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ABSTRACT 

Association of Maternal Cumulative Risk during Pregnancy and IQ in Preschoolers:   

Role of Glucocorticoids and their Receptors 

Katherine A. Beckmann 

There may be a cumulative effect of social and environmental risk factors which lead to 

chronic, elevated levels of stress.  Constant elevations of maternal stress hormones during 

pregnancy disrupt developing fetal brain chemistry and architecture, resulting in later memory 

and learning deficiencies.  While we know that the quality of the fetal environment and the 

timing of exposure to a variety of substances are critical for developmental and health outcomes, 

little is known about the consequences of maternal cumulative risk on the fetus and later 

cognitive development.  With data from the Nurse Family Partnership Elmira Sample, this work 

investigates whether maternal cumulative risk during pregnancy predicts IQ in 3 and 4 year olds, 

without and with postnatal influences.  The role that birth outcomes play as mediators of this 

relationship is also explored.  Finally, moderation effects and cumulative genetic risk of five 

polymorphisms of the glucocorticoid receptor (GR) gene are examined.   

Increased maternal cumulative risk during pregnancy was negatively associated with IQ 

at ages 3 and 4 with and without the inclusion of postnatal controls.  Birth outcomes partially 

mediated this relationship to a small extent.  GR rs6198 G and rs6190 G alleles infer risk while 

rs6198 A alleles serve as protective factors with respect to the association of maternal cumulative 

risk during pregnancy and IQ in young children.  This study contributes insights on the 

cumulative effects of chronic social and environmental stressors that may lead to increased levels 

of maternal stress hormones during pregnancy and poor cognitive outcomes in young children in 

the presence of specific glucocorticoid receptor single nucleotide polymorphisms.  Application 

of findings to early intervention programming and policy is discussed. 
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Economic hardship has been linked to a myriad of adverse educational and 

developmental outcomes for children that limit future productivity (Barnett, 1998; Brooks-Gunn 

& Duncan, 1997; Wulczyn, Barth, Yuan, Jones Harden, & Landsverk, 2005).  Today, with nearly 

15.5 million children living in families with incomes below the federal poverty level ($22,050 

per year for a family of four in 2009), almost 21% of America’s children are at-risk for  

untoward psychosocial, environmental, and economic conditions compared to their wealthier 

counterparts (Brooks-Gunn & Duncan, 1997; Child Trends, 2010; DeNavas-Walt, Proctor, & 

Smith, 2011).  Further, families with low socioeconomic status (SES) report greater exposure to 

multiple stress factors and more severe stressful life events than those of higher socioeconomic 

status (Liaw & Brooks-Gunn, 1994; Lupien, King, Meaney, & McEwen, 2000).   

Consequently, there may be a cumulative effect of social and environmental risk factors, 

similar to that of chemical and biological environmental risks, which lead to chronic, elevated 

levels of stress and may be an important pathway linking socioeconomic status to health and 

developmental outcomes throughout the lifespan (Evans & Kim, 2010; Hackman, Farah, & 

Meaney, 2010; MacArthur Research Network on Socioeconomic Status and Health, 2005).  

Often measured by somatic hormones such as glucocorticoids, chronic, elevated levels of stress 

are associated with innumerable biologic and behavioral consequences that negatively affect 

physical growth, onset and duration of puberty, metabolism, susceptibility to illness, as well as 

social-emotional and cognitive functioning (Bradley & Corwyn, 2002; Center on the Developing 

Child at Harvard University, 2007; Harris & Seckl, 2011; McEwen & Seeman, 1999; McEwen & 

Stellar, 1993; Seeman, Berkman, Blazer, & Rowe, 1994; Welberg & Seckl, 2001).   



2 

 

 

9
7 

Although research has addressed the association of early life stress exposure and later 

physical and mental health outcomes, less attention has been focused on the effects of early life 

stress exposure during the prenatal period and cognitive outcomes later in life.  With respect to 

neurodevelopment, in particular, it is clear that no singular environmental factor can explain the 

effects of SES (Hackman, Farah, & Meaney, 2010).  For children from low income families, 

especially, there may be both an exogenous influence on cognitive development stemming from 

stress associated with poverty post birth and an endogenous influence originating from maternal 

emotional state during pregnancy (Hackman, Farah, & Meaney, 2010; Oitzl et al., 2010; Van den 

Bergh, Mulder, Mennes, & Glover, 2005).  Leading to vulnerabilities in utero as well as later in 

the child’s life, constant elevations of maternal stress hormones during pregnancy may disrupt 

developing brain chemistry and architecture (Barker, 2007; Center on the Developing Child, 

2007; Welberg & Seckl, 2001).  With respect to postnatal cognitive development, altered stress 

hormone secretion in early childhood due to prenatal plasticity and adaptation may lead to 

decreased dendritic branching, neuronal loss in the CA3 area of the hippocampus, changes in 

synaptic terminal structure, and inhibition of neuron regeneration. Deficiencies in memory and 

learning capabilities may result (McEwen & Seeman, 1999).   

