ∗ increases monotonically from -9.4228 to -6.8305 as cb increases

from 0.01 to 0.1. Parameters: µ = 0.6, σ = 0.2, θ = 1, r = 0.05, cs = 0.02.

much less significantly than d̃∗. Figure 2.2 (right) shows that aξ∗, which is the

same for both the optimal double stopping and switching problems, increases

monotonically with cb.

In both Figures 2.1 and 2.2, we can see that the interval of the entry and

exit levels, (d̃∗, b̃∗), associated with the optimal switching problem lies within

the corresponding interval (dξ∗, bξ∗) from the optimal double stopping prob-

lem. Intuitively, with the intention to enter the market again upon completing

the current trade, the trader is more willing to enter/exit earlier, meaning a

narrowed waiting region.

Figure 2.3 shows a simulated path and the associated entry/exit levels.

As the path starts at ξ0 = 2.6011 > ed̃
∗
> ed

ξ∗
, the investor waits to enter

until the path reaches the lower level ed
ξ∗

(double stopping) or ed̃
∗

(switching)

according to Theorems 2.2.4 and 2.2.7. After entry, the investor exits at the

optimal level eb
ξ∗

(double stopping) or eb̃
∗

(switching). The optimal switching
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thresholds imply that the investor first enters the market on day 188 where

the underlying asset price is 2.3847. In contrast, the optimal double stopping

timing yields a later entry on day 845 when the price first reaches ed
ξ∗

= 2.1754.

As for the exit timing, under the optimal switching setting, the investor exits

the market earlier on day 268 at the price eb̃
∗

= 2.8323. The double stopping

timing is much later on day 1160 when the price reaches eb
ξ∗

= 3.0988. In

addition, under the optimal switching problem, the investor executes more

trades within the same time span. As seen in the figure, the investor would

have completed two ‘round-trip’ (buy-and-sell) trades in the market before the

double stopping investor liquidates for the first time.

2.2.2 CIR model

We now turn our attention to the CIR model. We consider the optimal

starting-stopping problem followed by the optimal switching problem. First,

we denote the infinitesimal generator of Y as

Lχ =
σ2y

2

d2

dy2
+ µ(θ − y)

d

dy
,

and consider the ordinary differential equation (ODE)

Lχu(y) = ru(y), for y ∈ R+. (2.2.17)

To present the solutions of this ODE, we define the functions

F χ(y) := M(
r

µ
,
2µθ

σ2
;
2µy

σ2
), and Gχ(y) := U(

r

µ
,
2µθ

σ2
;
2µy

σ2
),

where

M(a, b; z) =
∞∑
n=0

anz
n

bnn!
, a0 = 1, an = a(a+ 1)(a+ 2) · · · (a+ n− 1),

U(a, b; z) =
Γ(1− b)

Γ(a− b+ 1)
M(a, b; z) +

Γ(b− 1)

Γ(a)
z1−bM(a− b+ 1, 2− b; z)
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Figure 2.3: A sample XOU path, along with entry and exit levels. Under the double

stopping setting, the investor enters at νdξ∗ = inf{t ≥ 0 : ξt ≤ ed
ξ∗

= 2.1754} with

dξ∗ = 0.7772, and exit at τbξ∗ = inf{t ≥ νdξ∗ : ξt ≥ ebξ∗ = 3.0988} with bξ∗ = 1.1310.

The optimal switching investor enters at ν
d̃∗

= inf{t ≥ 0 : ξt ≤ ed̃
∗

= 2.3888} with

d̃∗ = 0.8708, and exit at τ
b̃∗

= inf{t ≥ ν
d̃∗

: ξt ≥ eb̃
∗

= 2.8323} with b̃∗ = 1.0411.

The critical lower threshold of entry region is ea
ξ∗

= 1.264 ·10−4 with aξ∗ = −8.9760

(not shown in this figure). Parameters: µ = 0.8, σ = 0.2, θ = 1, r = 0.05, cs = 0.02,

cb = 0.02.

are the confluent hypergeometric functions of first and second kind, also called

the Kummer’s function and Tricomi’s function, respectively (see Chapter 13

of Abramowitz and Stegun [1965] and Chapter 9 of Lebedev [1972]). As is well

known (see Göing-Jaeschke and Yor [2003]), F χ and Gχ are strictly positive

and, respectively, the strictly increasing and decreasing continuously differen-

tiable solutions of the ODE (2.2.17). Also, we remark that the discounted

processes (e−rtF χ(Yt))t≥0 and (e−rtGχ(Yt))t≥0 are martingales.
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In addition, recall the reward functions defined in (2.1.9) and note that

(Lχ − r)hb(y)

> 0 if y < yb,

< 0 if y > yb,

(2.2.18)

and

(Lχ − r)hs(y)

> 0 if y < ys,

< 0 if y > ys,

(2.2.19)

where the critical constants yb and ys are defined by

yb :=
µθ − rcb
µ+ r

and ys :=
µθ + rcs
µ+ r

. (2.2.20)

Note that yb and ys depend on the parameters µ, θ and r, as well as cb and cs

respectively, but not σ.

2.2.2.1 Optimal Starting-Stopping Problem

We now present the results for the optimal starting-stopping problem (2.1.7)-

(2.1.8). As it turns out, the value function V χ is expressed in terms of F χ,

and Jχ in terms of V χ and Gχ. The functions F χ and Gχ also play a role in

determining the optimal starting and stopping thresholds.

First, we give a bound on the value function V χ in terms of F χ(y).

Lemma 2.2.8. There exists a positive constant Kχ such that, for all y ≥ 0,

0 ≤ V χ(y) ≤ KχF χ(y).

Theorem 2.2.9. The value function for the optimal stopping problem (2.1.7)

is given by

V χ(y) =


bχ∗−cs
Fχ(bχ∗)

F χ(y) if y ∈ [0, bχ∗),

y − cs if y ∈ [bχ∗,+∞).

Here, the optimal stopping level bχ∗ ∈ (cs ∨ ys,∞) is found from the equation

F χ(b) = (b− cs)F χ′(b). (2.2.21)
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Therefore, it is optimal to stop as soon as the process Y reaches bχ∗ from

below. The stopping level bχ∗ must also be higher than the fixed cost cs as

well as the critical level ys defined in (2.2.20).

Now we turn to the optimal starting problem. Define the reward function

ĥχ(y) := V χ(y)− (y + cb).

Since F χ, and thus V χ, are convex, so is ĥχ, we also observe that the reward

function ĥχ(y) is decreasing in y. To exclude the scenario where it is optimal

never to start, the condition stated in (2.1.10), namely, supy∈R+ ĥ
χ(y) > 0, is

now equivalent to

V χ(0) =
bχ∗ − cs
F χ(bχ∗)

> cb, (2.2.22)

since F χ(0) = 1.

Lemma 2.2.10. For all y ≥ 0, the value function satisfies the inequality

0 ≤ Jχ(y) ≤ ( bχ∗−c
Fχ(bχ∗)

− cb)+.

Theorem 2.2.11. The optimal starting problem (2.1.8) admits the solution

Jχ(y) =

V
χ(y)− (y + cb) if y ∈ [0, dχ∗],

V χ(dχ∗)−(dχ∗+cb)
Gχ(dχ∗)

Gχ(y) if y ∈ (dχ∗,+∞).

The optimal starting level dχ∗ > 0 is uniquely determined from

Gχ(d)(V χ′(d)− 1) = Gχ′(d)(V χ(d)− (d+ cb)).

As a result, it is optimal to start as soon as the CIR process Y falls below

the strictly positive level dχ∗.

2.2.2.2 Optimal Switching Problem

Now we study the optimal switching problem under the CIR model in (2.1.2).
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Lemma 2.2.12. For all y ≥ 0, the value functions J̃χ and Ṽ χ satisfy the

inequalities

0 ≤ J̃χ(y) ≤ µθ

r
,

0 ≤ Ṽ χ(y) ≤ y +
2µθ

r
.

We start by giving conditions under which it is optimal not to start ever.

Theorem 2.2.13. Under the CIR model, if it holds that

(i) yb ≤ 0, or

(ii) yb > 0 and cb ≥ bχ∗−cs
Fχ(bχ∗)

,

with bχ∗ given in (2.2.21), then the optimal switching problem (2.1.13)-(2.1.14)

admits the solution

J̃χ(y) = 0 for y ≥ 0, (2.2.23)

and

Ṽ χ(y) =


bχ∗−cs
Fχ(bχ∗)

F χ(y) if y ∈ [0, bχ∗),

y − cs if y ∈ [bχ∗,+∞).

(2.2.24)

Conditions (i) and (ii) depend on problem data and can be easily verified.

In particular, recall that yb is defined in (2.2.20) and is easy to compute,

furthermore it is independent of σ and cs. Since it is optimal to never enter,

the switching problem is equivalent to a stopping problem and the solution in

Theorem 2.2.13 agrees with that in Theorem 2.2.9. Next, we provide conditions

under which it is optimal to enter as soon as the CIR process reaches some

lower level.

Theorem 2.2.14. Under the CIR model, if

yb > 0 and cb <
bχ∗ − cs
F χ(bχ∗)

, (2.2.25)
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with bχ∗ given in (2.2.21), then the optimal switching problem (2.1.13)-(2.1.14)

admits the solution

J̃χ(y) =

P
χF χ(y)− (y + cb) if y ∈ [0, d̃χ∗],

QχGχ(y) if y ∈ (d̃χ∗,+∞),

(2.2.26)

and

Ṽ χ(y) =

P
χF χ(y) if y ∈ [0, b̃χ∗),

QχGχ(y) + (y − cs) if y ∈ [̃bχ∗,+∞),

(2.2.27)

where

P χ =
Gχ(d̃χ∗)− (d̃χ∗ + cb)G

χ′(d̃χ∗)

F χ′(d̃χ∗)Gχ(d̃χ∗)− F χ(d̃χ∗)Gχ′(d̃χ∗)
,

Qχ =
F χ(d̃χ∗)− (d̃χ∗ + cb)F

χ′(d̃χ∗)

F χ′(d̃χ∗)Gχ(d̃χ∗)− F χ(d̃χ∗)Gχ′(d̃χ∗)
.

There exist unique optimal starting and stopping levels d̃χ∗ and b̃χ∗, which are

found from the nonlinear system of equations:

Gχ(d)− (d+ cb)G
χ′(d)

F χ′(d)Gχ(d)− F χ(d)Gχ′(d)
=

Gχ(b)− (b− cs)Gχ′(b)

F χ′(b)Gχ(b)− F χ(b)Gχ′(b)
,

F χ(d)− (d+ cb)F
χ′(d)

F χ′(d)Gχ(d)− F χ(d)Gχ′(d)
=

F χ(b)− (b− cs)F χ′(b)

F χ′(b)Gχ(b)− F χ(b)Gχ′(b)
.

Moreover, we have that d̃χ∗ < yb and b̃χ∗ > ys.

In this case, it is optimal to start and stop an infinite number of times

where we start as soon as the CIR process drops to d̃χ∗ and stop when the

process reaches b̃χ∗. Note that in the case of Theorem 2.2.13 where it is never

optimal to start, the optimal stopping level bχ∗ is the same as that of the

optimal stopping problem in Theorem 2.2.9. The optimal starting level d̃χ∗,

which only arises when it is optimal to start and stop sequentially, is in general

not the same as dχ∗ in Theorem 2.2.11.

We conclude the section with two remarks.
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Remark 2.2.15. Given the model parameters, in order to identify which of

Theorem 2.2.13 or Theorem 2.2.14 applies, we begin by checking whether yb ≤
0. If so, it is optimal not to enter. Otherwise, Theorem 2.2.13 still applies

if cb ≥ bχ∗−cs
Fχ(bχ∗)

holds. In the other remaining case, the problem is solved as in

Theorem 2.2.14. In fact, the condition cb <
bχ∗−cs
Fχ(bχ∗)

implies yb > 0 (see the

proof of Lemma 4.3 in Leung et al. [2014]. Therefore, condition (2.2.25) in

Theorem 2.2.14 is in fact identical to (2.2.22) in Theorem 2.2.11.

Remark 2.2.16. To verify the optimality of the results in Theorems 2.2.13

and 2.2.14, one can show by direct substitution that the solutions (J̃χ, Ṽ χ) in

(2.2.23)-(2.2.24) and (2.2.26)-(2.2.27) satisfy the variational inequalities:

min{rJ̃χ(y)− LχJ̃χ(y), J̃χ(y)− (Ṽ χ(y)− (y + cb))} = 0,

min{rṼ χ(y)− LχṼ χ(y), Ṽ χ(y)− (J̃χ(y) + (y − cs))} = 0.

Indeed, this is the approach used by Zervos et al. [2013] for checking the solu-

tions of their optimal switching problems.

2.2.2.3 Numerical Examples

We numerically implement Theorems 2.2.9, 2.2.11, and 2.2.14, and illustrate

the associated starting and stopping thresholds. In Figure 2.4 (left), we ob-

serve the changes in optimal starting and stopping levels as speed of mean

reversion increases. Both starting levels dχ∗ and d̃χ∗ rise with µ, from 0.0964

to 0.1219 and from 0.1460 to 0.1696, respectively, as µ increases from 0.3 to

0.85. The optimal switching stopping level b̃χ∗ also increases. On the other

hand, stopping level bχ∗ for the starting-stopping problem stays relatively con-

stant as µ changes.

In Figure 2.4 (right), we see that as the stopping cost cs increases, the

increase in the optimal stopping levels is accompanied by a fall in optimal

starting levels. In particular, the stopping levels, bχ∗ and b̃χ∗ increase. In
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comparison, both starting levels dχ∗ and d̃χ∗ fall. The lower starting level and

higher stopping level mean that the entry and exit times are both delayed as a

result of a higher transaction cost. Interestingly, although the cost cs applies

only when the process is stopped, it also has an impact on the timing to start,

as seen in the changes in dχ∗ and d̃χ∗ in the figure.

In Figure 2.4, we can see that the continuation (waiting) region of the

switching problem (d̃χ∗, b̃χ∗) lies within that of the starting-stopping problem

(dχ∗, bχ∗). The ability to enter and exit multiple times means it is possible to

earn a smaller reward on each individual start-stop sequence while maximizing

aggregate return. Moreover, we observe that optimal entry and exit levels of

the starting-stopping problem is less sensitive to changes in model parameters

than the entry and exit thresholds of the switching problem.

Figure 2.5 shows a simulated CIR path along with optimal entry and exit

levels for both starting-stopping and switching problems. Under the starting-

stopping problem, it is optimal to start once the process reaches dχ∗ = 0.0373

and to stop when the process hits bχ∗ = 0.4316. For the switching problem, it

is optimal to start once the process values hits d̃χ∗ = 0.1189 and to stop when

the value of the CIR process rises to b̃χ∗ = 0.2078. We note that both stopping

levels bχ∗ and b̃χ∗ are higher than the long-run mean θ = 0.2, and the starting

levels dχ∗ and d̃χ∗ are lower than θ. The process starts at Y0 = 0.15 > d̃χ∗,

under the optimal switching setting, the first time to enter occurs on day 8

when the process falls to 0.1172 and subsequently exits on day 935 at a level

of 0.2105. For the starting-stopping problem, entry takes place much later on

day 200 when the process hits 0.0306 and exits on day 2671 at 0.4369. Under

the optimal switching problem, two entries and two exits will be completed

by the time a single entry-exit sequence is realized for the starting-stopping

problem.
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Figure 2.4: (Left) The optimal starting and stopping levels vs speed of mean rever-

sion µ. Parameters: σ = 0.15, θ = 0.2, r = 0.05, cs = 0.001, cb = 0.001. (Right) The

optimal starting and stopping levels vs transaction cost cs. Parameters: µ = 0.6,

σ = 0.15, θ = 0.2, r = 0.05, cb = 0.001.

2.3 Methods of Solution and Proofs

We now provide detailed proofs for our analytical results in Section 2.2 for

the optimal switching problems. Using the results for the double stopping

problems i.e. Theorems 2.2.2 and 2.2.4 under the XOU model and Theorems

2.2.9 and 2.2.11 under the CIR model, we can infer the structure of the buy and

sell regions of the switching problems and then proceed to verify its optimality.

2.3.1 Optimal Switching Timing under the XOU Model

In this section, we provide detailed proofs for Theorems 2.2.6 and 2.2.7.

Proof of Theorem 2.2.6 (Part 1) First, with hξs(x) = ex − cs, we differ-

entiate to get (
hξs
F

)′
(x) =

(ex − cs)F ′(x)− exF (x)

F 2(x)
. (2.3.1)



CHAPTER 2. OPTIMAL SWITCHING UNDER XOU AND CIR 35

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Days

 

 
bχ∗

b̃∗

d̃∗
dχ∗

Figure 2.5: A sample CIR path, along with starting and stopping levels. Under

the starting-stopping setting, a starting decision is made at νdχ∗ = inf{t ≥ 0 : Yt ≤
dχ∗ = 0.0373}, and a stopping decision is made at τbχ∗ = inf{t ≥ νdχ∗ : Yt ≥
bχ∗ = 0.4316}. Under the optimal switching problem, entry and exit take place at

ν
d̃χ∗

= inf{t ≥ 0 : Yt ≤ d̃χ∗ = 0.1189} , and τ
b̃χ∗

= inf{t ≥ ν
d̃χ∗

: Yt ≥ b̃χ∗ = 0.2078}
respectively. Parameters: µ = 0.2, σ = 0.3, θ = 0.2, r = 0.05, cs = 0.001, cb = 0.001.

On the other hand, by Ito’s lemma, we have

hξs(x) = Ex{e−rthξs(Xt)} − Ex
{∫ t

0

e−ru(L − r)hξs(Xu)du

}
.

Note that

Ex{e−rthξs(Xt)} = e−rt
(
e(x−θ)e−µt+θ+σ2

4µ
(1−e−2µt) − cs

)
→ 0 as t→ +∞.

This implies that

hξs(x) = −Ex
{∫ +∞

0

e−ru(L − r)hξs(Xu)du

}
= −G(x)

∫ x

−∞
Ψ(s)(L − r)hξs(s)ds

− F (x)

∫ +∞

x

Φ(s)(L − r)hξs(s)ds, (2.3.2)
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where Ψ is defined in (2.2.16) and

Φ(x) :=
2G(x)

σ2W(x)
.

The last line follows from Theorem 50.7 in Rogers and Williams [2000, p. 293].

Dividing both sides by F (x) and differentiating the RHS of (2.3.2), we obtain(
hξs
F

)′
(x) = −

(
G

F

)′
(x)

∫ x

−∞
Ψ(s)(L − r)hξs(s)ds

− G

F
(x)Ψ(x)(L − r)hξs(x)− Φ(x)(L − r)hξs(x)

=
W(x)

F 2(x)

∫ x

−∞
Ψ(s)(L − r)hξs(s)ds =

W(x)

F 2(x)
q(x),

where

q(x) :=

∫ x

−∞
Ψ(s)(L − r)hξs(s)ds.

SinceW(x), F (x) > 0, we deduce that
(
hξs
F

)′
(x) = 0 is equivalent to q(x) = 0.

Using (2.3.1), we now see that (2.2.3) is equivalent to q(b) = 0.

Next, it follows from (2.2.6) that

q′(x) = Ψ(x)(L − r)hξs(x)

> 0 if x < xs,

< 0 if x > xs.

(2.3.3)

This, together with the fact that limx→−∞ q(x) = 0, implies that there exists

a unique bξ∗ such that q(bξ∗) = 0 if and only if limx→+∞ q(x) < 0. Next, we

show that this inequality holds. By the definition of hξs and F , we have

hξs(x)

F (x)
=
ex − cs
F (x)

> 0 for x > ln cs, lim
x→+∞

hξs(x)

F (x)
= 0,(

hξs
F

)′
(x) =

W(x)

F 2(x)

∫ x

−∞
Ψ(s)(L − r)hξs(s)ds =

W(x)

F 2(x)
q(x). (2.3.4)

Since q is strictly decreasing in (xs,+∞), the above hold true if and only if

limx→+∞ q(x) < 0. Therefore, we conclude that there exits a unique bξ∗ such

that ebF (b) = (eb − cs)F ′(b). Using (2.3.3), we see that

bξ∗ > xs and q(x) > 0 for all x < bξ∗. (2.3.5)
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Observing that eb
ξ∗
, F (bξ∗), F ′(bξ∗) > 0, we can conclude that hξs(b

ξ∗) = eb
ξ∗ −

cs > 0, or equivalently bξ∗ > ln cs.

We now verify by direct substitution that Ṽ ξ(x) and J̃ξ(x) in (2.2.7) satisfy

the pair of variational inequalities:

min{rJ̃ξ(x)− LJ̃ξ(x), J̃ξ(x)− (Ṽ ξ(x)− hξb(x))} = 0, (2.3.6)

min{rṼ ξ(x)− LṼ ξ(x), Ṽ ξ(x)− (J̃ξ(x) + hξs(x))} = 0. (2.3.7)

First, note that J̃ξ(x) is identically 0 and thus satisfies the equality

(r − L)J̃ξ(x) = 0. (2.3.8)

To show that J̃ξ(x) − (Ṽ ξ(x) − hξb(x)) ≥ 0, we look at the disjoint intervals

(−∞, bξ∗) and [bξ∗,∞) separately. For x ≥ bξ∗, we have

Ṽ ξ(x)− hξb(x) = −(cb + cs),

which implies J̃ξ(x) − (Ṽ ξ(x) − hξb(x)) = cb + cs ≥ 0. When x < bξ∗, the

inequality

J̃ξ(x)− (Ṽ ξ(x)− hξb(x)) ≥ 0

can be rewritten as

hξb(x)

F (x)
=
ex + cb
F (x)

≥ eb
ξ∗ − cs
F (bξ∗)

=
hξs(b

ξ∗)

F (bξ∗)
. (2.3.9)

To determine the necessary conditions for this to hold, we consider the deriva-

tive of the LHS of (2.3.9):(
hξb
F

)′
(x) =

W(x)

F 2(x)

∫ x

−∞
Ψ(s)(L − r)hξb(s)ds (2.3.10)

=
W(x)

F 2(x)

∫ x

−∞
Ψ(s)esfb(s)ds.

If fb(x) = 0 has no roots, then (L − r)hξb(x) is negative for all x ∈ R. On the

other hand, if there is only one root x̃, then (L−r)hξb(x̃) = 0 and (L−r)hξb(x) <
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0 for all other x. In either case, hξb(x)/F (x) is a strictly decreasing function

and (2.3.9) is true.

Otherwise if fb(x) = 0 has two distinct roots xb1 and xb2 with xb1 < xb2,

then

(L − r)hξb(x)

< 0 if x ∈ (−∞, xb1) ∪ (xb2,+∞),

> 0 if x ∈ (xb1, xb2).

(2.3.11)

Applying (2.3.11) to (2.3.10), the derivative (hξb/F )′(x) is negative on (−∞, xb1)

since the integrand in (2.3.10) is negative. Hence, hξb(x)/F (x) is strictly de-

creasing on (−∞, xb1). We further note that bξ∗>xs>xb2. Observe that on

the interval (xb1, xb2), the intergrand is positive. It is therefore possible for

(hξb/F )′ to change sign at some x ∈ (xb1, xb2). For this to happen, the positive

part of the integral must be larger than the absolute value of the negative part.

In other words, (2.2.15) must hold. If (2.2.15) holds, then there must exist

some ã∗ ∈ (xb1, xb2) such that (hξb/F )′(ã∗) = 0, or equivalently (2.2.8) holds:(
hξb
F

)′
(ã∗) =

hξ
′

b (ã∗)

F (ã∗)
− hξb(ã

∗)F ′(ã∗)

F 2(ã∗)
=

eã
∗

F (ã∗)
− (eã

∗
+ cb)F (ã∗)′

F 2(ã∗)
.

If (2.2.8) holds, then we have∣∣∣∣∫ xb1

−∞
Ψ(x)exfb(x)dx

∣∣∣∣ =

∫ ã∗

xb1

Ψ(x)exfb(x)dx.

In addition, since ∫ xb2

ã∗
Ψ(x)exfb(x)dx > 0,

it follows that ∣∣∣∣∫ xb1

−∞
Ψ(x)exfb(x)dx

∣∣∣∣ < ∫ xb2

xb1

Ψ(x)exfb(x)dx.

This establishes the equivalence between (2.2.8) and (2.2.15). Under this con-

dition, hξb/F is strictly decreasing on (xb1, ã
∗). Then, either it is strictly in-

creasing on (ã∗, bξ∗), or there exists some x̄ ∈ (xb2, b
ξ∗) such that hξb(x)/F (x) is
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strictly increasing on (ã∗, x̄) and strictly decreasing on (x̄, bξ∗). In both cases,

(2.3.9) is true if and only if (2.2.9) holds.

Alternatively, if (2.2.15) doesn’t hold, then by (2.3.10), the integral (hξb/F )′

will always be negative. This means that the function hξb(x)/F (x) is strictly

decreasing for all x ∈ (−∞, bξ∗), in which case (2.3.9) holds.

We are thus able to show that (2.3.6) holds, in particular the minimum of

0 is achieved as a result of (2.3.8). To prove (2.3.7), we go through a similar

procedure. To check that

(r − L)Ṽ ξ(x) ≥ 0

holds, we consider two cases. First when x < bξ∗, we get

(r − L)Ṽ ξ(x) =
eb
ξ∗ − cs
F (bξ∗)

(r − L)F (x) = 0.

On the other hand, when x ≥ bξ∗, the inequality holds

(r − L)Ṽ ξ(x) = (r − L)hξs(x) > 0,

since bξ∗ > xs (the first inequality of (2.3.5)) and (2.2.6).

Similarly, when x ≥ bξ∗, we have

Ṽ ξ(x)− (J̃ξ(x) + hξs(x)) = hξs(x)− hξs(x) = 0.

When x < bξ∗, the inequality holds:

Ṽ ξ(x)− (J̃ξ(x) + hξs(x)) =
hξs(b

ξ∗)

F (bξ∗)
F (x)− hξs(x) ≥ 0,

which is equivalent to hξs(x)
F (x)
≤ hξs(b

ξ∗)
F (bξ∗)

, due to (2.3.4) and (2.3.5).

Proof of Theorem 2.2.7 (Part 1) Define the functions

qG(x, z) =

∫ +∞

x

Φ(s)(L − r)hξb(s)ds−
∫ +∞

z

Φ(s)(L − r)hξs(s)ds,

qF (x, z) =

∫ x

−∞
Ψ(s)(L − r)hξb(s)ds−

∫ z

−∞
Ψ(s)(L − r)hξs(s)ds.
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where We look for the points d̃∗ < b̃∗ such that

qG(d̃∗, b̃∗) = 0, and qF (d̃∗, b̃∗) = 0.

This is because these two equations are equivalent to (2.2.13) and (2.2.14),

respectively.

Now we start to solve the equations by first narrowing down the range for

d̃∗ and b̃∗. Observe that

qG(x, z) =

∫ z

x

Φ(s)(L − r)hξb(s)ds+

∫ ∞
z

Φ(s)[(L − r)(hξb(s)− hξs(s)]ds

=

∫ z

x

Φ(s)(L − r)hξb(s)ds− r(cb + cs)

∫ ∞
z

Φ(s)ds

< 0, (2.3.12)

for all x and z such that xb2 ≤ x < z. Therefore, d̃∗ ∈ (−∞, xb2).

Since bξ∗ > xs satisfies q(bξ∗) = 0 and ã∗ < xb2 satisfies (2.2.8), we have

lim
z→+∞

qF (x, z) =

∫ x

−∞
Ψ(s)(L − r)hξb(s)ds− q(bξ∗)−

∫ +∞

bξ∗
Ψ(s)(L − r)hξs(s)ds

> 0,

for all x ∈ (ã∗, xb2). Also, we note that

∂qF
∂z

(x, z) = −Ψ(z)(L − r)hξs(z)

< 0 if z < xs,

> 0 if z > xs,

(2.3.13)

and

qF (x, x) =

∫ x

−∞
Ψ(s)(L − r)

[
hξb(s)− hξs(s)

]
ds

= −r(cb + cs)

∫ x

−∞
Ψ(s)ds < 0. (2.3.14)

Then, (2.3.13) and (2.3.14) imply that there exists a unique function β :

[ã∗, xb2) 7→ R s.t. β(x) > xs and

qF (x, β(x)) = 0. (2.3.15)
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Differentiating (2.3.15) with respect to x, we see that

β′(x) =
Ψ(x)(L − r)hξb(x)

Ψ(β(x))(L − r)hξs(β(x))
< 0,

for all x ∈ (xb1, xb2). In addition, by the facts that bξ∗ > xs satisfies q(bξ∗) = 0,

ã∗ satisfies (2.2.8), and the definition of qF , we have

β(ã∗) = bξ∗.

By (2.3.12), we have limx↑xb2 qG(x, β(x)) < 0. By computation, we get that

d

dx
qG(x, β(x)) = −Φ(x)Ψ(β(x))− Φ(β(x))Ψ(x)

Ψ(β(x))
(L − r)hξb(x)

= −Ψ(x)

[
G(x)

F (x)
− G(β(x))

F (β(x))

]
(L − r)hξb(x) < 0,

for all x ∈ (xb1, xb2). Therefore, there exists a unique d̃∗ such that qG(d̃∗, β(d̃∗)) =

0 if and only if

qG(ã∗, β(ã∗)) > 0.

The above inequality holds if (2.2.10) holds. Indeed, direct computation yields

the equivalence:

qG(ã∗, β(ã∗))

=

∫ +∞

ã∗
Φ(s)(L − r)hξb(s)ds−

∫ +∞

bξ∗
Φ(s)(L − r)hξs(s)ds

= −h
ξ
b(ã
∗)

F (ã∗)
− G(bξ∗)

F (bξ∗)

∫ bξ∗

−∞
Ψ(s)(L − r)hξs(s)ds−

∫ +∞

bξ∗
Φ(s)(L − r)hξs(s)ds

= −e
ã∗ + cb
F (ã∗)

+
eb
ξ∗ − cs
F (bξ∗)

.

When this solution exists, we have

d̃∗ ∈ (xb1, xb2) and b̃∗ := β(d̃∗) > xs.
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Next, we show that the functions J̃ξ and Ṽ ξ given in (2.2.11) and (2.2.12)

satisfy the pair of VIs in (2.3.6) and (2.3.7). In the same vein as the proof for

Theorem 2.2.6, we show

(r − L)J̃ξ(x) ≥ 0

by examining the 3 disjoint regions on which J̃ξ(x) assume different forms.

When x < ã∗,

(r − L)J̃ξ(x) = P̃ (r − L)F (x) = 0.

Next, when x > d̃∗,

(r − L)J̃ξ(x) = Q̃(r − L)G(x) = 0.

Finally for x ∈ [ã∗, d̃∗],

(r − L)J̃ξ(x) = (r − L)(K̃F (x)− hξb(x)) = −(r − L)hξb(x) > 0,

as a result of (2.3.11) since ã∗, d̃∗ ∈ (xb1, xb2).

Next, we verify that

(r − L)Ṽ ξ(x) ≥ 0.

Indeed, we have (r − L)Ṽ ξ(x) = K̃(r − L)F (x) = 0 for x < b̃∗. When x ≥ b̃∗,

we get the inequality (r−L)Ṽ ξ(x) = (r−L)(Q̃G(x)+hξs(x)) = (r−L)hξs(x) > 0

since b̃∗ > xs and due to (2.2.6).

It remains to show that J̃ξ(x)− (Ṽ ξ(x)− hξb(x)) ≥ 0 and Ṽ ξ(x)− (J̃ξ(x) +

hξs(x)) ≥ 0. When x < ã∗, we have

J̃ξ(x)− (Ṽ ξ(x)− hξb(x)) = (P̃ − K̃)F (x) + (ex + cb)

= −F (x)
eã
∗

+ cb
F (ã∗)

+ (ex + cb) ≥ 0.
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This inequality holds since we have shown in the proof of Theorem 2.2.6 that

hξb(x)

F (x)
is strictly decreasing for x < ã∗. In addition,

Ṽ ξ(x)− (J̃ξ(x) + hξs(x)) = F (x)
eã
∗

+ cb
F (ã∗)

− (ex − cs) ≥ 0,

since (2.3.3) (along with the ensuing explanation) implies that hξs(x)
F (x)

is increas-

ing for all x ≤ ã∗.

In the other region where x ∈ [ã∗, d̃∗], we have

J̃ξ(x)− (Ṽ ξ(x)− hξb(x)) = 0,

Ṽ ξ(x)− (J̃ξ(x) + hξs(x)) = hξb(x)− hξs(x) = cb + cs ≥ 0.

When x > b̃∗, it is clear that

J̃ξ(x)− (Ṽ ξ(x)− hξb(x)) = hξb(x)− hξs(x) = cb + cs ≥ 0,

Ṽ ξ(x)− (J̃ξ(x) + hξs(x)) = 0.

To establish the inequalities for x ∈ (d̃∗, b̃∗), we first denote

gJ̃ξ(x) := J̃ξ(x)− (Ṽ ξ(x)− hξb(x)) = Q̃G(x)− K̃F (x) + hξb(x)

= F (x)

∫ x

d̃∗
Φ(s)(L − r)hξb(s)ds−G(x)

∫ x

d̃∗
Ψ(s)(L − r)hξb(s)ds,

gṼ ξ(x) := Ṽ ξ(x)− (J̃ξ(x) + hξs(x)) = K̃F (x)− Q̃G(x)− hξs(x)

= F (x)

∫ b̃∗

x

Φ(s)(L − r)hξs(s)ds−G(x)

∫ b̃∗

x

Ψ(s)(L − r)hξs(s)ds.

In turn, we compute to get

g′
J̃ξ

(x) = F ′(x)

∫ x

d̃∗
Φ(s)(L − r)hξb(s)ds−G′(x)

∫ x

d̃∗
Ψ(s)(L − r)hξb(s)ds,

g′
Ṽ ξ

(x) = F ′(x)

∫ b̃∗

x

Φ(s)(L − r)hξs(s)ds−G′(x)

∫ b̃∗

x

Ψ(s)(L − r)hξs(s)ds.

Recall the definition of xb2 and xs, and the fact that G′ < 0 < F ′, we have

g′
J̃ξ

(x) > 0 for x ∈ (d̃∗, xb2) and g′
Ṽ ξ

(x) < 0 for x ∈ (xs, b̃
∗). These, together
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with the fact that gJ̃ξ(d̃
∗) = gṼ ξ (̃b

∗) = 0, imply that

gJ̃ξ(x) > 0 for x ∈ (d̃∗, xb2), and gṼ ξ(x) > 0 for x ∈ (xs, b̃
∗).