But, why do some children who develop in similar environments flourish in ways that 

others do not?  Although many processes by which the extra and intrauterine environment affect 

biology have yet to be clarified, more is known about the environmental risks and protective 

factors than genetic ones.  Biological susceptibility to the influences of stress hormones is 

dependent upon the important relationship of stress hormones, their receptors, and the genetic 

instructions that give rise to these proteins (Oitzl et al., 2010).  Imbalance in stress regulation, as 

a result of gene-environment interactions early in life, is characteristic of phenotypic 
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vulnerability to later life stressors and disorder (Oitzl et al., 2010).  Although most supporting 

evidence has been studied after birth and primarily in animals, this is particularly important 

during the perinatal period when stress sensitivity is great (Meaney et al., 2007; Oitzl et al., 

2010).  In moving towards a better understanding of how stress and the actions of stress 

hormones, particularly glucocorticoids, move from less protective to more harmful, examining 

the fetal development in the context of genotypic and phenotypic variance is crucial. 

From a policy standpoint, understanding potentially modifiable social environmental risk 

factors which interact with biological ones is essential when thinking about effective prevention 

strategies targeted toward families that address the negative consequences of stress on child 

health and development.  While wear and tear on the body due to chronic stress and/or 

“weathering” has been quantified in terms of allostatic load by physiological measures, such as 

blood pressure, cortisol, and heart rate, an empirical measure of the cumulative risk that leads to 

allostatic load has not reached consensus, per se.  Allostatic load has been shown to accelerate 

biological processes that give rise to disease and disorder throughout the lifespan (McEwen, 

2000).  As a result, biological and social science can support the development of cost-effective, 

targeted policy and prevention strategies to mitigate identifiable antecedents of allostatic load 

while promoting protective factors during the earliest stages of development when plasticity is 

greatest.   Both positive and negative impacts on early brain development during gestation must 

be fully understood as we prepare our most vulnerable children to attend school, ready to learn. 

 

 

 

Biological Vulnerability Affecting Cognitive Development 
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The fundamental architecture for cognitive functioning is related to neuronal formation 

and the developing network of neural connections.  By the time a full-term infant is born, the 

basic wiring of the central nervous system has been completed.  The prenatal establishment of 

brain architecture provides the scaffolding on which one later builds the capacity to receive, 

interpret, and act upon information gathered from the surrounding world (Hammock & Levitt, 

2006).  Precursors of functional brain regions manifest during the first and second trimesters 

when neurons are produced and regional migration occurs.  The fine-tuning of circuits within 

these regions takes place after birth through experience-dependent mechanisms such as synapse 

formation and pruning (Bourgeouis, Goldman-Rakic, & Rakic, 1999).  Consequently, intra and 

extra-uterine exposures such as drugs, alcohol, toxins, and inflammatory responses (Fox, Levitt, 

& Nelson, 2010; Stanwood & Levitt, 2008) may disrupt early regulatory gene networks and 

neuronal guidance cues.  The resulting abnormal connections may have immediate and enduring 

impacts on neural circuitry.  Long-term implications may include disruption of cellular 

differentiation as well as cognitive and behavioral development in childhood (Bourgeouis et al., 

1999).  While genes dictate much of the biological processes which aid in neurodevelopment 

from conception, the intrauterine environment acts as an intermediary through which the genetic 

blueprint is translated.  Prenatal programming of the brain is sensitive to growth factors, 

nutrients, transcription factors, and steroids such as glucocorticoids (Center on the Developing 

Child, 2007; Welberg & Seckl, 2001).   

Expressed in almost all human tissues and cells, glucocorticoids play an important role in 

the endocrine control of homeostasis; metabolism; blood pressure; immune functions; neuronal 

function and behavior; cell growth and differentiation; as well as cell survival in some tissues 

and cell death in others (Meaney, 2010; Seckl & Holmes, 2007).  At later stages of normal 
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human pregnancy, fetal exposure to a prepartum surge of circulating cortisol, the most common 

type of human glucocorticoid, is necessary for lung, liver, and kidney maturation as well as fetal 

preparation for birth (Gluckman & Hanson, 2005).  The surge is also critical for normative brain 

and neuroendocrine development in utero (Austin & Leader, 2000; King, Nicholson, & Smith, 

2001; Liggins, 2000; Welberg & Seckl, 2001).  In addition to this spike, moderate levels of 

glucocorticoids are important in general brain development, behavior regulation, and increased 

neural plasticity after birth (Catalini et al., 2002).  

Although individuals differ in their physiological responsiveness and range in ability to 

adapt to their environment, glucocorticoids are released when neural signals detecting immediate 

stressors are increased (Sapolsky, Romero, & Munck, 2000).  As the source of “fight or flight” 

response in the human body, these hormones increase the accessibility of energy which aids in 

the maintenance of cellular function and organ efficiency and acts as a protection against 

biological crisis (Meaney, 2010).  While protective in acutely stressful contexts, the 

neurobiological and behavioral responses mobilized by the endocrine system throughout the 

lifespan can become maladaptive and pathogenic if consistently activated under chronic, 

overwhelming stress and adversity (McEwen & Seeman, 1999).  