Furthermore, since we have

gJ̃ξ (̃b
∗) = cb + cs ≥ 0, gṼ ξ(d̃

∗) = cb + cs ≥ 0, (2.3.16)

and

(L − r)gJ̃ξ(x) = (L − r)hξb(x) < 0 for all x ∈ (xb2, b̃
∗),

(L − r)gṼ ξ(x) = −(L − r)hξs(x) < 0 for all x ∈ (d̃∗, xs). (2.3.17)

In view of inequalities (2.3.16)–(2.3.17), the maximum principle implies that

gJ̃ξ(x) ≥ 0 and gṼ ξ(x) ≥ 0 for all x ∈ (d̃∗, b̃∗). Hence, we conclude that

J̃(x)− (Ṽ (x)−hξb(x)) ≥ 0 and Ṽ (x)− (J̃(x) +hξs(x)) ≥ 0 hold for x ∈ (d̃∗, b̃∗).

Proof of Theorems 2.2.6 and 2.2.7 (Part 2) We now show that the

candidate solutions in Theorems 2.2.6 and 2.2.7, denoted by j̃ξ and ṽξ, are

equal to the optimal switching value functions J̃ξ and Ṽ ξ in (2.1.11) and

(2.1.12), respectively. First, we note that j̃ξ ≤ J̃ξ and ṽξ ≤ Ṽ ξ, since J̃ξ and

Ṽ ξ dominate the expected discounted cash low from any admissible strategy.

Next, we show the reverse inequaities. In Part 1, we have proved that

j̃ξ and ṽξ satisfy the VIs (2.3.6) and (2.3.7). In particular, we know that

(r − L)j̃ξ ≥ 0, and (r − L)ṽξ ≥ 0. Then by Dynkin’s formula and Fatou’s

lemma, as in Øksendal [2003, p. 226], for any stopping times ζ1 and ζ2 such

that 0 ≤ ζ1 ≤ ζ2 almost surely, we have the inequalities

Ex{e−rζ1 j̃ξ(Xζ1)} ≥ Ex{e−rζ2 j̃ξ(Xζ2)}, (2.3.18)

Ex{e−rζ1 ṽξ(Xζ1)} ≥ Ex{e−rζ2 ṽξ(Xζ2)}. (2.3.19)
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For Λ0 = (ν1, τ1, ν2, τ2, . . . ), noting that ν1 ≤ τ1 almost surely, we have

j̃ξ(x) ≥ Ex{e−rν1 j̃ξ(Xν1)} (2.3.20)

≥ Ex{e−rν1(ṽξ(Xν1)− hξb(Xν1))} (2.3.21)

≥ Ex{e−rτ1 ṽξ(Xτ1)} − Ex{e−rν1hξb(Xν1)} (2.3.22)

≥ Ex{e−rτ1(j̃ξ(Xτ1) + hξs(Xτ1))} − Ex{e−rν1hξb(Xν1)} (2.3.23)

= Ex{e−rτ1 j̃ξ(Xτ1)}+ Ex{e−rτ1hξs(Xτ1)− e−rν1hξb(Xν1)}, (2.3.24)

where (2.3.20) and (2.3.22) follow from (2.3.18) and (2.3.19) respectively. Also,

(2.3.21) and (2.3.23) follow from (2.3.6) and (2.3.7) respectively. Observe that

(2.3.24) is a recursion and j̃ξ(x) ≥ 0 in both Theorems 2.2.6 and 2.2.7, we

obtain

j̃ξ(x) ≥ Ex

{
∞∑
n=1

[e−rτnhξs(Xτn)− e−rνnhξb(Xνn)]

}
.

Maximizing over all Λ0 yields that j̃ξ(x) ≥ J̃ξ(x). A similar proof gives ṽξ(x) ≥
Ṽ ξ(x).

Remark 2.3.1. If there is no transaction cost for entry, i.e. cb = 0, then

fb, which is now a linear function with a non-zero slope, has one root x0.

Moreover, we have fb(x) > 0 for x ∈ (−∞, x0) and fb(x) < 0 for x ∈ (x0,+∞).

This implies that the entry region must be of the form (−∞, d0), for some

number d0. Hence, the continuation region for entry is the connected interval

(d0,∞).

Remark 2.3.2. Let Lξ be the infinitesimal generator of the XOU process ξ =

eX , and define the function Hb(ς) := ς+cb ≡ hξb(ln ς). In other words, we have

the equivalence:

(Lξ − r)Hb(ς) ≡ (L − r)hξb(ln ς).
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Referring to (2.2.5) and (2.2.6), we have either that

(Lξ − r)Hb(ς)

> 0 for ς ∈ (ςb1, ςb2),

< 0 for ς ∈ (0, ςb1) ∪ (ςb2,+∞),

(2.3.25)

where ςb1 = exb1 > 0 and ςb2 = exb2 and xb1 < xb2 are two distinct roots to

(2.2.5), or

(Lξ − r)Hb(ς) < 0, for ς ∈ (0, ς∗) ∪ (ς∗,+∞), (2.3.26)

where ς∗ = exb and xb is the single root to (2.2.5). In both cases, Assumption 4

of Zervos et al. [2013] is violated, and their results cannot be applied. Indeed,

they would require that (Lξ − r)Hb(ς) is strictly negative over a connected

interval of the form (ς0,∞), for some fixed ς0 ≥ 0. However, it is clear from

(2.3.25) and (2.3.26) that such a region is disconnected.

In fact, the approach by Zervos et al. [2013] applies to the optimal switching

problems where the optimal wait-for-entry region (in log-price) is of the form

(d̃∗,∞), rather than the disconnected region (−∞, ã∗) ∪ (d̃∗,∞), as in our

case with an XOU underlying. Using the new inferred structure of the wait-

for-entry region, we have modified the arguments in Zervos et al. [2013] to

solve our optimal switching problem for Theorems 2.2.6 and 2.2.7.

2.3.2 Optimal Switching Timing under the CIR Model

Proofs of Theorems 2.2.13 and 2.2.14 Zervos et al. [2013] have studied

a similar problem of trading a mean-reverting asset with fixed transaction

costs, and provided detailed proofs using a variational inequalities approach.

In particular, we observe that yb and ys in (2.2.18) and (2.2.19) play the

same roles as xb and xs in Assumption 4 in Zervos et al. [2013], respectively.

However, Assumption 4 in Zervos et al. [2013] requires that 0 ≤ xb, this is

not necessarily true for yb in our problem. We have checked and realized that
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this assumption is not necessary for Theorem 2.2.13, and that yb < 0 simply

implies that there is no optimal starting level, i.e. it is never optimal to start.

In addition, Zervos et al. [2013] assume (in their Assumption 1) that the

hitting time of level 0 is infinite with probability 1. In comparison, we consider

not only the CIR case where 0 is inaccessible, but also when the CIR process

has a reflecting boundary at 0. In fact, we find that the proofs in Zervos

et al. [2013] apply to both cases under the CIR model. Therefore, apart from

relaxation of the aforementioned assumptions, the proofs of our Theorems

2.2.13 and 2.2.14 are the same as that of Lemmas 1 and 2 in Zervos et al.

[2013] respectively.



CHAPTER 3. SPECULATIVE FUTURES TRADING 48

Chapter 3

Speculative Futures Trading

under Mean Reversion

In this chapter, we study the problem of trading futures with transaction costs

when the underlying spot price is driven by an OU, CIR or XOU model. We

analytically derive the futures term structure and examine its connection to

futures price dynamics. For each futures contract, we describe the evolution of

the roll yield, and compute explicitly the expected roll yield. For the futures

trading problem, we first consider the standard entry and exit problems and

go on to incorporate a chooser option to either go long or short a futures

contract upon entry. We formulate the optimal double stopping problems

and solve them numerically using a finite difference method to determine the

optimal trading strategies. Numerical examples are provided to illustrate the

optimal entry and exit boundaries under different models and problem settings.

Our results show that the option to choose between a long or short position

motivates the investor to delay market entry, as compared to the case where

the investor pre-commits to go either long or short.

Section 3.1 summarizes the futures prices and term structures under mean

reversion. We discuss the concept of roll yield in Section 3.2. In Section 3.3,
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we formulate and numerically solve the optimal double stopping problems for

futures trading. The numerical algorithm is described in Appendix C.

3.1 Futures Prices and Term Structures

Throughout this chapter, we consider futures that are written on an asset

whose price process is mean-reverting. In this section, we discuss the pricing

of futures and their term structures under different spot models.

3.1.1 OU and CIR Spot Models

We begin with two mean-reverting models for the spot price S, namely, the

OU and CIR models. As we will see, they yield the same price function for

the futures contract. To start, suppose that the spot price evolves according

to the OU model:

dSt = µ(θ − St)dt+ σdBt,

where µ, σ > 0 are the speed of mean reversion and volatility of the process

respectively. θ ∈ R is the long run mean and B is a standard Brownian motion

under the historical measure P.

To price futures, we assume a re-parametrized OU model for the risk-

neutral spot price dynamics. Hence, under the risk-neutral measure Q, the

spot price follows

dSt = µ̃(θ̃ − St) dt+ σ dBQ
t ,

with constant parameters µ̃, σ > 0, and θ̃ ∈ R. This is again an OU process,

albeit with a different long-run mean θ̃ and speed of mean reversion µ̃ under

the risk-neutral measure. This involves a change of measure that connects the
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two Brownian motions, as described by

dBQ
t = dBt +

µ(θ − St)− µ̃(θ̃ − St)
σ

dt.

Throughout, futures prices are computed the same as forward prices, and

we do not distinguish between the two prices (see Cox et al. [1981]; Brennan

and Schwartz [1990]). As such, the price of a futures contract with maturity

T is given by

fTt ≡ f(t, St;T ) := EQ{ST |St} = (St − θ̃)e−µ̃(T−t) + θ̃, t ≤ T. (3.1.1)

Note that the futures price is a deterministic function of time and the current

spot price.

We now consider the CIR model for the spot price:

dSt = µ(θ − St)dt+ σ
√
StdBt, (3.1.2)

where µ, θ, σ > 0, and B is a standard Brownian motion under the historical

measure P. Under the risk-neutral measure Q,

dSt = µ̃(θ̃ − St)dt+ σ
√
StdB

Q
t , (3.1.3)

where µ, θ > 0, and BQ is a Q-standard Brownian motion. In both SDEs,

(3.1.2) and (3.1.3), we require 2µθ ≥ σ2 and 2µ̃θ̃ ≥ σ2 (Feller condition) so

that the CIR process stays positive.

The two Brownian motions are related by

dBQ
t = dBt +

µ(θ − St)− µ̃(θ̃ − St)
σ
√
St

dt,

which preserves the CIR model, up to different parameter values across two

measures.

The CIR terminal spot price ST admits the non-central Chi-squared dis-

tribution and is positive, whereas the OU spot price is normally distributed.
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Nevertheless, the futures price under the CIR model admits the same func-

tional form as in the OU case (see (3.1.1)):

fTt = (St − θ̃)e−µ̃(T−t) + θ̃, t ≤ T. (3.1.4)

Proposition 3.1.1. Under the OU or CIR spot model, the futures curve is (i)

upward-sloping and concave if the current spot price S0 < θ̃, (ii) downward-

slopping and convex if S0 > θ̃.

Proof. We differentiate (3.1.4) with respect to T to get the derivatives:

∂fT0
∂T

= −µ̃(S0 − θ̃)e−µ̃T ≶ 0 and
∂2fT0
∂T 2

= µ̃2(S0 − θ̃)e−µ̃T ≷ 0,

for S0 ≷ θ̃. Hence, we conclude.

Remark 3.1.2. The futures price formula (3.1.4) holds more generally for

other mean-reverting models with risk-neutral spot dynamics of the form:

dSt = µ̃(θ̃ − St)dt+ σ(St)dB
Q
t ,

where σ(·) is a deterministic function such that EQ{
∫ T

0
σ(St)

2dt} <∞.

Under the OU model, the futures satisfies the following SDE under the

historical measure P:

dfTt =
[
(fTt − θ̃)(µ̃− µ) + µ(θ − θ̃)e−µ̃(T−t)

]
dt+ σe−µ̃(T−t)dBt. (3.1.5)

If the spot follows a CIR process, then the futures prices follows

dfTt =
[
(fTt − θ̃)(µ̃− µ) + µ(θ − θ̃)e−µ̃(T−t)

]
dt (3.1.6)

+ σe−µ̃(T−t)
√

(fTt − θ̃)eµ̃(T−t) + θ̃dBt.

Notice that the same drift appears in both (3.1.5) and (3.1.6). Alternatively,

we can express the drift in terms of the spot price as

e−µ̃(T−t)(µ(θ − St)− µ̃(θ̃ − St)).
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This involves the difference between the mean-reverting drifts of the spot price

under the historical measure P and the risk-neutral measure Q. Therefore, the

drift of the futures price SDE is positive when the drift of the spot price under

P is greater than that under Q, i.e.

µ(θ − St) > µ̃(θ̃ − St),

and vice versa.

Now, consider an investor with a long position in a single futures con-

tract, she wishes to close out the position and is interested in determining the

best time to short. We consider the delayed liquidation premium, which was

introduced in Leung and Shirai [2015] for equity options. This premium ex-

presses the benefit of waiting to liquidate as compared to closing the position

immediately. Precisely, the delayed liquidation premium is defined as

L(t, s) := sup
τ∈Tt,T

Et,s
{
e−r(τ−t)(f(τ, Sτ ;T )− c)

}
− (f(t, s;T )− c), (3.1.7)

where Tt,T is the set of all stopping times, with respect to the filtration gener-

ated by S, and c is the transaction cost. As we can see in (3.1.7), the optimal

stopping time for L(t, s), denoted by τ ∗, maximizes the expected discounted

value from liquidating the futures.

Proposition 3.1.3. Let t ∈ [0, T ] be the current time, and define the function

G(u, s) := e−µ̃(u−t)(µ(θ − s) + (r − µ̃)(θ̃ − s)) + r(c− θ̃).

Under the OU spot model, if G(u, s) ≥ 0, ∀(u, s) ∈ [t, T ] × R, then it is

optimal to hold the futures contract till expiry, namely, τ ∗ = T in (3.1.7). If

G(u, s) < 0, ∀(u, s) ∈ [t, T ] × R, then it is optimal to liquidate immediately,

namely, τ ∗ = t. The same holds under the CIR model with G(u, s) defined over

[t, T ]× R+.
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Proof. Applying Ito’s formula to the process of e−rt(fTt − c) and taking expec-

tation, we can express (3.1.7) as

L(t, s) = sup
τ∈Tt,T

Et,s
{∫ τ

t

e−r(u−t)
[
e−µ̃(u−t)(µ(θ − Su) (3.1.8)

+ (r − µ̃)(θ̃ − Su)) + r(c− θ̃)
]
du
}
.

Therefore, if G(u, s) (the integrand in (3.1.8)) is positive, ∀(u, s) ∈ [t, T ]× R,

then the delayed liquidation premium can be maximized by choosing τ ∗ = T,

which is the largest stopping time. Conversely, if G < 0 ∀(u, s) ∈ [t, T ] × R,

then it is optimal to take τ ∗ = t in (3.1.8). Note that if G = 0 ∀(u, s) ∈
[t, T ] × R, then the delayed liquidation premium is zero, and the investor is

indifferent toward when to liqudiate.

3.1.2 XOU Spot Model

Under the exponential OU (XOU) model, the spot price follows the SDE:

dSt = µ(θ − ln(St))Stdt+ σStdBt, (3.1.9)

with positive parameters (µ, θ, σ), and standard Brownian motion B under

the historical measure P. For pricing futures, we assume that the risk-neutral

dynamics of S satisfies

dSt = µ̃(θ̃ − ln(St))Stdt+ σStdB
Q
t ,

where µ̃, θ̃ > 0, and BQ is a standard Brownian motion under the risk-neutral

measure Q.

For a futures contract written on S with maturity T , its price at time t is

given by

fTt = exp

(
e−µ̃(T−t) ln(St) + (1− e−µ̃(T−t))(θ̃ − σ2

2µ̃
)

+
σ2

4µ̃
(1− e−2µ̃(T−t))

)
. (3.1.10)
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Consequently, the dynamics of the futures price under the historical measure

P is given as

dfTt =

[(
ln(fTt ) + (e−µ̃(T−t) − 1)(θ̃ − σ2

2µ̃
) +

σ2

4µ̃
(e−2µ̃(T−t) − 1)

)
(µ̃− µ)

+ e−µ̃(T−t)(µθ − µ̃θ̃)
]
fTt dt+ σe−µ̃(T−t)fTt dBt. (3.1.11)

By rearranging the first term in (3.1.11), the drift of the futures price SDE is

positive iff

fTt > exp

[
e−µ̃(T−t)(µ̃θ̃ − µθ)

µ̃− µ − (e−µ̃(T−t) − 1)(θ̃ − σ2

2µ̃
)− σ2

4µ̃
(e−2µ̃(T−t) − 1)

]
,

or equivalently in terms of the spot price,

St > exp

(
µ̃θ̃ − µθ
µ̃− µ

)
. (3.1.12)

In particular, if θ̃ = θ, condition (3.1.12) reduces to logSt > θ. Intuitively,

since the futures price must converge to the spot price at maturity, the futures

price tends to rise to approach the spot price when the spot price is high, as

observed in this condition.

We now consider the delayed liquidation premium defined in (3.1.7) but

under the XOU spot model. Applying Ito’s formula, we express the optimal

liquidation premium as

L(t, s) = sup
τ∈Tt,T

Et,s
{∫ τ

t

e−r(u−t)G̃(u, Su)du

}
, (3.1.13)

where

G̃(u, s) :=
{
r +

[
µ(θ − ln(s))− µ̃(θ̃ − ln(s))

]
e−µ̃(u−t)

}
× exp

(
e−µ̃(u−t) ln(s) + (1− e−µ̃(u−t))(θ̃ − σ2

2µ̃
) +

σ2

4µ̃
(1− e−2µ̃(u−t))

)
− rc.

By inspecting the premium definition, we obtain the condition under which

immediate liquidation or waiting till maturity is optimal. The proof is identical

to that of Proposition 3.1.3, so we omit it.
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Proposition 3.1.4. Let t ∈ [0, T ] be the current time. Under the XOU spot

model, if G̃(u, s) ≥ 0 ∀(u, s) ∈ [t, T ]×R+, then holding till maturity (τ ∗ = T )

is optimal for (3.1.13). If G̃(u, s) < 0, ∀(u, s) ∈ [t, T ] × R+, then immediate

liquidation (τ ∗ = t) is optimal for (3.1.13).

Next, we summarize the term structure of futures under the XOU spot

model.

Proposition 3.1.5. Under the XOU spot model, the futures curve is

(i) downward-sloping and convex if

lnS0 > θ̃ − σ2

2µ̃
(1− e−µ̃T ) +

(
e2µ̃T

4
+
σ2

2µ̃

) 1
2

− eµ̃T

2
,

(ii) downward-sloping and concave if

θ̃ − σ2

2µ̃
(1− e−µ̃T ) < lnS0 < θ̃ − σ2

2µ̃
(1− e−µ̃T ) +

(
e2µ̃T

4
+
σ2

2µ̃

) 1
2

− eµ̃T

2
,

(iii) upward-sloping and concave if

θ̃ − σ2

2µ̃
(1− e−µ̃T )−

(
e2µ̃T

4
+
σ2

2µ̃

) 1
2

− eµ̃T

2
< lnS0 < θ̃ − σ2

2µ̃
(1− e−µ̃T ),

and

(iv) upward-sloping and convex if

lnS0 < θ̃ − σ2

2µ̃
(1− e−µ̃T )−

(
e2µ̃T

4
+
σ2

2µ̃

) 1
2

− eµ̃T

2
.

Proof. Direct differentiation of fT0 yields that

∂fT0
∂T

=

[
µ̃(θ̃ − σ2

2µ̃
− lnS0)e−µ̃T +

σ2

2
e−2µ̃T

]
fT0 ,
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and

∂2fT0
∂T 2

=

[
µ̃2e−2µ̃T (θ̃ − σ2

2µ̃
− lnS0)2 + (µ̃σ2e−3µ̃T − µ̃2e−µ̃T )(θ̃ − σ2

2µ̃
− lnS0)

+
σ4

4
e−4µ̃T − σ2µ̃e−2µ̃T

]
fT0 .

The results are obtained by analyzing the signs of the first and second order

derivatives.
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Figure 3.1: (Left) VIX futures historical prices on Nov 20, 2008 with the current

VIX value at 80.86. The days to expiration range from 26 to 243 days (Dec–Jul

contracts). Calibrated parameters: µ̃ = 4.59, θ̃ = 40.36 under the CIR/OU model,

or µ̃ = 3.25, θ̃ = 3.65, σ = 0.15 under the XOU model. (Right) VIX futures historical

prices on Jul 22, 2015 with the current VIX value at 12.12. The days to expiration

ranges from 27 days to 237 days (Aug–Mar contracts). Calibrated parameters:

µ̃ = 4.55, θ̃ = 18.16 under the CIR/OU model, or µ̃ = 4.08, θ̃ = 3.06, σ = 1.63 under

the XOU model.

Figure 3.1 displays two characteristically different term structures observed

in the VIX futures market. These futures, written on the CBOE Volatility

Index (VIX) are traded on the CBOE Futures Exchange. As the VIX measures

the 1-month implied volatility calculated from the prices of S&P 500 options,

VIX futures provide exposure to the market’s volatility. We plot the VIX

futures prices during the recent financial crisis on November 20, 2008 (left),

and on a post-crisis date, July 22, 2015 (right), along with the calibrated

futures curves under the OU/CIR model and XOU model. In the calibration,

the model parameter values are chosen to minimize the sum of squared errors

between the model and observed futures prices.

The OU/CIR/XOU model generates a decreasing convex curve for Novem-

ber 20, 2008 (left), and an increasing concave curve for July 22, 2015 (right),
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and they all fit the observed futures prices very well. The former term struc-

ture starts with a very high spot price of 80.86 with a calibrated risk-neutral

long-run mean θ̃ = 40.36 under the OU/CIR model, suggesting that the mar-

ket’s expectation of falling market volatility. In contrast, we infer from the

term structure on July 25, 2015 that the market expects the VIX to raise from

the current spot value of 12.12 to be closer to θ̃ = 18.16.

3.2 Roll Yield

By design, the value of a futures contract converges to the spot price as time

approaches maturity. If the futures market is in backwardation, the futures

price increases to reach the spot price at expiry. In contrast, when the market

is in contango, the futures price tends to decrease to the spot price. For an

investor with a long futures position, the return is positive in a backwardation

market, and negative in a contango market. An investor can long the front-

month contract, then short it at or before expiry, and simultaneously go long

the next-month contract. This rolling strategy that involves repeatedly rolling

an expiring contract into a new one is commonly adopted during backwarda-

tion, while its opposite is often used in a contango market. Backwardation

and contango phenomena are widely observed in the energy commodities and

volatility futures markets.

More generally, both the futures and spot prices vary over time. If the

spot price increases/decreases, the futures price will also end up higher/lower.

This leads us to consider the difference between the futures and spot returns,

defined as the change in values without dividing by the initial value.1 Let

0 ≤ t1 < t2 ≤ T . We denote the roll yield over the period [t1, t2] associated

1See Deconstructing Futures Returns: The Role of Roll Yield, Campbell White Paper

Series, February 2014.
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with a single futures contract with maturity T by

R(t1, t2, T ) := (fTt2 − fTt1)− (St2 − St1).

In other words, roll yield here is the change in the futures price that is not

accounted for by the change in spot price. It represents the net benefits and/or

costs of owning futures rather than the underlying asset itself.

This notion of roll yield is the same as that in Moskowitz et al. [2012] where

the relationship between roll yield and futures returns is studied. Gorton et al.

[2013] treat roll yield as the same as futures basis, which means a negative roll

yield signifies a market in contango and a positive roll yield is equivalent to

backwardation. In our set-up, if one always hold a futures contract to maturity,

then roll yield is the same as futures basis. Therefore, the definition of roll

yield in Gorton et al. [2013] is a special case of ours. In particular, if t2 = T ,

then the roll yield reduces to the price difference (St1 − fTt1). Furthermore,

observe that if St2 = St1 then roll yield becomes merely the change in futures

price.

A closely related concept is the S&P-GSCI roll yield. S&P-GSCI carries

out rolling of the underlying futures contracts once each month, from the fifth

to the ninth business day. On each day, 20% of the current portfolio is rolled

over, in a process commonly known as the Goldman roll. The S&P-GSCI

roll yield for each commodity is defined as the difference between the average

purchasing price of the new futures contracts and the average selling price of

the old futures contracts. In essence, it is an indicator of the sign of the slope

of the futures term structure. In comparison to the S&P-GSCI index, our

definition accounts for the changes of spot price over time.

Next, we examine the cumulative roll yield across maturities. Denote by

T1 < T2 < T3 < . . . the maturities of futures contracts. We roll over at every

Ti by replacing the contract expiring at Ti with a new contract that expires at

Ti+1. Let i(t) := min{i : Ti−1 < t ≤ Ti}, and i(0) = 1. Then the roll yield up
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to time t > T1 is

R(0, t) = (f
Ti(t)
t − fTi(t)Ti(t)−1

) +

i(t)−1∑
j=2

(STj − f
Tj
Tj−1

) + (ST1 − fT10 )− (St − S0)

= (f
Ti(t)
t − St)− (fT10 − S0)︸ ︷︷ ︸

Basis Return

+

i(t)−1∑
j=1

(STj − f
Tj+1

Tj
)︸ ︷︷ ︸

Cumulative Roll Adjustment

. (3.2.1)

The cumulative roll adjustment is related to the term structure of futures

contracts. If Ti−Ti−1 is constant, and the term structure only moves parallel,

then the cumulative roll adjustment is simply the number of roll-over times a

constant (difference between spot and near-month futures contract).

3.2.1 OU and CIR Spot Models

Suppose the spot price follows the OU or CIR model described in Section 3.1.1.

Inspecting (3.2.1), we can write down the SDE for the roll yield under the OU

model:

dR(0, t) = df
Ti(t)
t − dSt

=
[
e−µ̃(Ti(t)−t)

(
µ(θ − St)− µ̃(θ̃ − St)

)
− µ(θ − St)

]
dt

+ σ
(
e−µ̃(Ti(t)−t) − 1

)
dBt. (3.2.2)

The roll yield SDE under the CIR model has the same drift as (3.2.2). Fur-

thermore, the drift is positive iff

St >
e−µ̃(Ti(t)−t)(µ̃θ̃ − µθ) + µθ

e−µ̃(Ti(t)−t)(µ̃− µ) + µ
.

In particular, if θ = θ̃, then the drift is positive iff St > θ. When t = Ti(t), the

drift is µ̃(St − θ̃) and is positive iff St > θ̃. Furthermore, the drift term can

also be expressed as

µ̃
(
f
Ti(t)
t − θ̃

)
−
(
1− e−µ̃(Ti(t)−t)

)
µ(θ − St).
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On the other hand, we observe that

dR(0, t)dSt = σ2
(
e−µ̃(Ti(t)−t) − 1

)
dt,

under the OU case and

dR(0, t)dSt = σ2
(
e−µ̃(Ti(t)−t) − 1

)
Stdt,

under the CIR case. In other words, the instantaneous covariations betweeen

roll yield and spot price under both OU and CIR models are negative for

t < Ti(t) regardless of the spot price level.

Consider a longer horizon with rolling at multiple maturities, the expected

roll yield is

E{R(0, t)} = E{fTi(t)t − St} − (fT10 − S0) +

i(t)−1∑
j=1

E{STj − f
Tj+1

Tj
}

= ((S0 − θ)e−µt + θ − θ̃)(e−µ̃(Ti(t)−t) − 1)− (S0 − θ̃)(e−µ̃T1 − 1)

+

i(t)−1∑
j=1

((S0 − θ)e−µTj + θ − θ̃)(1− e−µ̃(Tj+1−Tj)).

In summary, the expected roll yield depends not only on the risk-neutral

parameters µ̃ and θ̃, but also their historical counterparts. It vanishes when

S0 = θ = θ̃. This is intuitive because if the current spot price is currently at

the long-run mean, and the risk-neutral and historical measures coincide, then

the spot and futures prices have little tendency to deviate from the long-run

mean. Also, notice that neither the futures price nor the roll yield depends

on the volatility parameter σ. This is true under the OU/CIR model, but not

the exponential OU model, as we discuss next.

3.2.2 XOU Spot Model

We now turn to the exponential OU spot price model discussed in Section

3.1.2. Recalling the futures price in (3.1.10), the expected roll yield is given
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by

E{R(0, t)} = Y1(t) + Y2(t)− (fT10 − S0), (3.2.3)

where

Y1(t) = E{fTi(t)t − St}

= exp

(
e−µ̃(Ti(t)−t)−µt ln(S0) +

(
θ − σ2

2µ

)
(1− e−µt)e−µ̃(Ti(t)−t)

+
σ2

4µ
e−2µ̃(Ti(t)−t)(1− e−2µt) + (1− e−µ̃(Ti(t)−t))(θ̃ − σ2

2µ̃
)

+
σ2

4µ̃
(1− e−2µ̃(Ti(t)−t))

)
− exp

(
e−µt ln(S0) + (1− e−µt)(θ − σ2

2µ
) +

σ2

4µ
(1− e−µt)

)
,

and

Y2(t) =

i(t)−1∑
j=1

E{STj − f
Tj+1

Tj
}

=

i(t)−1∑
j=1

(
exp

(
e−µTj ln(S0) + (1− e−µTj)(θ − σ2

2µ
) +

σ2

4µ
(1− e−µTj)

)
− exp

(
e−µ̃(Tj+1−Tj)−µTj ln(S0) +

(
θ − σ2

2µ

)
(1− e−µTj)e−µ̃(Tj+1−Tj)

+
σ2

4µ
e−2µ̃(Tj+1−Tj)(1− e−2µTj)

+ (1− e−µ̃(Tj+1−Tj))(θ̃ − σ2

2µ̃
) +

σ2

4µ̃
(1− e−2µ̃(Tj+1−Tj))

))
.

The explicit formula (3.2.3) for the expected roll yield reveals the non-

trivial dependence on the volatility parameter σ, as well as the risk-neutral

parameters (µ̃, θ̃) and historical parameters (µ, θ). It is useful for instantly

predicting the roll yield after calibrating the risk-neutral parameters from the

term structure of the futures prices, and estimating the historical parameters

from past spot prices.
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Referring to (3.1.9) and (3.1.11), the historical dynamics of the roll yield

under an XOU spot model is given by

dR(0, t) = h(t, s)dt+ σ
(
e−µ̃(Ti(t)−t)f

Ti(t)
t − St

)
dBt,

where

h(t, s) =
(

ln s(µ̃− µ) + (µθ − µ̃θ̃)
)

exp

(
e−µ̃(Ti(t)−t) ln(s)

+ (1− e−µ̃(Ti(t)−t))(θ̃ − σ2

2µ̃
) +

σ2

4µ̃
(1− e−2µ̃(Ti(t)−t))

)
e−µ̃(Ti(t)−t)

− µ(θ − ln(s))s,

is the drift expressed in terms of the spot price St. This reduces to

h(Ti(t), s) = s ln(s)(µ̃− µ+ µθ)− µ̃θ̃s, if t = Ti(t).

Unlike the OU/CIR case, under an XOU spot model there is no explicit solu-

tion for the critical level of the spot price at which the drift changes sign.

As in the OU/CIR spot model, it is of interest to compute

dR(0, t)dSt = σ2
(
e−µ̃(Ti(t)−t)f

Ti(t)
t − St

)
Stdt,

from which we see that the covariation between roll yield and spot price can be

either positive or negative. In particular when the futures price is significantly

higher than the spot price, i.e. when the market is in contango, the correlation

tends to be positive.

3.3 Optimal Timing to Trade Futures

In Section 3.1, we have discussed the timing to liquidate a long futures position,

and the concept of rolling discussed in Section 3.2 corresponds to holding the

futures up to expiry. In this section, we further explore the timing options

embedded in futures, and develop the optimal trading strategies.
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3.3.1 Optimal Double Stopping Approach

Let us consider the scenario in which an investor has a long position in a

futures contract with expiration date T . With a long position in the futures,

the investor can hold it till maturity, but can also close the position early by

taking an opposite position at the prevailing market price. At maturity, the

two opposite positions cancel each other. This motivates us to investigate the

best time to close.

If the investor selects to close the long position at time τ ≤ T , then she

will receive the market value of the futures on the expiry date, denoted by

f(τ, Sτ ;T ), minus the transaction cost c ≥ 0. To maximize the expected

discounted value, evaluated under the investor’s historical probability measure

P with a constant subjective discount rate r > 0, the investor solves the

optimal stopping problem

V(t, s) = sup
τ∈Tt,T

Et,s
{
e−r(τ−t)(f(τ, Sτ ;T )− c)

}
,

where Tt,T is the set of all stopping times, with respect to the filtration gen-

erated by S, taking values between t and T̂ , where T̂ ∈ (0, T ] is the trading

deadline, which can equal but not exceed the futures’ maturity. Throughout

this chapter, we continue to use the shorthand notation Et,s{·} ≡ E{·|St = s}
to indicate the expectation taken under the historical probability measure P.

The value function V(t, s) represents the expected liquidation value asso-

ciated with the long futures position. Prior to taking the long position in

futures, the investor, with zero position, can select the optimal timing to start

the trade, or not to enter at all. This leads us to analyze the timing option

inherent in the trading problem. Precisely, at time t ≤ T , the investor faces

the optimal entry timing problem

J (t, s) = sup
ν∈Tt,T

Et,s
{
e−r(ν−t)(V(ν, Sν)− (f(ν, Sν ;T ) + ĉ))+

}
,
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where ĉ ≥ 0 is the transaction cost, which may differ from c. In other words,

the investor seeks to maximize the expected difference between the value func-

tion V(ν, Sν) associated with the long position and the prevailing futures price

f(ν, Sν ;T ). The value function J (t, s) represents the maximum expected value

of the trading opportunity embedded in the futures. We refer this “long to

open, short to close” strategy as the long-short strategy.