Among the unfavorable effects of chronic, elevated levels of stress response and 

consequential hormones (e.g. glucocorticoids) on cognitive function are impaired hippocampal-

dependent memory retention and retrieval as well as spatial memory in children and adults 

(McEwen, 2007).  Of all human tissues, brain tissue is thought to be especially vulnerable to 

elevated oxidative stress as a result of glucocorticoids (Costantini, Marasco, & Moller, 2011).  

Further, research has shown that younger individuals are even more susceptible to 
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glucocorticoid-induced oxidative stress (Wada et al., 2008).  Oxidative stress may compromise 

functionality, increase vulnerability to progressive damage, and be associated with the presence 

of neurodegenerative disorders (Oitzl et al., 2010).  Acting via glucocorticoid receptors, 

glucocorticoids can damage neural plasticity (Gunnar & Quevedo, 2007).  In animal models, 

chronic, elevated levels of  glucocorticoids appear to be detrimental in terms of decreased 

hippocampal, prefrontal cortical, and amygdalar volume; increased stress biological reactivity; 

and poor performance on cognitive tasks (Brabham et al., 2000; Hauser et al., 2007; Uno et al., 

1994; McEwen, 2007).  

Research on cognitive development in animal models.  For the most part, research on 

prenatal stress and developmental processes has been based in rodent and nonhuman primate 

studies (Fox & Rutter, 2010).  However, there are key translational issues when taking lessons 

learned from rodent models and applying them to humans (Glover, O’Connor, & O’Donnell, 

2010).  The effects of experiences on brain development depend on timing, frequency, and 

duration.  At birth, the rodent brain is much less mature than the human brain.  Histogenesis, or 

cell differentiation of specified cells from non-specified ones, of neurons in the human central 

nervous system begins 56 days after conception and continues throughout the first years of life.  

The initial cell differentiation and axon guidance occurs comparatively early and quickly with 

completion by mid-gestation in primates and the end of gestation in rodents (Levitt, 2003).  The 

differences in reproductive physiology are especially important when considering the amount of 

research in early human developmental processes based on studies of rodents (Power, et al., 

2006).  In fact, the first postnatal week for rodent pups could equate to the third trimester of 

gestation for humans (Dobbing, 1981).  This supports the need for additional longitudinal 

research on early experience and development during the prenatal period in human samples, 
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especially with regards to prenatal stress and long-term disturbance in endocrine function and 

cognitive development in children (Coe et al., 2003; Gunnar, Fisher, & The Early Experience, 

Stress, and Prevention Network, 2006; O’Connor et al., 2005).   

Stress Hormones and Fetal Programming for Developmental Outcomes 

While the human body’s response to stress is essential for survival, changes to fetal 

endocrine, cardiovascular, metabolic, and behavior regulation resulting from chronic maternal 

stress may be beneficial for survival while in utero but not necessarily advantageous ex utero 

(Gluckman & Hanson, 2005; Meaney, et al., 2007; Oitzl et al., 2010; Welberg & Seckl, 2001).  

During pregnancy, stress, alcohol consumption, smoking, diminished protein intake, nutrient 

excess, placental insufficiency, and glucocorticoid exposure are examples of maternal 

environmental exposures which can modify fetal organ development and endocrine functioning 

(Collins, Dunkel-Schetter, Lobel, & Scrimshaw, 1993; Harris & Seckl, 2011; Kapoor et al., 

2006; Simmons, 2008).  Maternal cardiovascular and endocrine changes that include increases in 

plasma ACTH, ɓ-endorphin, glucocorticoid, and catecholamine concentrations in the mother 

could also impact the developing fetus (Welberg & Seckl, 2001).
 
 Evidence also points to 

programming effects of stress hormones during preconception (de Kloet, E., Sibung, R., 

Helmerhorst, F., & Schmidt, M., 2005).  Characterized by birth weight, gestational age, and head 

circumference, birth size is often used as a proxy for the fetal experience of the intrauterine 

environment (Gluckman & Hansen, 2005; Sandman, Davis, Buss, & Glynn, 2011). 

Restriction of intrauterine growth acts as a protective mechanism for survival in utero 

(Seckl, Drake, & Holmes, 2005).  For example, when the fetus does not get a sufficient amount 

of oxygen or nutrients from the intrauterine environment, it shuts down non-essential functions 
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and moves blood flow to the most important organs—the developing brain, heart, and placenta 

(Gluckman & Hansen, 2005).  The fetus also changes its growth pattern and/or stops growing to 

conserve even more energy in order to strategically adapt and survive in both the short and long 

term (Gluckman & Hansen, 2005).  In this regard, poor fetal nutrition and fetal exposure to 

excess glucocorticoids are typical causes of low birth weight and preterm birth as well as later 

vulnerability to disease and disorder (Barker, 2007; Kapoor et al., 2006; O’Connor et al., 2005; 

Power & Tardif, 2005; Seckl et al., 2005).   

In addition to nutrition, social factors which influence maternal emotional well-being and 

stress, while altering the hormonal environment of pregnancy, may modify fetal endocrine 

function (Avishai-Eliner, Brunson, Sandman, & Baram, 2002; Wadhwa, Culhane, Rauh, & 

Barve, 2001; Welberg, Thrivikraman, & Plotsky, 2005).  Although the placenta forms a 

structural and biochemical barrier to many maternal factors, some still enter the immediate 

environment of the fetus.  A recent study has indicated that maternal stress during pregnancy can 

influence placental 11ɓ-hydroxysteroid dehydrogenase type 2 (11ɓ-HSD-2) activity (Welberg et 

al., 2005).  11ɓ-HSD-2 regulates fetal cortisol exposure and forms a barrier to maternal 

glucocorticoids (e.g. cortisol) as protection during important early periods of development 

(Seckl, Cleasby, & Nyirenda, 2000; Welberg & Seckl, 2001).  Since fetal glucocorticoid levels 

are much lower than maternal levels, subtle changes in placental 11ɓ-HSD-2 activity may 

profoundly affect fetal glucocorticoid exposure by increasing transfer of maternal 

glucocorticoids (Seckl et al., 2000).      

While exposure to maternal glucocorticoids is essential for normative organ and system 

development in late gestation, in earlier developmental periods it can lead to elevations in 
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postnatal child basal and stress-stimulated HPA activity (Power & Tardiff, 2005; Welberg et al., 

2005).  Increases in basal and stress-stimulated HPA activity, as well as resulting elevated levels 

of circulating cortisol, have been linked to an increased risk of subsequent disease and disorder 

(Seckl et al., 2000).  In animal models, elevated glucocorticoids during egg production in the 

mother is associated with reduced growth, condition, and body size in offspring (Erikson et al., 

2006;  Meylan & Clobert, 2005).  Further, prenatal exposure to elevated maternal glucocorticoid 

levels can program gene expression resulting in adverse influences on cardiovascular tone and 

reactivity; insulin sensitivity; production and storage of energy substrates (e.g. glucose and fat); 

birth weight; and programming of the central nervous system (Barker, 2007; Meaney et al., 

2007).  These effects increase the risk for hyperlipidemia, hyperglycemia, and hypertension, 

among other disorders. Similarly, prenatal stressors increase HPA responses to stress in later life, 

further augmenting the risk of metabolic disorders (Barker, 2007; Meaney, et al., 2007).   

Evidence from animal models also suggests that exposure to maternal stress in utero can 

result in low birthweight and cognitive impairment later in life such as learning deficits, 

increased anxiety, and reduced attention span (Glover, O’Connor, & O’Donnell, 2010; Gutteling 

et al., 2006; Hosseini-Sharifabad & Hadinedoushan, 2007; Yang et al., 2006).  In studies in 

which rats were subjected to stress throughout pregnancy, female rat pups born to prenatally 

stressed mothers have shown significantly decreased hippocampal glucocorticoid receptor (GR) 

density (Henry et al., 1994; Weinstock, Matlina, Maor, Rosen, & McEwen, 1992).  Omnipresent 

in fetal tissues from early embryonic stages, glucocorticoid receptors influence the developing 

fetus when glucocorticoids bind, triggering a cascade of events important for survival (Harris & 

Seckl, 2011).  Of particular note to cognitive development, fewer GR binding sites have 

implications for hippocampal negative feedback and termination of the pituitary–adrenal 
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response following activation (Rautanen et al., 2006).  In other words, early life endocrine 

programming due to maternal stress during pregnancy results in pups with fewer GR binding 

sites and higher, persistent levels of circulating cortisol which could lead to impaired cognitive 

outcomes in early life.  Other work has demonstrated that rats exposed to prenatal stress are more 

likely to have an accelerated and age-related decline in spatial and working memory (Vallee et 

al., 1999).  Pre and perinatal administration of glucocorticoids to pregnant rodents has resulted in 

reduced brain weight at birth as well as delayed neuronal maturation, myelination, gliogenesis, 

and synapse formation (Seckl, 2008).   

In animal studies on non-human primates, exposure to maternal stress during gestation 

has been associated with delayed object permanence in rhesus monkeys (Schneider, 1992).  

Prenatal exposure to elevated levels of glucocorticoids in rhesus monkeys has also been 

associated with reduced hippocampal volume later in life (Uno et al., 1989).  In another study, 

female rhesus monkeys who were stressed during pregnancy gave birth to offspring that 

displayed decreased birthweight, impaired neuromotor development, attention deficits, and 

emotional dysregulation into adulthood (Schneider et al., 2002). 

While high levels of stress reactivity and cortisol during pregnancy have placed children 

at higher risk for adverse developmental outcomes, these outcomes are not deterministic.  