Alternatively, an investor may well choose to short a futures contract with

the speculation that the futures price will fall, and then close it out later by

establishing a long position.2 Given an investor who has a unit short position

in the futures contract, the objective is to minimize the expected discounted

cost to close out this position at/before maturity. The optimal timing strategy

is determined from

U(t, s) = inf
τ∈Tt,T

Et,s
{
e−r(τ−t)(f(τ, Sτ ;T ) + ĉ)

}
.

If the investor begins with a zero position, then she can decide when to enter

the market by solving

K(t, s) = sup
ν∈Tt,T

Et,s
{
e−r(ν−t)((f(ν, Sν ;T )− c)− U(ν, Sν))

+
}
.

We call this “short to open, long to close” strategy as the short-long strategy.

When an investor contemplates entering the market, she can either long

or short first. Therefore, on top of the timing option, the investor has an

additional choice between the long-short and short-long strategies. Hence, the

investor solves the market entry timing problem:

P(t, s) = sup
ς∈Tt,T

Et,s
{
e−r(ς−t)max{A(ς, Sς),B(ς, Sς)}

}
, (3.3.1)

2By taking a short futures position, the investor is required to sell the underlying spot

at maturity at a pre-specified price. In contrast to the short sale of a stock, a short futures

does not involve share borrowing or re-purchasing.
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with two alternative rewards upon entry defined by

A(ς, Sς) := (V(ς, Sς)− (f(ς, Sς ;T ) + ĉ))+ (long-short),

B(ς, Sς) := ((f(ς, Sς ;T )− c)− U(ς, Sς))
+ (short-long).

3.3.2 Variational Inequalities & Optimal Trading Strate-

gies

In order to solve for the optimal trading strategies, we study the variational

inequalities corresponding to the value functions J , V , U , K and P . To this

end, we first define the operators:

L(1){·} := −r ·+∂·
∂t

+ µ̃(θ̃ − s) ∂·
∂s

+
σ2

2

∂2·
∂s2

, (3.3.2)

L(2){·} := −r ·+∂·
∂t

+ µ̃(θ̃ − s) ∂·
∂s

+
σ2s

2

∂2·
∂s2

,

L(3){·} := −r ·+∂·
∂t

+ µ̃(θ̃ − ln s)
∂·
∂s

+
σ2s2

2

∂2·
∂s2

, (3.3.3)

corresponding to, respectively, the OU, CIR, and XOU models.

The optimal exit and entry problems J and V associated with the long-

short strategy are solved from the following pair of variational inequalities:

max
{
L(i)V(t, s) , (f(t, s;T )− c)− V(t, s)

}
= 0, (3.3.4)

max
{
L(i)J (t, s) , (V(t, s)− (f(t, s;T ) + ĉ))+ − J (t, s)

}
= 0, (3.3.5)

for (t, s) ∈ [0, T ] × R, with i ∈ {1, 2, 3} representing the OU, CIR, or XOU

model respectively.3 Similarly, the reverse short-long strategy can be deter-

mined by numerically solving the variational inequalities satisfied by U and

3The spot price is positive, thus s ∈ R+, under the CIR and XOU models.
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K:

min
{
L(i)U(t, s) , (f(t, s;T ) + ĉ)− U(t, s)

}
= 0, (3.3.6)

max
{
L(i)K(t, s) , ((f(t, s;T )− c)− U(t, s))+ −K(t, s)

}
= 0. (3.3.7)

As V , J , U , and K are numerically solved, they become the input to the final

problem represented by the value function P . To determine the optimal timing

to enter the futures market, we solve the variational inequality

max
{
L(i)P(t, s) , max{A(t, s),B(t, s)} − P(t, s)

}
= 0. (3.3.8)

The optimal timing strategies are described by a series of boundaries rep-

resenting the time-varying critical spot price at which the investor should

establish a long/short futures position. In the “long to open, short to close”

trading problem, where the investor pre-commits to taking a long position

first, the market entry timing is described by the “J ” boundary in Figure

3.2(a). The subsequent timing to exit the market is represented by the “V”

boundary in Figure 3.2(a). As we can see, the investor will long the futures

when the spot price is low, and short to close the position when the spot price

is high, confirming the buy-low-sell-high intuition.

If the investor adopts the short-long strategy, by which she will first short

a futures and subsequently close out with a long position, then the optimal

market entry and exit timing strategies are represented, respectively, by the

“K” and “U” boundaries in Figure 3.2(c). The investor will enter the market

by shorting a futures when the spot price is sufficiently high (at the “K”

boundary), and close it out when the spot price is low. Thus, the boundaries

reflect a sell-high-buy-low strategy.

When there are no transaction costs (see Figure 3.2(b) and 3.2(d)), the

waiting region shrinks for both strategies. Practically, this means that the

investor tends to enter and exit the market earlier, resulting in more rapid
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trades. This is intuitive as transaction costs discourage trades, especially near

expiry.

In the market entry problem represented by P(t, s) in (3.3.1), the investor

decides at what spot price to open a position. The corresponding timing strat-

egy is illustrated by two boundaries in Figure 3.2(e). The boundary labeled

as “P = A” (resp. “P = B”) indicates the critical spot price (as a function of

time) at which the investor enters the market by taking a long (resp. short)

futures position. The area above the “P = B” boundary is the “short-first”

region, whereas the area below the “P = A” boundary is the “long-first” re-

gion. The area between the two boundaries is the region where the investor

should wait to enter. The ordering of the regions is intuitive – the investor

should long the futures when the spot price is currently low and short it when

the spot price is high. As time approaches maturity, the value of entering the

market diminishes. The investor will not start a long/short position unless the

spot is very low/high close to maturity. Therefore, the waiting region expands

significantly near expiry.
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Figure 3.2: Optimal long-short boundaries with/without transaction costs for fu-

tures trading under the CIR model in (a) and (b) respectively, optimal short-long

boundaries with/without transaction costs in (c) and (d) respectively, and optimal

boundaries with/without transaction costs in (e) and (f) respectively. Parameters:

T̂ = 22
252 , T = 66

252 , r = 0.05, σ = 5.33, θ = 17.58, θ̃ = 18.16, µ = 8.57, µ̃ = 4.55, c =

ĉ = 0.005.
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Figure 3.3: Optimal boundaries with and without transaction costs for futures

trading under the CIR model in (a) and (b) respectively. Parameters: T̂ = 22
252 ,

T = 66
252 , r = 0.05, σ = 5.33, θ = 17.58, θ̃ = 18.16, µ = 8.57, µ̃ = 4.55, c = ĉ = 0.005.
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Figure 3.4: Optimal boundaries with transaction costs for futures trading. (a) OU

spot model with σ = 18.7, θ = 17.58, θ̃ = 18.16, µ = 8.57, µ̃ = 4.55. (b) XOU spot

model with σ = 1.63, θ = 3.03, θ̃ = 3.06, µ = 8.57, µ̃ = 4.08. Common parameters:

T̂ = 22
252 , T = 66

252 , c = ĉ = 0.005.
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Figure 3.5: The value functions P, A, and B plotted against the spot price at time

0. The parameters are the same as those in Figure 3.4.

The investor’s exit strategy depends on the initial entry position. If the

investor enters by taking a long position (at the “P = A” boundary), then the

optimal exit timing to close her position is represented by the upper boundary

with label “V” in Figure 3.2(a). If the investor’s initial position is short, then

the optimal time to close by going long the futures is described by the lower

boundary with label “U” in Figure 3.2(c).

Since the value function P dominates both J and K due to the additional

flexibility, it is not surprising that the “P = A” boundary is lower than the

“J ” boundary, and the “P = B” boundary is higher than the “K” boundary,

as seen in Figure 3.3(a). This means that the embedded timing option to

choose between the two strategies (“long to open, short to close” or “short to

open, long to close”) induces the investor to delay market entry to wait for

better prices. This phenomenon is also observed for both OU and XOU spot

models in Figure 3.4. Figure 3.5 shows that the value function P dominates

B and A for all values of spot price. We can also see the regions where the

“P = A” (when the spot price is low) and “P = B” (when the spot price is
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high).

We see that Figure 3.4(b) is similar to Figure 3.3(a), in both CIR and XOU

cases, the difference between “U” boundary and the “J ” boundary is much

larger than the difference between the “V” boundary and the “K” boundary.

This means that the decision to choose either long-short or short-long has

a larger impact on the optimal price level to long futures compared to the

optimal level to short. On the other hand, in Figure 3.4(a), we observe a more

symmetric relationship between the long-short and short-long optimal exercise

boundaries. In particular, choosing one strategy or the other does not affect

the optimal price levels as much as CIR and XOU cases.

3.4 Conclusion

We have studied an optimal double stopping approach for trading futures

under a number of mean-reverting spot models. Our model yields trading

decisions that are consistent with the spot price dynamics and futures term

structure. Accounting for the timing options as well as the option to choose

between a long or short position, we find that it is optimal to delay market

entry, as compared to the case of committing to either go long or short a priori.

A natural direction for future research is to investigate the trading strate-

gies under a multi-factor or time-varying mean-reverting spot price model. To

this end, we include here some references that discuss the pricing aspect of

futures under such models, for example, Detemple and Osakwe [2000]; Lu and

Zhu [2009]; Zhu and Lian [2012]; Menćıa and Sentana [2013] for VIX futures,

Schwartz [1997]; Ribeiro and Hodges [2004] for commodities, and Monoyios

and Sarno [2002] for equity index futures. It is also of practical interest to

develop similar optimal multiple stopping approaches to trading commodi-

ties under mean-reverting spot models (Leung et al. [2015, 2014]), and credit
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derivatives trading (Leung and Liu [2012]).
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Chapter 4

Optimal Risk Averse Timing of

an Asset Sale

In this chapter, we incorporate risk preference into optimal stopping problems.

We consider a risk-averse investor who has an exponential, power, or log utility.

We analyze the optimal timing to sell an asset when prices are driven by a

GBM or XOU process – to account for, respectively, the trending and mean-

reverting price dynamics. This gives rise to a total of six different scenarios.

In all cases, we derive the optimal thresholds to liquidate the asset and the

certainty equivalents associated with the timing option to sell. We compare

these results across models and utilities, with emphasis on their dependence

on asset price, risk aversion, and quantity. We find that the timing option

may render the investor’s value function and certainty equivalent non-concave

in price. Numerical results are presented to illustrate the investor’s strategies

and the premium associated with optimally timing to sell.

In Section 4.1, the asset sale problems are formulated for different utilities

and price dynamics. In Section 4.2, we present the solutions of the problems

and discuss the optimal selling strategies. We analyze the certainty equivalents

in Section 4.3. All proofs are included in Section 4.4.
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4.1 Problem Overview

We consider a risk-averse asset holder (investor) with a subjective probability

measure P. For our optimal asset sale problems, we will study two models for

the risky asset price, namely, the geometric Brownian motion (GBM) model

and the exponential Ornstein-Uhlenbeck (XOU) model. First, the GBM price

process S satisfies

dSt = µSt dt+ σSt dBt,

with constant parameters µ ∈ R and σ > 0, where (Bt)t≥0 is a standard

Brownian motion under P. Under the second model, the XOU price process ξ

is defined by

ξt = eXt ,

dXt = κ(θ −Xt) dt+ η dBt, (4.1.1)

where the log-price X is an OU process with constant parameters κ, η > 0,

θ ∈ R.

The investor’s risk preference is modeled by three utility functions:

(1) Exponential utility

Ue(w) = 1− e−γw, for w ∈ R,

with the risk aversion parameter γ > 0;

(2) Log utility

Ul(w) = log(w), for w > 0;

(3) Power utility

Up(w) =
wp

p
, for w ≥ 0,

where p := 1−%, with the risk aversion parameter % ∈ [0, 1). In particular,

when p = 1, the power utility is linear, corresponding to zero risk aversion.
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Denote by F the filtration generated by the Brownian motion B, and T
the set of all F-stopping times. The investor seeks to maximize the expected

discounted utility from asset sale by selecting the optimal stopping time. De-

note by ν > 0 the quantity of the risky asset to be sold. For simplicity, we

limit our analysis to simultaneous liquidation of all ν units. The investor will

receive the utility value of Ui(νSτ ) or Ui(νξτ ), i ∈ {e, l, p}, under the GBM

and XOU model respectively, when all units are sold at time τ .

Therefore, the investor solves the optimal stopping problems under two

different price dynamics:

(GBM) Vi(s, ν) = sup
τ∈T

Es
{
e−rτUi(νSτ )

}
, (4.1.2)

(XOU) Ṽi(z, ν) = sup
τ∈T

Ez
{
e−rτUi(νξτ )

}
,

for i ∈ {e, l, p}, where r > 0 is the constant subjective discount rate. We have

used the shorthand notations: Es{·} ≡ E{·|S0 = s} and Ez{·} ≡ E{·|ξ0 = z}.
By the standard theory of optimal stopping (see e.g. Chapter 1 of Peskir

and Shiryaev [2006] and Chapter 10 of Øksendal [2003]), the optimal stopping

times are of the form

τ ∗i = inf{ t ≥ 0 : Vi(St, ν) = Ui(νSt) }, (4.1.3)

τ̃ ∗i = inf{ t ≥ 0 : Ṽi(ξt, ν) = Ui(νξt) }. (4.1.4)

In this chapter, we analytically derive the value functions and show they

satisfy their associated variational inequalities. Under the GBM model, for

any fixed ν, the value functions Vi(s) ≡ Vi(s, ν), for i ∈ {e, l, p}, satisfy the

variational inequalities

max
{

(LS − r)Vi(s), Ui(νs)− Vi(s)
}

= 0, ∀s ∈ R+, (4.1.5)

for i ∈ {e, l, p}, where LS is the infinitesimal generator of S defined by

LS =
σ2s2

2

d2

ds2
+ µs

d

ds
. (4.1.6)
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Likewise, under the XOU model the value functions Ṽi(z) ≡ Ṽi(z, ν), i ∈
{e, l, p}, solve the variational inequalities

max{(LX − r)Ṽi(ex) , Ui(νex)− Ṽi(ex)} = 0, ∀x ∈ R, (4.1.7)

for i ∈ {e, l, p}, where

LX =
η2

2

d2

dx2
+ κ(θ − x)

d

dx
, (4.1.8)

is the infinitesimal generator of the OU process X (see (4.1.1)). For optimal

stopping problems driven by an XOU process, we find it more convenient to

work with the log-price X.

To better understand the value of the risky asset under optimal liquidation,

we study the certainty equivalent associated with each utility maximization

problem. The certainty equivalent is defined as the guaranteed cash amount

that generates the same utility as the maximal expected utility from optimally

timing to sell the risky asset. Precisely, we define

(GBM) Ci(s, ν) = U−1
i

(
Vi(s, ν)

)
, (4.1.9)

(XOU) C̃i(z, ν) = U−1
i

(
Ṽi(z, ν)

)
, (4.1.10)

for i ∈ {e, l, p}, under the GBM and XOU models respectively. Certainty

equivalent gives us a common (cash) unit to compare the values of timing to

sell under different utilities, dynamics, and quantities.

Moreover, the certainty equivalent can shed light on the investor’s optimal

strategy. Indeed, applying (4.1.9) and (4.1.10) to (4.1.3) and (4.1.4) respec-

tively, we obtain an alternative expression for the optimal stopping time under

each model:

τ ∗i = inf{ t ≥ 0 : Ci(St, ν) = νSt },

τ̃ ∗i = inf{ t ≥ 0 : C̃i(ξt, ν) = νξt }.
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In other words, it is optimal for the investor to sell when the certainty equiva-

lent is equals to the total cash amount of νSt or νξt, under the GBM or XOU

model respectively, received from the sale.

4.2 Optimal Timing Strategies

In this section, we present the analytical results and discuss the value functions

and optimal selling strategies under the GBM and XOU models. The methods

of solution and detailed proofs are presented in Section 4.4.

4.2.1 The GBM Model

To prepare for our results for the GBM model, we first consider an increasing

general solution to the ODE:

LSf(s) = rf(s), s ∈ R+, (4.2.1)

with LS defined in (4.1.6). This solution is f(s) = sα with

α =

(
1

2
− µ

σ2

)
+

√(
µ

σ2
− 1

2

)2

+
2r

σ2
. (4.2.2)

By inspection, we see that 0 < α < 1 when r < µ, and α ≥ 1 when r ≥ µ.

Theorem 4.2.1. Consider the optimal asset sale problem (4.1.2) under the

GBM model with exponential utility.

(i) If r ≥ µ, then it is optimal to sell immediately, and the value function is

Ve(s, ν) = 1− e−γνs.

(ii) If r < µ, then the value function is given by

Ve(s, ν) =

(1− e−γνae)(ae)−αsα if s ∈ [0, ae),

1− e−γνs if s ∈ [ae,+∞),



CHAPTER 4. RISK AVERSE TIMING 80

where the optimal threshold ae ∈ (0,+∞) is uniquely determined by the

equation

α(eγνae − 1)− γνae = 0. (4.2.3)

The optimal time to sell is

τ ∗e = inf{ t ≥ 0 : St ≥ ae }.

Under the GBM model with exponential utility, the optimal selling strat-

egy can be either trivial or non-trivial. When the subjective discount rate r

equals or exceeds the drift µ of the GBM process, it is optimal to sell immedi-

ately. This is intuitive as the asset net discounting tends to lose value. On the

other hand, when r < µ, the investor should sell when the unit price exceeds

a finite threshold. At the optimal sale time τ ∗e , the investor receives the cash

amount νae from the sale of ν units of S. In other words, ae is the per-unit

price received upon sale, but according to (4.2.3) it varies depending on the

quantity ν and risk aversion parameter γ.

Theorem 4.2.2. Consider the optimal stopping problem (4.1.2) under the

GBM model with log utility. The value function is given by

Vl(s, ν) =


να

αe
sα if s ∈ [0, al),

log(νs) if s ∈ [al,+∞),

where al := ν−1 exp(α−1) is the unique optimal threshold. The optimal time to

sell is

τ ∗l = inf{t ≥ 0 : St ≥ al}.

With log utility, the optimal strategy is to sell as soon as the unit price of

the risky asset, S, enters the upper interval [al,+∞). Note that the optimal
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threshold al is inversely proportional to quantity, so the total cash amount

received upon sale, νal = exp(α−1), remains the same regardless of quantity. In

other words, the log-utility investor is not financially better off by holding more

units of S. Under exponential utility, the optimal selling price is implicitly

defined by (4.2.3) in Theorem 4.2.1 and must be evaluated numerically. In

contrast, the optimal threshold under log utility is fully explicit.

Turning to the value functions, a natural question is whether they preserve

the concavity of the utilities. Indeed, if the investor sells at a pre-determined

fixed time T , then the expected utility W (s) := Es
{
e−rTU(νST )

}
is concave in

s for any concave utility function U . From Theorem 4.2.1, we see that Ve(s, ν)

is concave in s for all s ∈ R+. On the other hand, Vl(s, ν) is concave in s when

α < 1, but it is neither convex nor concave in s when α ≥ 1. In other words, the

timing option to sell gives rise to the possibility of non-concave value function.

In Figure 4.1, we plot the value functions associated with the exponential and

log utilities when the investor is holding a single unit of the asset. The value

functions dominate the utility functions, and coincide smoothly at the optimal

selling thresholds. In Figure 4.1(b), the value function Vl(s, 1) under log utility

is shown to have two possible shapes. For µ = 0.01 < 0.02 = r, i.e. α < 1,

the value function Vl(s, 1) is convex when s is lower than al, and concave for

s ≥ al. In the other scenario, µ > r, i.e. α > 1, the value function Vl(s, 1) is

concave.
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Figure 4.1: Value functions smooth-paste the utility function under the GBM

model. (a) The value function Ve(s, 1) dominates the exponential utility Ue(s) (with

γ = 0.5 and µ = 0.05) and coincides for s ≥ ae = 2.5129. (b) The value functions

Vl(s, 1) (with µ = 0.05) and Vl(s, 1) (with µ = 0.01) dominate the log utility Ul(s)

and coincide for s ≥ al = 7.3891 and s ≥ al = 2.1832 respectively. Common

parameters: σ = 0.2, ν = 1, r = 2%.
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Figure 4.2: Optimal selling thresholds, ae (with γ = 0.2, 0.5, 1) and al, under the

GBM model vs quantity ν. Parameters: µ = 0.05, σ = 0.2, r = 2%.
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Figure 4.2 illustrates the effect of quantity ν on optimal selling thresholds

ae and al under exponential and log utilities respectively. The optimal strategy

under power utility is trivial and thus omitted from the figure. The optimal

threshold ae is decreasing in ν for each fixed risk aversion γ = 0.2, 0.5 and 1.

Moreover, for any fixed quantity, a higher γ lowers the optimal selling price.

The quantity ν effectively scales up the risk aversion to the value νγ instead

of γ. Increase in either of these parameters results in higher risk aversion,

inducing the investor to sell at a lower price. In comparison, the log-utility

optimal threshold al is explicit and inversely proportional to ν, as seen in the

figure.

We conclude this section with a discussion on the optimal liquidation strat-

egy under power utility. First, observe that for any p ∈ (0, 1], the power process

Spt is also a GBM satisfying

dSpt = µ̃Spt dt+ σ̃Spt dBt,

with new parameters

µ̃ = pµ+
1

2
p(p− 1)σ2 and σ̃ = pσ.

Then, the process (e−rtSpt )t≥0 is a submartingale (resp. supermartingale) if

µ̃ > r (resp. µ̃ ≤ r). As a result, the optimal timing to sell is trivial, as we

summarize next.

Theorem 4.2.3. Consider the optimal asset sale problem (4.1.2) under the

GBM model with power utility.

(i) If µ̃ ≤ r, then it is optimal to sell immediately, and the value function

Vp(s, ν) = Up(νs).

(ii) If µ̃ > r, then it is optimal to wait indefinitely, and the value function

Vp(s, ν) = +∞.
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4.2.2 The XOU Model

In this section, we discuss the optimal asset sale problems under the XOU

model. Recall from Chapter 2 that the classical solutions of the ODE

LXf(x) = rf(x), (4.2.4)

for x ∈ R, are

F (x) ≡ F (x;κ, θ, η, r) :=

∫ ∞
0

υ
r
κ
−1e

√
2κ
η2

(x−θ)υ−υ
2

2 dυ, (4.2.5)

G(x) ≡ G(x;κ, θ, η, r) :=

∫ ∞
0

υ
r
κ
−1e

√
2κ
η2

(θ−x)υ−υ
2

2 dυ. (4.2.6)

Alternatively, the functions F and G can be expressed as

F (x) = e
κ

2η2
(x−θ)2

D−r/κ

(√
2κ

η2
(θ − x)

)
,

and

G(x) = e
κ

2η2
(x−θ)2

D−r/κ

(√
2κ

η2
(x− θ)

)
,

where Dv(·) is the parabolic cylinder function or Weber function (see Erdélyi

et al. [1953]). The strictly positive and convex function F plays a central role

in the solution of the optimal asset sale problems under the XOU model.

Theorem 4.2.4. Under an XOU model with exponential utility, the optimal

asset sale problem admits the solution

Ṽe(z, ν) =

KF (log(z)) if z ∈ [0, ebe),

1− e−γνz if z ∈ [ebe ,+∞),

(4.2.7)

with the constant

K =
1− exp

(
−γνebe

)
F (be)

> 0.

The critical log-price level be ∈ (−∞,+∞) satisfies(
1− exp

(
−γνebe

))
F ′(be) = γνebe exp

(
−γνebe

)
F (be). (4.2.8)
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The optimal time to sell is

τ̃ ∗e = inf{t ≥ 0 : ξt ≥ ebe}.

According to Theorem 4.2.4, the investor should sell all ν units as soon as

the asset price ξ reaches ebe or above. The optimal price level ebe depends on

both the investor’s risk aversion and quantity, but it stays the same as long as

the product νγ remains unchanged.

Theorem 4.2.5. Under an XOU model with log utility, the optimal asset sale

problem admits the solution

Ṽl(z, ν) =

DF (log(z)) if z ∈ [0, ebl),

log(νz) if z ∈ [ebl ,+∞),

with the coefficient

D =
bl + log(ν)

F (bl)
> 0. (4.2.9)

The finite critical log-price level bl is uniquely determined from the equation

F (bl) = (bl + log(ν))F ′(bl). (4.2.10)

The optimal time to sell is

τ̃ ∗l = inf{t ≥ 0 : ξt ≥ ebl}.

In Figure 4.3(d), we see that the optimal unit selling price ebl is decreasing

in ν but when multiplied by the quantity ν, the total cash amount νebl received

from the sale increases.

For the case of power utility, we observe that ξ̃ := ξp is again an XOU

process, satisfying

ξ̃t = eX̃t , where dX̃t = κ(θ̃ − X̃t) dt+ η̃ dBt, t ≥ 0,
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with the new parameters η̃ := pη > 0, and θ̃ := pθ ∈ R. In particular, both

the original long-run mean θ and volatility parameter η have been scaled by a

factor of p, while the speed of mean reversion remains unchanged. Therefore,

the value function admits the separable form:

Ṽp(z, ν) = sup
τ∈T

Ez
{
e−rτ

νpξpτ
p

}
= Up(ν) Ṽ (z̃, 1), (4.2.11)

where

Ṽ (z̃, 1) := sup
τ∈T

Ez̃
{
e−rτ ξ̃τ

}
. (4.2.12)

Hence, without loss of generality, the optimal timing to sell can be determined

from the optimal stopping problem in (4.2.12), and the corresponding value

function Ṽp can be recovered from (4.2.11).

Theorem 4.2.6. Under the XOU model with power utility, the solution to the

optimal asset sale problem is given by

Ṽp(z, ν) =

MF (p log(z)) if z ∈ [0, ebp),

νp

p
zp if z ∈ [ebp ,+∞),

where

M =
νpepbp

pF (pbp)
> 0.

The critical log-price threshold bp ∈ (−∞,+∞) satisfies the equation

F ′(pbp) = F (pbp), (4.2.13)

where F (x) ≡ F (x;κ, θ̃, η̃, r). The optimal asset sale timing is

τ̃ ∗p = inf{t ≥ 0 : ξt ≥ ebp}.

The investor should sell all ν units the first time the asset price reaches

the level ebp . According to (4.2.13), the optimal price level is independent of

quantity ν, as we can see in Figure 4.3(d).
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Under the XOU model, the value functions Ṽi(z, ν), i ∈ {e, l, p} are not

necessarily concave in z due to the convex nature of F and the timing option

to sell. Let’s inspect the value functions in Figure 4.3. In each of these

three cases, the value function is initially convex before smooth-pasting on the

concave utility.
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Figure 4.3: Under the XOU model, (a) the value function Ṽe(z, 1) dominates the

exponential utility Ue(z) (with γ = 0.5) and coincides for z ≥ ebe = e1.1188 = 3.0612.

(b) The value function Ṽp(z, 1) dominates the power utility Up(z) (with p = 0.3) and

coincides for z ≥ ebp = e0.3519 = 1.3715. (c) The value function Ṽl(z, 1) dominates

the log utility Ul(z) and coincides for z ≥ ebl = e1.2227 = 3.3963. (d) Optimal selling

thresholds vs quantity ν. γ = 0.5, p = 0.3. Common Parameters: κ = 0.6, θ = 1, η =

0.2, r = 2%.
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In Table 4.1, we summarize the results from Sections 4.2.1 and 4.2.2 and

list the optimal thresholds for all the cases we have discussed. All thresholds,

except al, are implicitly determined by the equations referenced in the table.

The asset price model plays a crucial role in the structure of the optimal strat-

egy. Under the GBM model with exponential utility, immediate liquidation

may be optimal in one scenario regardless of the current asset price. On the

contrary, with the same utility under the XOU model, immediate liquidation is

never optimal and the investor should wait till the asset price rises to level ebe .

With power utility, the GBM model implies a trivial optimal strategy, whereas

the XOU model results in a threshold-type strategy. Lastly, even though both

GBM and XOU price processes lead to non-trivial strategies for log utility, the

optimal threshold al is explicit while ebl must be computed numerically.

Exponential utility Log utility Power utility

GBM 0 / ae in (4.2.3) al := e1/α

ν 0 / +∞

XOU ebe in (4.2.8) ebl in (4.2.10) ebp in (4.2.13)

Table 4.1: Optimal thresholds for asset sale under different models and utili-

ties.

4.3 Certainty Equivalents

Having derived the value functions analytically, we now state as corollaries the

certainty equivalents Ci(s, ν) and C̃i(z, ν), i ∈ {e, l, p}, defined respectively

in (4.1.9) and (4.1.10) under the GBM and XOU models. Furthermore, to

quantify the value gained from waiting to sell the asset compared to immediate
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liquidation, we define the optimal liquidation premium under each model:

(GBM) L(s, ν) := Ci(s, ν)− νs,

(XOU) L(z, ν) := C̃i(z, ν)− νz,

for i ∈ {e, l, p}. We will examine the dependence of this premium on the asset

price and quantity.

Corollary 4.3.1. Under the GBM model, the certainty equivalents under dif-

ferent utilities are given as follows:

(1) Exponential utility:

Ce(s, ν) =

−
1
γ

log
(

1− 1−e−γνae
aeα

sα
)

if s ∈ [0, ae),

νs if s ∈ [ae,+∞).

(2) Log utility:

Cl(s, ν) =

exp
(
ναsα

αe

)
if s ∈ [0, al),

νs if s ∈ [al,+∞).

(3) Power utility:

Cp(s, ν) =

νs if µ̃ ≤ r,

+∞ if µ̃ > r.

With exponential and log utilities, the certainty equivalents dominate νs –

the value from immediate sale, and they coincide when the asset price exceeds

the corresponding optimal selling thresholds. With power utility, the investor

either sells immediately or waits indefinitely, corresponding to the certainty

equivalents of value νs and +∞, respectively.

The impact of ν on Ce is both direct in its certainty equivalent’s expression,

but also indirect in the derivation of ae. As a result, the relationship between
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Ce and ν is rather intricate. In comparison, the explicit formula for the opti-

mal threshold al under log utility facilitates our analysis on the behavior of the

certainty equivalent Cl. Fix any price s, Cl(s, ν) is convex in ν when r ≥ µ.

Consequently, the liquidation premium is maximized at ν = 0. However, when

r < µ, then Cl(s, ν) is concave on the price interval (0, log
(

1−α
sα

)
+ 1) and con-

vex on (log
(

1−α
sα

)
+ 1, exp(α−1)/s). This implies that there exists an optimal

quantity ν∗ ∈ (0, log
(

1−α
sα

)
+1) that maximizes the liquidation premium. This

is useful when the investor can also choose the initial position in S.

Next, we state the certainty equivalents under the XOU model.

Corollary 4.3.2. Under the XOU model, the certainty equivalents under dif-

ferent utilities are given as follows:

(1) Exponential utility:

C̃e(z, ν) =


− 1
γ

log

[
1− 1−exp(−γνebe)

F (be)
F (log(z))

]
if z ∈ [0, ebe),

νz if z ∈ [ebe ,+∞).

(2) Log utility:

C̃l(z, ν) =

exp
[
bl+log(ν)
F (bl)

F (log(z))
]

if z ∈ [0, ebl),

νz if z ∈ [ebl ,+∞).

(3) Power utility:

C̃p(z, ν) =


[

epbp

F (pbp)
F (p log(z))

]1/p

ν if z ∈ [0, ebp),

νz if z ∈ [ebp ,+∞).

For all three utilities, the certainty equivalents are equal to the immediate

sale value, νz, when the asset price z is in the exercise region, where all units
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are sold. In addition, we emphasize that both be and bl are dependent on

ν, which can be observed from (4.2.8) and (4.2.10). In contrast, the optimal

log-price threshold under power utility bp is independent of ν. Consequently,

if we consider any fixed z in the continuation region (0, ebp), then the certainty

equivalent C̃p(z, ν)−νz is linear and strictly increasing in ν. This is interesting

since under exponential and log utilities, increasing quantity has the effect of

making the investor more risk-averse. In other words, as long as quantity is

large enough, the investor will liquidate everything immediately even if the

current price appears unattractive.
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Figure 4.4: Certainty equivalent vs price. (a) Ce(s, 1) under the GBM model

(µ = 0.05, σ = 0.2). (b) Cl(s, 1) under the GBM model (µ = 0.05, σ = 0.2). (c)

C̃e(z, 1) under the XOU model (κ = 0.6, θ = 1, η = 0.2). (d) C̃p(z, 1) under the

XOU model (κ = 0.6, θ = 1, η = 0.2). Note that p := 1 − %, where % is the risk

aversion parameter. Common parameter: r = 2%.

Let us now examine the certainty equivalents’ dependence on the asset

price. Under the GBM model, we plot the certainty equivalents, Ce(s, 1) and

Cl(s, 1), against prices, respectively, in Figures 4.4(a) and 4.4(b), with a single

unit of asset held. The optimal selling strategy for power utility is trivial,

and thus, not presented. From Section 4.2.1, we know that for sufficiently
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large s, it is optimal to sell and thus the certainty equivalents will eventually

coincide with s and be linear. Notice that in both Figures 4.4(a) and 4.4(b),

the certainty equivalents are concave for small s and subsequently convex for

large s. In general, the certainty equivalents are neither concave nor convex

functions of asset price, especially since the value functions Vi and Ṽi, i ∈
{e, l, p} are not necessarily concave.

In Figure 4.4(a), we have also shown Ce(s, 1) for different values of risk

aversion level γ. As the investor becomes more risk-averse, it becomes optimal

to sell the asset earlier. This is reflected by the certainty equivalent’s conver-

gence to the linear price line s at a lower price. Moreover, a less risk-averse

certainty equivalent dominates a more risk-averse one at all prices. Similar

effects of risk aversion is also seen in Figure 4.4(c) for exponential utility and

Figure 4.4(d) for power utility under the XOU model.
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Figure 4.5: Liquidation premium L(z, ν) under the XOU model plotted against

quantity ν and price z. (a) Exponential utility with γ = 0.5. (b) Power utility with

p = 0.3. Common parameters: κ = 0.6, θ = 1, η = 0.2, r = 2%.

Figures 4.5(a) and 4.5(b), respectively, illustrate the liquidation premia for

exponential and power utilities under the XOU model. The liquidation pre-
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mium for power utility is linear in ν for any fixed value of z, but the exponential

utility liquidation premium is nonlinear. In general, the liquidation premium

vanishes when z is sufficiently high when the asset price is in the exercise re-

gion. As we can see from Figures 4.5(a) and 4.5(b) and Figures 4.4(a)-(d),

the optimal liquidation premium tends to be large and may increase when the

asset price is very low. This suggests that there is a high value of waiting

to sell the asset later if the current price is low. As the asset price rises, the

premium shrinks to zero. The investor finds no value in waiting any longer,

resulting in an immediate sale.