Although the prenatal period is a critical time for development, times of sensitivity and 

programming extend beyond gestation.  Postnatal social environmental risk factors can have an 

independent effect on the well-being of the child and magnify prenatal insults to stress reactivity 

and endocrine functioning (Meaney et al, 2007; Oitzl et al., 2010).  These factors include 

extended maternal separation (e.g. isolated or deprived rearing conditions), parental divorce, 
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maternal mental illness, child abuse and neglect, and poverty (Gluckman & Hanson, 2005; 

Kapoor et al., 2006; Meaney et al, 2007).   

Postnatal influences, such as social stimulation and nurturance, can mitigate the untoward 

effects of early life programming due to maternal stress during pregnancy (Liu et al., 2000; 

Maccari et al., 1995; Weaver, et al., 2005).  Research has shown that maternal responsiveness 

and proximity may serve as protective factors, or buffers, that maintain basal cortisol levels 

during early development in rat pups (Adam, Klimes-Dougan, & Kudielka, 2007).  Reversing 

cognitive impairment resulting from early exposure to life stress, environmental enrichment 

appears to support the capacity for cognitive restoration or protection (Hedges & Woon, 2011).  

In fact, the current differential susceptibility framework dictates that those vulnerable to 

adversity may also be most likely to benefit from supportive and enriching resources (Belsky et 

al., 2009).   
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Role of the Glucocorticoid Receptor Gene in Stress Hormone Regulation 

 

Glucocorticoids, Receptors, and Sensitivity.  Glucocorticoids bind to receptors to form 

complexes which function both as transcription factors, themselves, and proteins that regulate 

Genetics 101.  Genetic information is the blueprint for the structure and function of 

proteins that allow biological processes to occur.  Everything in the human body from 

digestion to stress response takes place due to proteins employed in the maintenance of 

homeostasis.  Nucleotide sequences within DNA give rise to RNA which in turn translates 

into proteins.  Individuals may have the same types of genes but differ in DNA sequence.  

Each gene can have different alleles that result in similar or dissimilar expression and traits.  

Further, genetic causes of disorder and disease are thought to be rooted in structural 

variations of DNA at a given locus, or polymorphism (Ingles, 2004; Plomin, Defries, 

McClearn, & McGuffin, 2008; Ziegler & Konig, 2010). 

With approximately 10 million recognized, single nucleotide polymorphisms (SNPs) 

are the most common type of polymorphism, or point mutation (DeRijk, 2009).  Point 

mutations may result in transitions, substitution of one purine for another (A for G) or one 

pyrimidine for another (C for T); transversions, replacement of a purine by a pyrimidine 

and vice versa; missense mutation (changing one amino acid into another); or nonsense 

mutation (changing to a stop codon that does not allow chains of amino acids to form 

proteins).  In addition, frame shift mutations resulting from the insertion of a nucleotide can 

completely change the amino acid sequence downstream of the mutation.  The change in 

DNA sequence may or may not change the function or structure of the resulting protein 

(Ingles, 2004; Plomin et al., 2008; Ziegler & Konig, 2010).  Even if a functional protein 

results, little is known about how protein products lead to phenotypes involving behavioral 

traits or disorders.  To make things even more complicated, gene expression is specific to 

particular body tissues as well as certain phases of development (Rutter, M., 2006).  SNPs 

can influence gene expression by influencing promoter activity, transcription efficiency, 

gene splicing, translation efficacy, and/or mRNA stability (DeRijk, 2009).    

. 

 



13 

 

 

9
7 

other transcription factors to preserve homeostasis in the body’s stress response system (Colli, et 

al., 2007; Rautanen, 2006).  In the brain, specifically, glucocorticoid receptors prevent initial 

cellular reactions to stressors from overshooting, allow cells to return to baseline levels, and 

facilitate recovery through energy metabolism (Oitzl, Champagne, van der Veen, & de Kloet, 

2010).  This continuing cycle of stress, recovery, and adaptation is essential in biological 

mechanisms that allow memory storage, for example (Oitzl et al., 2010).    

In a recent study, Oitzl and colleagues posited that life programming by early experience 

and genetic foundations is controlled by GR-driven mechanisms (2010).  Sensitivity to 

glucocorticoids has been shown to vary across populations and is somewhat dependent on 

polymorphisms within the glucocorticoid receptor gene (GR gene or NR3C1) (van Rossum, et 

al., 2004) (See Figure 1).  Tissue-specific regulation of the GR gene during different 

developmental stages has been demonstrated.  In fact, changes in GR gene regulation have been 

linked to a predisposition to disease vulnerability, particularly metabolic-related, cardiovascular, 

and brain diseases (DeRijk & de Koet, 2008).   

While a large number of polymorphisms in GR gene are known, only a few have been 

found to be functional (Manenschijn, van den Akker, Lamberts, & van Rossum, 2009).  

Functional NR3C1 variants have impact on stress response system operation with lasting 

consequences for stress responsiveness and emotional arousal later in life (DeRijk et al., 2006; de 

Rijk, 2009; Murani et al., 2010; Oitzl et al., 2010).  Deficits in GR activity have also modifed the 

effects of glucocorticoids in other targeted systems including metabolic, cardiovascular, and 

immune (DeRijk, 2009).  For example, mutations in the glucocorticoid receptor gene have often 

caused glucocorticoid resistance which results in increased circulating glucocorticoids (DeRijk, 

Katraki, & de Koet, 2010; Spijker & van Rossum, 2009).   
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Some work in adult populations on metabolic syndrome has demonstrated an association 

between functional variants (rs6190, rs6198, and rs6189) and decreased sensitivity to 

glucocorticoids (van Rossum et al., 2004; DeRijk, 2009; Russcher et al., 2005; van Rossum et 

al., 2002) while others have demonstrated an association between SNPs (rs6195 and rs4142324) 

and increased sensitivity (DeRijk, 2009).  Relevant to the current study and present in 

approximately 35% of the general population, the rs6198 polymorphism (A3669G) has been 

associated with increased GR β protein expression.  The augmented expression is thought to 

have a negative effect on GR α transcriptional activity which results in glucocorticoid 

insensitivity (van Rossum, E. & van den Akker, E., 2011).  In several studies, A3669G has been 

shown to be associated with the presence of rheumatoid arthritis, cardiovascular disease, and 

systemic lupus erythematosis as well as more favorable metabolic profiles in adult populations 

(Manenschijn, van den Akker, Lamberts, & van Rossum, 2009).  Homozygous carriers appear to 

maintain hyperactive immune systems (DeRijk, Katraki, & de Koet, 2010).   

Also associated with glucocorticoid insensitivity and pertinent to the current study, 

rs6189/rs6190 (ER22/23EK) polymorphisms have been found in approximately 7% of the 

general population.  The presence of ER22/23EK has been associated with higher intracellular 

concentrations of the less active variant of the glucocorticoid receptor which may lead to 

glucocorticoid resistance (van Rossum, E. & van den Akker, E., 2011).  Research on ER22/23EK 

has demonstrated more favorable metabolic profiles and body composition in carriers of the 

SNPs than non-carriers (Manenschijn, van den Akker, Lamberts, & van Rossum, 2009).  In 

elderly patients, ER22/23EK has been shown to be associated with decreased risk of dementia 

and longevity.  In younger populations, ER22/23EK has been shown to be associated with 

increased height (Kuningas, Mooijaart, Slagboom, Westendorp, & Heemst, 2006), as well as 

http://www.springerlink.com/content/?Author=Simon+P.+Mooijaart
http://www.springerlink.com/content/?Author=P.+Eline+Slagboom
http://www.springerlink.com/content/?Author=Rudi+G.+J.+Westendorp
http://www.springerlink.com/content/?Author=Diana+van+Heemst
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increased catch-up growth and lower insulin levels in adolescents born prematurely (Finken et 

al., 2007).   

Recent studies in adults have shown an increased risk of major depression in ER22/23EK 

carriers (Spijker & van Rossum, 2009).  In a retrospective longitudinal adult cohort, Bet and 

colleagues found a moderation effect of ER22/23EK on the association of childhood adversity 

experienced before age 18 and depression later in life (2008).  In carriers of ER22/23EK, the 

influence of childhood adversity increased risk of depression more than twofold (OR = 2.75, p < 

.05). 

While the GR gene has been examined with respect to brain development and cognitive 

outcomes, a dearth of research of the rs6198 and rs6189/rs6190 SNPs and cognition exists.  

Further, studies of young children with respect to rs6198 and rs6189/rs6190  have been sparse or 

non-existent.   

Cumulative Risk in Children, Stress, and Developmental Outcomes 

Literature on cumulative risk in children has primarily focused upon early origins of later 

cognitive outcomes within childhood in addition to cross-sectional examinations of 

developmental outcomes within specific childhood environments.  Stressing the significance of 

the number of risk factors in a child’s background and not any single factor, Rutter studied 

cumulative risk in relation to psychiatric disorder in 10-year-old children (1979).  Rutter’s risk 

index included marital distress, low SES, large family size or overcrowding, paternal criminality, 

maternal psychiatric disorder, and admission to foster care.  In this cross-sectional study, risk for 

psychiatric disorder rose from 2% in families with no risk factors to 20% in families with 4 or 

more risk factors (1979).   
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Another study looking at cumulative risk in relation to behavioral and emotional 

disorders in 11 year-old children found similar results.  Using a related but different combination 

of risk factors, this work defined cumulative disadvantage as the number of residence and school 

changes, marital status, low SES, marital separation, young motherhood, low maternal cognitive 

ability, poor family relationships, seeking marriage counseling, and maternal depression 

(Williams, Anderson, McGee, & Silva, 1990).  Results showed that 7% of children who had two 

or fewer disadvantages displayed behavioral problems in contrast to 40% of children who had 

eight or more.  However, the study may have lacked statistical power in that the sample size was 

only 90 children.  Further, criteria for diagnosis of emotional and behavioral disorders were 

vague resulting in the possibility of children with less severe disorders being misclassified and 

placed in the no disorder group. 