4.4 Methods of Solution and Proofs

In this section, we present the detailed proofs for our analytical results in

Section 4.2, from Theorems 4.2.1 - 4.2.2 for the GBM model to Theorems

4.2.4 - 4.2.6 for the XOU model. Our method of solution is to first construct

candidate solutions using the classical solutions to ODEs (4.2.1) and (4.2.4),

corresponding to the GBM and XOU models respectively, and then verify that

the candidate solutions indeed satisfy the associated variational inequalities

(4.1.5) and (4.1.7).

4.4.1 GBM Model

Proof of Theorem 4.2.1 (Exponential Utility). To prove that the value

functions in Theorem 4.2.1 satisfy the variational inequality in (4.1.5), we

consider the two cases, r ≥ µ and r < µ, separately.

When r ≥ µ, it is optimal to sell immediately. To see this, for any fixed ν

we verify that Ve(s, ν) = 1− e−γνs satisfies (4.1.5). Since Ve(s, ν) = Ue(νs) for
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all s ∈ R+, we only need to check that the inequality

(LS − r)(1− e−γνs) = e−γνs
(
µγνs− σ2γ2ν2s2

2
− reγνs + r

)
≤ 0, (4.4.1)

holds for all s ∈ R+. First, we observe that the sign of the LHS of (4.4.1)

depends solely on

g(s) := µγνs− σ2γ2ν2s2

2
− reγνs + r . (4.4.2)

The first and order second derivatives g are, respectively,

g′ = µγν − σ2γ2ν2s− rγνeγνs, and g′′ = −σ2γ2ν2 − rγ2ν2eγνs,

from which we observe that g is strictly concave on R+. Furthermore, g(0) = 0

and the fact lims→+∞ g(s) = −∞ imply that g has a global maximum. Since

g′+(0) = (µ − r)γν > 0 (resp. < 0) if µ > r (resp. µ < r), the maximum of

g is non-positive if r ≥ µ. As a result, g is non-positive for all s ∈ R+, which

yields inequality (4.4.1), as desired.

For an arbitrary ν > 0, we can view νγ together as the risk aversion

parameter for the exponential utility, and equivalently consider the asset sale

problem with ν = 1 and risk aversion νγ without loss of generality. When

r < µ, we consider a candidate solution Ve of the form Asα, where A > 0 is

a constant to be determined. Recall that α is less than 1 when r < µ, and

hence sα is an increasing concave function. We solve for the optimal threshold

ae and coefficient A from the value-matching and smooth-pasting conditions

Aaαe = Ue(ae) = 1− e−γνae , (4.4.3)

Aαaα−1
e = U ′e(ae) = γνe−γνae .

This leads to the following equation satisfied by the optimal threshold ae:

α(eγνae − 1)− γνae = 0. (4.4.4)
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We now show that there exists a unique and positive root to (4.4.4). Our

approach involves establishing a relationship between (4.4.4) and (LS− r)(1−
e−γνs). To this end, first observe that the exponential utility 1− e−γνs has the

following properties:

lim
s→0

1− e−γνs
sβ

= lim
s→+∞

1− e−γνs
sα

= 0, (4.4.5)

where

β =

(
1

2
− µ

σ2

)
−
√(

µ

σ2
− 1

2

)2

+
2r

σ2
,

and sβ is a decreasing and convex solution to (4.2.1). In addition, we have

Es

{∫ ∞
0

e−rt
∣∣(LS − r)(1− e−γνst)∣∣ dt}

= Es
{∫ ∞

0

e−rt
∣∣∣∣e−γνst (µγνst − σ2γ2ν2s2

t

2
− reγνst + r

)∣∣∣∣ dt}
< Es

{∫ ∞
0

e−rt
(

1 +
σ2

2
+ r

)
dt

}
=

1

r
+
σ2

2r
+ 1 <∞. (4.4.6)

The limits in (4.4.5) and condition (4.4.6) together imply that the function

1− e−γνs admits the following analytic representation:

1− e−γνs =− sβ
∫ s

0

ΨS(υ)(LS − r)(1− e−γνυ) dυ (4.4.7)

− sα
∫ +∞

s

ΦS(υ)(LS − r)(1− e−γνυ) dυ,

where

ΨS(s) =
2sα

σ2s2WS(s)
, ΦS(s) =

2sβ

σ2s2WS(s)
,

and

WS(s) =
2

√(
µ− σ2

2

)2
+ 2σ2r

σ2
s−

2µ

σ2 > 0, ∀s ∈ R+.

We refer the reader to Section 2 of Zervos et al. [2013] and Chapter 2 of

Borodin and Salminen [2002] for details on the representation.
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Next, dividing 1− e−γνs by sα and differentiating in s, we have(
1− e−γνs

sα

)′
=
γνe−γνssα − (1− e−γνs)αsα−1

s2α
. (4.4.8)

The crucial step is to recognize that finding the root to the derivative in (4.4.8)

is equivalent to solving (4.4.4). Furthermore, appealing to (4.4.7), the LHS of

(4.4.8) becomes(
1− e−γνs

sα

)′
= −

(
sβ

sα

)′ ∫ s

0

ΨS(υ)(LS − r)
(
1− e−γνυ

)
dυ

− sβ

sα
ΨS(s)(LS − r)

(
1− e−γνs

)
+ ΦS(s)(LS − r)(1− e−γνs)

=
WS(s)

s2α

∫ s

0

ΨS(υ)(LS − r)
(
1− e−γνυ

)
dυ =

WS(s)

s2α
qe(s),

where

qe(s) :=

∫ s

0

ΨS(υ)(LS − r)(1− e−γνυ) dυ.

Since both s2α and WS(s) are strictly positive for s > 0, we conclude that

(4.4.4) is equivalent to the equation qe(ae) = 0. By differentiating, we obtain

q′e(s) = ΨS(s)(LS − r)(1− e−γνs). Since ΨS(s) > 0 for all s ∈ R+, the sign of

q′e(s) depends solely on (LS − r)(1− e−γνs), and thus on g defined in (4.4.2).

The function g is strictly concave on R+. Since g′+(0) = (µ − r)γν > 0, the

maximum of g is strictly positive. This implies that there exists a unique

positive ϕ such that g(ϕ) = 0. Consequently, we have

q′e(s)

> 0 if s < ϕ,

< 0 if s > ϕ.

.

This together with the fact that qe(0) = 0, lead us to conclude that there exists

a unique ae > 0 such that qe(ae) = 0 if and only if lims→+∞ qe(s) < 0. The

latter holds due to the facts:

qe(s) =
s2α

WS(s)

(
1− e−γνs

sα

)′
,

1− e−γνs
sα

> 0, ∀s ∈ [0,+∞),

lim
s→+∞

1− e−γνs
sα

= 0.
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Therefore, we conclude that there exists a unique finite root ae to equation

(4.4.4). Furthermore, by the nature of qe we have

ae > ϕ and qe(s) > 0, ∀s < ae.

Finally, from (4.4.3) we deduce that A = (1− e−γνae)a−αe > 0.

Next, we verify the optimality of the candidate solution using the vari-

ational inequality (4.1.5). First, observe that 1 − e−γνs − Ve(s) = 0 on

[ae,+∞), and Ve(s) ≥ 1 − e−γνs for all s ∈ [0, ae). Lastly, the inequality

(LS − r)(1− e−γνs) ≤ 0 follows from

(LS − r)(1− e−γνs) = (LS − r)Asα = 0, for s ∈ [0, ae),

(LS − r)(1− e−γνs) ≤ 0, for s ∈ [ae,+∞).

Hence, Ve(s, ν) given in Theorem 4.2.1 is indeed optimal.

Proof of Theorem 4.2.2 (Log Utility). For any fixed ν, νS follows a

GBM process with the same drift and volatility parameters as S. In other

words, we can reduce the problem to that of selling a single unit of a risky

asset whose price process is S̃ := νS with initial value S̃0 = s̃ := νs. Therefore,

we construct a candidate solution of the form Vl(s, ν) = Vl(s̃, 1) = Bs̃α, where

B is a positive constant. The value-matching and smooth-pasting conditions

are

Bãα = Ul(ã) = log(ã), (4.4.9)

Bαãα−1 = U ′l (ã) =
1

ã
.

These equations can be solved explicitly to give a unique solution ã = exp(α−1)

and consequently the coefficient B = 1/αe > 0. The optimal aggregate selling

price ã translates into the optimal unit selling price al = ã/ν = ν−1 exp(α−1).
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Next, we show that Vl(s, ν) = Vl(s̃, 1) ≡ Vl(s̃) given in Theorem 4.2.2

indeed satisfies the variational inequality

max{(LS̃ − r)Vl(s̃), log(s̃)− Vl(s̃)} = 0, s̃ ∈ R+,

where LS̃ is the infinitesimal generator of the GBM process S̃. This is equiv-

alent to showing that Vl(s, ν) in (4.2.2) satisfies the variational inequality

(4.1.5). First, on [0, ã) we have (LS̃ − r)Vl(s̃) = (LS̃ − r)Bs̃α = 0. Next,

observe that the function

(LS̃ − r) log(s̃) = −σ
2

2
+ µ− r log(s̃),

has a unique root at ϕ̃ = e
µ−σ2/2

r such that

(LS̃ − r) log(s̃)

> 0 if s̃ < ϕ̃,

< 0 if s̃ > ϕ̃.

On [ã,+∞), we have (LS̃ − r)Vl(s̃, 1) = (LS̃ − r) log(s̃). To show that (LS̃ −
r)Vl(s̃, 1) ≤ 0 we need to prove that ã > ϕ̃, or equivalently,

1

α
>
µ− σ2/2

r
.

This follows directly from the definition of α in (4.2.2).

Next, we check that Vl(s̃, 1) ≥ log(s̃) for all s̃ ∈ R+. Since Vl(s̃, 1) = log(s̃)

on [ã,+∞), it remains to show that log(s̃) ≤ Vl(s̃, 1) on [0, ã). Using (4.4.9),

the desired inequality is equivalent to

log(s̃)

s̃α
≤ log(ã)

ãα
. (4.4.10)

Differentiating the left-hand side, we get(
log(s̃)

s̃α

)′
=
s̃α−1 − αs̃α−1 log(s̃)

s̃2α
=

1− α log(s̃)

s̃α+1
.

The function log(s̃)
s̃α

is strictly increasing for s̃ < exp(α−1). Hence, inequality

(4.4.10) follows.
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4.4.2 XOU Model

Proof of Theorem 4.2.4 (Exponential Utility). Recall that the func-

tions F and G (see (4.2.5) and (4.2.6)) are respectively increasing and de-

creasing. Since the exponential utility Ue is strictly increasing, we postulate

that the solution to the variational inequality (4.1.7) is of the form KF (x),

where K is a positive coefficient to be determined. By grouping ν with γ, the

problem of selling ν units of the risky asset can be reduced to that of selling

a single unit. The value-matching and smooth-pasting conditions are

KF (be) = 1− exp
(
−γνebe

)
, (4.4.11)

KF ′(be) = γνebe exp
(
−γνebe

)
. (4.4.12)

Using (4.4.11), we have K = (1− exp
(
−γνebe

)
)F (be)

−1 > 0. Combining

(4.4.11) and (4.4.12), we obtain (4.2.8) for be.

Next, we want to establish that

Ex
{∫ ∞

0

e−rt
∣∣(LX − r) (1− exp

(
−γνeXt

))∣∣ dt} <∞. (4.4.13)

First, using (4.1.8) we compute

(LX − r) (1− exp (−γνex)) =
η2

2
γνex exp (−γνex) (1− γνex)

+ κ(θ − x)γνex exp (−γνex)

− r (1− exp (−γνex)) .

Then, for any T > 0,

Ex
{∫ T

0

e−rt
∣∣(LX − r) (1− exp

(
−γνeXt

))∣∣ dt}
< Ex

{∫ T

0

e−rt
(
η2

2

(
1 + γνeXt

)
+ κ|θ|+ κ|Xt|+ r

)
dt

}
=

∫ T

0

e−rt
(
η2

2
+
η2γν

2
Ex
{
eXt
}

+ κ|θ|+ κEx {|Xt|}+ r

)
dt

<
η2

2r
+
η2γν

2r
e|x|+|θ|+

η2

4κ +
κ|θ|
r

+
κ

r

(√
η2

πκ
+ |x|+ |θ|

)
+ 1,
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where we have used the fact that |Xt| conditioned on X0 = x has a folded

normal distrbution. Furthermore, since this bound is time-independent and

finite, we deduce that (4.4.13) is indeed true. We follow the arguments in

Section 2 of Zervos et al. [2013] to obtain the representation

1− exp (−γνex) =−G(x)

∫ x

−∞
ΨX(υ)(LX − r)(1− exp (−γνeυ)) dυ

− F (x)

∫ +∞

x

ΦX(υ)(LX − r)(1− exp (−γνeυ)) dυ,

(4.4.14)

where

ΨX(x) :=
2F (x)

η2WX(x)
, ΦX(x) :=

2G(x)

η2WX(x)
, (4.4.15)

and

WX(x) = F ′(x)G(x)− F (x)G′(x) > 0, ∀x ∈ R.

To see the connection between (4.4.14) and (4.2.8), we divide both sides of

(4.4.14) by F (x) and differentiate with respect to x, and get the derivative(
1− exp (−γνex)

F (x)

)′
=
γνex exp (−γνex)F (x)− (1− exp (−γνex))F ′(x)

F 2(x)
(4.4.16)

= −
(
G(x)

F (x)

)′ ∫ x

−∞
ΨX(υ)(LX − r)

(
1− e−γνeυ

)
dυ

− G(x)

F (x)
ΨX(x)(LX − r)

(
1− e−γνex

)
+ ΦX(x)(LX − r)

(
1− e−γνex

)
=
WX(x)

F 2(x)

∫ x

−∞
ΨX(υ)(LX − r)

(
1− e−γνeυ

)
dυ

=
WX(x)

F 2(x)
q̃e(x), (4.4.17)

where

q̃e(x) :=

∫ x

−∞
ΨX(υ)(LX − r) (1− exp (−γνeυ)) dυ. (4.4.18)
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By comparing (4.2.8) to the numerator on the RHS of (4.4.16), and given that

WX(x)
F 2(x)

in (4.4.17) is strictly positive, we see that the equation satisfied by be

in (4.2.8) is equivalent to q̃e(be) = 0. Therefore, our goal is to show that q̃e(x)

has a unique and finite root.

Differentiating (4.4.18) with respect to x yields

q̃′e(x) = ΨX(x)(LX − r) (1− exp (−γνex)) .

This implies that the sign of q̃′e depends solely on (LX − r) (1− exp (−γνex)) .
We proceed to show that q̃′e(x) has a unique root. To facilitate computation,

we define a new function

h(x) :=
q̃′e(x)

ΨX(x)
× exp (γνex)

γνex
= (LX − r) (1− exp (−γνex)) exp (γνex)

γνex

=
η2

2
(1− γνex) + κ(θ − x)

− r
(

exp (γνex)

γνex
− 1

γνex

)
.

Since h is obtained through dividing and multiplying q̃′e by strictly positive

terms, any root of q̃′e must also be a root of h and vice-versa.

To find the root of h, we solve

−η
2γν

2
ex − r

γν
e−x (exp (γνex)− 1) = κx− κθ − η2γν

2
. (4.4.19)

The RHS of (4.4.19) is a strictly increasing linear function. As for the LHS,

we observe that

lim
x→+∞

−η
2γν

2
ex − r

γν
e−x (exp (γνex)− 1) = −∞,

lim
x→−∞

−η
2γν

2
ex − r

γν
e−x (exp (γνex)− 1) = r.

Hence, in order for h to have a unique root, it suffices to show that the LHS

of (4.4.19) is strictly decreasing. Given that r, γ, ν > 0 and ex is strictly
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increasing, it remains to show that the function e−x (exp (γνex)− 1) is strictly

increasing for all x ∈ R. The quotient rule gives(
exp (γνex)− 1

ex

)′
=

exp (γνex) (γνex − 1) + 1

ex
.

The numerator exp (γνex) (γνex − 1)+1 goes to +∞ as x goes to +∞ and goes

to 0 as x goes to −∞. Moreover, the derivative of exp (γνex) (γνex − 1) + 1

is γ2ν2e2x exp (γνex) which is strictly positive. This proves that the function

e−x (exp (γνex)− 1) is indeed strictly increasing and as a result, h has a unique

root, denoted by ζ. Finally, observe that

q̃′e(x) =

> 0 if x < ζ,

< 0 if x > ζ.

(4.4.20)

Combining (4.4.20) with lim
x→−∞

q̃e(x) = 0, we now see that a unique root, be,

such that q̃e(be) = 0, exists if and only if lim
x→+∞

q̃e(x) < 0. To examine this

limit, we apply the definition of F to get

q̃e(x) =
F 2(x)

WX(x)

(
1− exp (−γνex)

F (x)

)′
, (4.4.21)

1− exp (−γνex)
F (x)

> 0, ∀x ∈ R, lim
x→+∞

1− exp (−γνex)
F (x)

=
1

+∞ = 0.

(4.4.22)

Since q̃e is strictly decreasing in (ζ,+∞), (4.4.21) and (4.4.22) hold if and only

if lim
x→+∞

q̃e(x) < 0. This shows, as desired, that there exists a unique and finite

be such that

γνebe exp
(
−γνebe

)
F (be) =

(
1− exp

(
−γνebe

))
F ′(be).