Also looking at cross-sectional relationships, Evans more recently examined the 

association of cumulative risk and chronic physiological stress, or allostatic load, in middle 

school children taking into consideration the protective factor of maternal responsiveness (2007). 

To operationalize cumulative risk in children, the following nine domains of risk were included: 

crowding, noise, housing problems, family separation, family turmoil, violence, poverty, single 

parenthood, and maternal high school dropout.  In middle school children whose mothers 

provided low responsiveness, higher levels of both psychosocial and physical components of the 

cumulative risk measure were associated with higher levels of allostatic load.  The results were 

an expansion of Evans’ earlier work which showed similar results among 8 to 10 year old 

children in which allostatic load was linked to higher levels of cumulative risk (Evans, Kim, 

Ting, Tesher, & Shannis, 2007).  Unable to determine causality as in all cross-sectional studies, 

the major limitation of the study was the correlational design. 
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While research exists that reflect linkages between cumulative risk and later 

developmental and health outcomes, there is a dearth of evidence that specifically focuses on 

cognitive outcomes in high-risk samples.  In one of the few studies in this realm, Sameroff and 

colleagues (1987) examined the association of cumulative risk in the first year of the child’s life 

and subsequent IQ at age 4.  Employing maternal, family, and demographic elements measured 

during the first year of the child’s life, the cumulative risk index included maternal mental 

health, maternal anxiety, parental perspectives on child development, mother-child interaction, 

maternal education, head of household occupation, minority status, maternal social support, 

family size, and maternal stressful life events.  When comparing low and high risk children from 

215 families, high risk 4-year-olds were more than 24 times likely to have IQ scores below 85, or 

low normal intelligence.  Further, no single risk factor was predictive of outcome in isolation 

(Sameroff, Seifer, Barocas, Zax, & Greenspan, 1987). 

Recently more studies have begun looking at the perinatal period with regards to 

maternal stress and cognitive outcomes but have produced variable results.  In this context, 

cumulative risk acts an indirect proxy for biological measures of stress in addition to an indirect 

measure of fetal exposure to elevations in glucocorticoid levels.  A number of studies have 

demonstrated significant associations between prenatal maternal anxiety measures and delayed 

cognitive and neuromotor development in children (Brouwers, van Baar, & Pop, 2001; DiPietro, 

Novak, Costigan, Atella, & Reusing, 2006; Davis & Sandman, 2010; Glover, O’Connor, & 

O’Donnell, 2010; Gutteling et al., 2006; Huizink, Robles de Medina, Mulder, Visser, & 

Buitelaar, 2003; Laplante et al., 2004) while others have not (Brouwers et al., 2001; Davis & 

Sandman, 2010; DiPietro et al., 2006).   



18 

 

 

9
7 

For example, a recent study found that exposure to elevated maternal cortisol and 

pregnancy-specific anxiety early in human gestation (before 18 weeks) was associated with a 

delayed rate of development during the first year of life as well as poorer performance on 

measures of mental development at age 12 months (Davis & Sandman, 2010).  In contrast, 

elevated maternal cortisol levels during late gestation (after 30 weeks) demonstrated the opposite 

effects, suggesting the importance of timing of cortisol exposure for infant outcomes.  In late 

gestation, higher levels of maternal cortisol were linked to accelerated cognitive development 

and higher scores at 12 months (Davis & Sandman, 2010).  In sum, the research demonstrates 

that maternal cortisol and pregnancy-specific anxiety influence fetal programming that affect 

later cognitive outcomes.  However, the evidence may not be generalizable to high risk 

populations, given that Davis and Sandman’s (2010) sample consisted of 112 mothers who were 

primarily older, nonsmoking, middle class, married women with high school degrees.   

Another study by Sandman and colleagues assessed maternal psychosocial and biological 

stress measures, such as pregnancy-specific anxiety and cortisol, at five gestational intervals in 

addition to multiple points after birth through age 2 years (2011).  Child neurodevelopment was 

examined with cognitive testing, measures of adjustment, and brain imaging between 5 and 8 

years of age.  Results demonstrated that psychobiological markers of stress during pregnancy 

result in delayed fetal maturation, disrupted emotional regulation, impaired cognitive 

performance during infancy, and reduced brain volume in regions associated with learning and 

memory in 6 to 8 year old children.  In contrast to previous work, the study also demonstrated 

that both prenatal psychosocial and biological stress had independent, significant effects on 

cognitive development; elevated levels of stress hormones did not necessarily represent maternal 

experiences of increased psychosocial stress.  With respect to reduced gray matter volume, 
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primary effects of high levels of prenatal maternal anxiety were seen in girls.  Associations 

between maternal prenatal stress and brain-related deficits in children remained with the 

inclusion of preterm birth and growth restriction as well as a variety of postnatal controls such as 

postnatal maternal stress and depression.  Again, Sandman and colleagues employed a healthy 

low risk sample of 125 subjects (Sandman et al., 2011). 