Moreover, by (4.4.20), we see that

be > ζ and q̃e(x) > 0, ∀x < be. (4.4.23)
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Now, in order to ascertain the optimality of Ṽe presented in (4.2.7), we

re-express Ṽe in terms of the variable x, and show that it satisfies the following

variational inequality:

max{(LX − r)Ṽe(ex), (1− exp (−γνex))− Ṽe(ex)} = 0, ∀x ∈ R.

Indeed, this follows from direct substitution. First, on [be,+∞), we have

(1− exp (−γνex))− Ṽe(ex) = (1− exp (−γνex))− (1− exp (−γνex)) = 0.

On (−∞, be), we apply (4.4.21) and (4.4.23) to conclude that

(1− exp (−γνex))− Ṽe(ex) = (1− exp (−γνex))− 1− exp
(
−γνebe

)
F (be)

F (x) ≤ 0.

Next, we verify that (LX − r)Ṽe(ex) ≤ 0, ∀x ∈ R. To this end, we have

(LX − r)Ṽe(ex) = (LX − r)KF (x) = 0, on (−∞, be),

(LX − r)Ṽe(ex) = (LX − r) (1− exp (−γνex)) ≤ 0, on [be,+∞),

as a consequence of (4.2.4) and (4.4.20). Hence, we conclude the optimality of

Ṽe in (4.2.7).

Proof of Theorem 4.2.5 (Log Utility). Since log(νξ) = X+log(ν) where

X is an OU process, the optimal asset sale problem can be viewed as that under

an OU process with a linear utility and a transaction cost (resp. reward) of

value log(ν) if ν < 1 (resp. ν > 1) (see Leung and Li [2015]).

The functions F and G given in (4.2.5) and (4.2.6) are respectively strictly

increasing and decreasing functions. For any given ν, X + log(ν) is also a

strictly increasing function. This prompts us to postulate a solution to the

variational inequality (4.1.7) of the form DF (x) where D > 0 is a constant to

be determined. Consequently, the optimal log-price thershold bl is determined

from the following value-matching and smooth-pasting conditions:

DF (bl) = bl + log(ν), and DF ′(bl) = 1.
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Combining these equations leads to (4.2.9) and (4.2.10). Straightforward com-

putation yields

(LX − r)(x+ log(ν)) = −(κ+ r)x+ κθ − r log(ν),

which is a strictly decreasing linear function with a unique root `. For any

T > 0,

Ex
{∫ T

0

e−rt
∣∣(LX − r)(Xt + log(ν))

∣∣ dt}
< Ex

{∫ T

0

e−rt ((κ+ r)|Xt|+ κ|θ|+ r| log(ν)|) dt
}

=

∫ T

0

e−rt ((κ+ r)Ex {|Xt|}+ κ|θ|+ r| log(ν)|) dt

<
κ+ r

r

(√
η2

πκ
+ |x|+ |θ|

)
+
κ|θ|
r

+ | log(ν)|,

which implies that

Ex
{∫ ∞

0

e−rt
∣∣(LX − r)(Xt + log(ν))

∣∣ dt} <∞.

With this, we follow the arguments in Section 2 of Zervos et al. [2013] to obtain

the representation

x+ log(ν) =−G(x)

∫ x

−∞
ΨX(υ)(LX − r)(υ + log(ν)) dυ (4.4.24)

− F (x)

∫ +∞

x

ΦX(υ)(LX − r)(υ + log(ν)) dυ,

where ΨX and ΦX are as defined in (4.4.15). We relate (4.4.24) to (4.2.10) by

first dividing both sides of (4.4.24) by F (x) and differentiating with respect to
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x. This yields(
x+ log(ν)

F (x)

)′
=
F (x)− F ′(x)(x+ log(ν))

F 2(x)
(4.4.25)

= −
(
G(x)

F (x)

)′ ∫ x

−∞
ΨX(υ)(LX − r)(υ + log(ν)) dυ

− G(x)

F (x)
ΨX(x)(LX − r)(x+ log(ν)) + ΦX(x)(LX − r)(x+ log(ν))

=
WX(x)

F 2(x)

∫ x

−∞
ΨX(υ)(LX − r)(υ + log(ν)) dυ =

WX(x)

F 2(x)
q̃l(x),

where

q̃l(x) :=

∫ x

−∞
ΨX(υ)(LX − r)(υ + log(ν)) dυ.

Comparing (4.2.10) and the RHS of (4.4.25), along with the facts that F > 0

and WX > 0, we see that solving equation (4.2.10) for the log-price threshold

is equivalent to solving

q̃l(x) = 0.

Direct differentiation yields that

q̃′l(x) = ΨX(x)(LX − r)(x+ log(ν))

> 0 if x < `,

< 0 if x > `.

(4.4.26)

The fact that limx→−∞ q̃l(x) = 0 implies that there exists a unique bl such

that q̃l(bl) = 0 if and only if limx→+∞ q̃l(x) < 0. By the definition of F , we

have

q̃l(x) =
F 2(x)

WX(x)

(
x+ log(ν)

F (x)

)′
,

x+ log(ν)

F (x)
> 0, ∀x > − log(ν),(4.4.27)

lim
x→+∞

x+ log(ν)

F (x)
= 0.

Given that q̃l is strictly decreasing in (`,+∞), we conclude that in order for

(4.4.27) to hold, we must have limx→+∞ q̃l(x) < 0. This means that there
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exists a unique and finite bl such that (bl + log(ν))F ′(bl) = F (bl). Moreover,

given (4.4.26), we have

bl > ` and q̃l(x) > 0, ∀x < bl. (4.4.28)

Furthermore, since both F and F ′ are strictly positive, bl + log(ν) must also

be positive.

Lastly, we need to check that the following variational inequality holds for

any fixed ν:

max{(LX − r)Ṽl(ex), (x+ log(ν))− Ṽl(ex)} = 0, ∀x ∈ R.

To begin, on the interval [bl,+∞), we have (x+log(ν))−Ṽl(ex) = (x+log(ν))−
(x+ log(ν)) = 0. Next, on the region (−∞, bl), we have

(x+ log(ν))− Ṽl(ex) = (x+ log(ν))− bl + log(ν)

F (bl)
F (x) ≤ 0

since the function x+log(ν)
F (x)

is increasing on (−∞, bl) due to (4.4.27) and (4.4.28).

Also, we note that

(LX − r)Ṽl(ex) = (LX − r)DF (x) = 0, on (−∞, bl),

(LX − r)Ṽl(ex) = (LX − r)(x+ log(ν)) ≤ 0, on [bl,+∞).

The latter inequality is true due to (4.4.26) and (4.4.28). Ṽl defined in Theorem

4.2.5 is therefore the optimal solution to the optimal asset sale problem under

log utility.

Proof of Theorem 4.2.6 (Power Utility). Since the powered XOU pro-

cess, ξp, is still an XOU process, the asset sale problem is an optimal stopping

problem driven by an XOU process, which has been solved by the author’s

prior work; see Theorem 3.1.1 of Leung et al. [2015]. The theorem is also

presented in this dissertation as Theorem 2.2.2 of Chapter 2. Therefore, we

omit the proof.
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Appendix A

Appendix for GBM Example

Let S be a geometric Brownian motion with drift and volatility parameters

(µ, σ). In this case, the optimal exit problem is trivial. Indeed, if µ > r, then

V(s) := sup
τ∈T

Es{e−rτ (Sτ − cs)}

≥ sup
t≥0

(
Es{e−rtSt} − e−rtcs

)
≥ sup

t≥0
se(µ−r)t − cs = +∞.

Therefore, it is optimal to take τ = +∞ and the value function is infinite.

If µ = r, then the value function is given by

V(s) = sup
t≥0

sup
τ∈T

Es{e−r(τ∧t)(Sτ∧t − cs)}

= s− cs inf
t≥0

inf
τ∈T

Es{e−r(τ∧t)} = s, (A.0.1)

where the second equality follows from the optional sampling theorem and that

(e−rtSt)t≥0 is a martingale. Again, the optimal value is achieved by choosing

τ = +∞, but V(s) is finite in (A.0.1).

On the other hand, if µ < r, then we have a non-trivial solution and exit

timing:

V(s) =


(

cs
η−1

)1−η (
s
η

)η
if x < s∗,

s− cs if x ≥ s∗,



APPENDIX A. APPENDIX FOR GBM EXAMPLE 118

where

η =

√
2rσ2 + (µ− 1

2
σ2)2 − (µ− 1

2
σ2)

σ2
and s∗ =

csη

η − 1
> cs.

Therefore, it is optimal to liquidate as soon as S reaches level s∗. However, it

is optimal not to enter because sups∈R+
(V(s)− s− cb) ≤ 0, giving a zero value

for the entry timing problem. Guo and Zervos [2010] provide a detailed study

on this problem and its variation in the context of π options.
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Appendix B

Appendix for Chapter 2

B.1 Proof of Lemma 2.2.5 (Bounds of J̃ ξ and

Ṽ ξ)

By definition, both J̃ξ(x) and Ṽ ξ(x) are nonnegative. Using Dynkin’s for-

mula,we have

Ex{e−rτneXτn} − Ex{e−rνneXνn} = Ex
{∫ τn

νn

e−rt(L − r)eXtdt
}

= Ex
{∫ τn

νn

e−rteXt
(
σ2

2
+ µθ − r − µXt

)
dt

}
.

The function ex
(
σ2

2
+ µθ − r − µx

)
is bounded above on R. Let M be an

upper bound, it follows that

Ex{e−rτneXτn} − Ex{e−rνneXνn} ≤MEx
{∫ τn

νn

e−rtdt

}
.
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Since ex − cs ≤ ex and ex + cb ≥ ex, we have

Ex

{
∞∑
n=1

[e−rτnhξs(Xτn)− e−rνnhξb(Xνn)]

}

≤
∞∑
n=1

(
E{e−rτneXτn} − Ex{e−rνneXνn}

)
≤

∞∑
n=1

MEx
{∫ τn

νn

e−rtdt

}
≤M

∫ ∞
0

e−rtdt =
M

r
:= C1,

which implies that 0 ≤ J̃ξ(x) ≤ C1. Similarly,

Ex

{
e−rτ1hξs(Xτ1) +

∞∑
n=2

[e−rτnhξs(Xτn)− e−rτnhξb(Xτn)]

}
≤ C1 + Ex{e−rτ1hξb(Xτ1)}.

Letting ν1 = 0 and using Dynkin’s formula again, we have

Ex{e−rτ1eXτ1} − ex ≤
M

r
.

This implies that

Ṽ ξ(x) ≤ C1 + ex +
M

r
:= ex + C2.

B.2 Proof of Lemma 2.2.12 (Bounds of J̃χ and

Ṽ χ)

By definition, both J̃χ(y) and Ṽ χ(y) are nonnegative. Using Dynkin’s for-

mula,we have

Ey{e−rτnYτn} − Ey{e−rνnYνn} = Ey
{∫ τn

νn

e−rt(Lχ − r)Ytdt
}

= Ey
{∫ τn

νn

e−rt (µθ − (r + µ)Yt) dt

}
.

For y ≥ 0, the function µθ − (r + µ)y is bounded by µθ. It follows that

Ey{e−rτnYτn} − Ey{e−rνnYνn} ≤ µθEy
{∫ τn

νn

e−rtdt

}
.
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Since y − cs ≤ y and y + cb ≥ y, we have

Ey

{
∞∑
n=1

[e−rτnhχs (Yτn)− e−rνnhχb (Yνn)]

}

≤
∞∑
n=1

(
E{e−rτnYτn} − Ey{e−rνnYνn}

)
≤

∞∑
n=1

µθEy
{∫ τn

νn

e−rtdt

}
≤ µθ

∫ ∞
0

e−rtdt =
µθ

r
.

This implies that 0 ≤ J̃χ(y) ≤ µθ
r

. Similarly,

Ey

{
e−rτ1hχs (Yτ1) +

∞∑
n=2

[e−rτnhχs (Yτn)− e−rτnhχb (Yτn)]

}
≤ µθ

r
+ Ey

{
e−rτ1hχb (Yτ1)

}
.

Letting ν1 = 0 and using Dynkin’s formula again, we have

Ey{e−rτ1Yτ1} − y ≤
µθ

r
.

This implies that

Ṽ χ(y) ≤ µθ

r
+ y +

µθ

r
:= y +

2µθ

r
.
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Appendix C

Appendix for Chapter 3

C.1 Numerical Implementation

We apply a finite difference method to compute the optimal boundaries in

Figures 3.2, 3.3 and 3.4. The operators L(i), i ∈ {1, 2, 3}, defined in (3.3.2)-

(3.3.3) correspond to the OU, CIR, and XOU models, respectively. To capture

these models, we define the generic differential operator

L{·} := −r ·+∂·
∂t

+ ϕ(s)
∂·
∂s

+
σ2(s)

2

∂2·
∂s2

,

then the variational inequalities (3.3.4), (3.3.5), (3.3.6), (3.3.7) and (3.3.8)

admit the same form as the following variational inequality problem:

Lg(t, s) ≤ 0, g(t, s) ≥ ξ(t, s), (t, s) ∈ [0, T̂ )× R+,

(Lg(t, s))(ξ(t, s)− g(t, s)) = 0, (t, s) ∈ [0, T̂ )× R+,

g(T̂ , s) = ξ(T̂ , s), s ∈ R+.

Here, g(t, s) represents the value functions V(t, s), J (t, s), −U(t, s), K(t, s), or

P(t, s). The function ξ(t, s) represents f(t, s;T )−c, (V(t, s)−(f(t, s;T )+ ĉ))+,

−(f(t, s;T )+ĉ), (f(t, s;T )−c)−U(t, s))+, or max{A(t, s),B(t, s)}. The futures
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price f(t, s;T ), with T̂ ≤ T , is given by (3.1.1), (3.1.4), and (3.1.10) under the

OU, CIR, and XOU models, respectively.

We now consider the discretization of the partial differential equation Lg(t, s) =

0, over an uniform grid with discretizations in time (δt = T̂
N

), and space

(δs = Smax
M

). We apply the Crank-Nicolson method, which involves the finite

difference equation:

−αigi−1,j−1 + (1− βi)gi,j−1 − γigi+1,j−1 = αigi−1,j + (1 + βi)gi,j + γigi+1,j,

where

gi,j = g(jδt, iδs), ξi,j = ξ(jδt, iδs), ϕi = ϕ(iδs), σi = σ(iδs).

αi =
δt

4δs

(σ2
i

δs
− ϕi

)
, βi = −δt

2

(
r +

σ2
i

(δs)2

)
, γi =

δt

4δs

(σ2
i

δs
+ ϕi

)
,

for i = 1, 2, ...,M−1 and j = 1, 2, ..., N−1. The system to be solved backward

in time is

M1gj−1 = rj,

where the right-hand side is

rj = M2gj + α1



g0,j−1 + g0,j

0

...

0



+ γM−1



0

...

0

gM,j−1 + gM,j,



,
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and

M1 =



1− β1 −γ1

−α2 1− β2 −γ2

−α3 1− β3 −γ3

. . . . . . . . .

−αM−2 1− βM−2 −γM−2

−αM−1 1− βM−1



,

M2 =



1 + β1 γ1

α2 1 + β2 γ2

α3 1 + β3 γ3

. . . . . . . . .

αM−2 1 + βM−2 γM−2

αM−1 1 + βM−1



,

gj =


g1,j, g2,j, . . . , gM−1,j

T .
This leads to a sequence of stationary complementarity problems. Hence, at
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each time step j ∈ {1, 2, . . . , N − 1}, we need to solve

M1gj−1 ≥ rj,

gj−1 ≥ ξj−1,

(M1gj−1 − rj)
T (ξj−1 − gj−1) = 0.

To solve the optimal problem, our algorithm enforces the constraint explicitly

as follows

gnewi,j−1 = max
{
goldi,j−1, ξi,j−1

}
.

The projected SOR method is used to solve the linear system.1 At each time

j, we iteratively solve

g
(k+1)
1,j−1 = max

{
ξ1,j−1 , g

(k)
1,j−1 +

ω

1− β1

[r1,j − (1− β1)g
(k)
1,j−1 + γ1g

(k)
2,j−1]

}
,

g
(k+1)
2,j−1 = max

{
ξ2,j−1 , g

(k)
2,j−1 +

ω

1− β2

[r2,j + α2g
(k+1)
1,j−1 − (1− β2)g

(k)
2,j−1 + γ2g

(k)
3,j−1]

}
,

...

g
(k+1)
M−1,j−1 = max

{
ξM−1,j−1 , g

(k)
M−1,j−1

+
ω

1− βM−1

[rM−1,j + αM−1g
(k+1)
M−2,j−1 − (1− βM−1)g

(k)
M−1,j−1]

}
,

where k is the iteration counter and ω is the overrelaxation parameter. The

iterative scheme starts from an initial point g
(0)
j and proceeds until a conver-

gence criterion is met, such as ||g(k+1)
j−1 − g

(k)
j−1|| < ε, where ε is a tolerance

parameter. The optimal boundary Sf (t) can be identified by locating the

boundary that separates the regions where g(t, s) = ξ(t, s), or g(t, s) ≥ ξ(t, s).

1For a detailed discussion on the projected SOR method, we refer to Wilmott et al.

[1995].
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