Also focusing on biological measures of stress during pregnancy, Bergman and 

colleagues prospectively followed 125 mothers and their normally developing children from 

pregnancy until 17 months after birth.  At approximately 17 weeks gestation, amniotic fluid was 

collected in order to measure fetal exposure to cortisol.  Infants were assessed at 17 months using 

the Bayley Scales of Infant Development, and infant–mother attachment was classified using the 

Ainsworth Strange Situation assessment.  The research demonstrated that prenatal cortisol 

exposure negatively predicted cognitive ability in infants while controlling for prenatal, obstetric, 

and socioeconomic factors.  Further, the association was moderated by attachment status.  The 

study is consistent with the work of Sandman’s team as well as others with respect to fetal 

glucocorticoid exposure and unfavorable effects on cognition.  Influences that lead to increased 

levels of stress hormones were not examined.  One possible limitation of the work was that 

samples of amniotic fluid were only taken at one point during pregnancy, and it is possible that 

there could have been variation in cortisol over the course of gestation and development.  As in 

previously described research, the study employed a fairly healthy, low risk sample (Bergman, 

Sarkar, Glover, & O'Connor, 2010). 

Also examining maternal stress during pregnancy, recent work assessed fetal 

neurobehavioral development and functioning in a sample of 112 non-smoking, married, well-
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educated, mature, non-Hispanic White women (DiPietro et al., 2010).  Data was collected from 

28 to 34 weeks gestation and in the first weeks post birth.  Pregnancy-specific stress was found 

to be associated with higher levels of neural conductivity, fetal heart rate variability, and steeper 

inclines in somatic-cardiac couplings as mothers came to term, a marker for neural integration 

and fetal well-being (Baser, Johnson, & Paine, 1992; Johnson, Besinger, Thomas, Strobino, & 

Niebyl, 1992).  These fetal indicators serve as proxies for neurobehavioral development in utero 

and led researchers to believe that neurologic maturation had been facilitated due to maternal 

stress (DiPietro et al., 2010).   

Findings were consistent with the results found by Davis and Sandman (2010) during late 

gestation but run counter to other studies that demonstrate deleterious effects of maternal stress 

on fetal development.  However, it is important to keep in mind that some level of stress is 

necessary for normative brain development.  The authors stated that the employed stressors were 

more likely fall into the categories of “positive” or “tolerable” levels of stress as opposed to 

“toxic” levels--chronic, elevated levels that exceed the capabilities of recovery (DiPietro et al., 

2010; Shonkoff, 2006).  As in the Davis and Sandman study, results lacked generalizability to 

more diverse populations, and specifically those with fewer economic resources, exposure to 

multiple stress factors, and more stressful events.   

In sum, research has shown that cumulative risk directly experienced by children during 

early childhood is associated with increased cortisol and cognitive deficit.  Evidence has 

indicated that various social environmental stressors experienced by mothers during pregnancy 

and high levels of stress hormones are related to delayed cognitive development in infants.  

While we know that the quality of the fetal environment and the timing of exposure to a variety 
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of substances, including stress hormones, are critical for developmental and health outcomes 

(Barker, Eriksson, Forson, & Osmond, 2002; DiPietro et al., 2010; Fox & Rutter, 2010; 

Grossman et al., 2003), less is known about the indirect consequences of maternal cumulative 

risk on the fetus and later cognitive development, especially in humans (Anderson & Armstead, 

1995; DiPietro et al., 2010; MacArthur Research Network on Socioeconomic Status and Health, 

2009; Sameroff, Gutman, & Peck, 2003; Sandman et al., 2010).  In addition, there is no 

consensus on how to measure cumulative risk, in general, (Evans & Kim, 2010) and empirical 

evidence regarding “toxic stress” and cognitive outcomes in high risk populations is lacking in 

perinatal research.   

Present Study 

Under the premise that adaptation occurs in utero that sets the course for later cognitive 

deficit, the current study examines the association of maternal cumulative risk, or the combined 

effects of chronic social and environmental stressors,  during pregnancy and birth outcomes as well 

as IQ at ages 3 and 4 years.  The impact of cumulative risk on birth outcomes provides a look at 

proximal, direct effects of maternal cumulative risk on the fetus.  Further examining the association 

of maternal cumulative risk and child IQ, this work also examines possible mediation effects of birth 

outcomes in addition to potential moderation effects of various single nucleotide polymorphisms in 

the glucocorticoid receptor gene and cumulative genetic influences of reactive GR genotypes.  

It is hypothesized that increased maternal cumulative risk during pregnancy will be 

negatively associated with birth outcomes of birth weight and gestational age.  In addition, increased 

maternal cumulative risk during pregnancy will be negatively associated with IQ scores in children 

at ages 3 and 4 years.  It is also hypothesized that the association of maternal cumulative risk during 

pregnancy and child IQ at ages 3 and 4 will remain significant after controlling for postnatal 
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influences of the home environment such as provision of appropriate toys, organization, variety in 

daily routine, safety, parenting, as well as child abuse and neglect.  The change in IQ from 3 to 4 

years old will also be associated with maternal cumulative risk during pregnancy.  Further, the 

relationship between maternal cumulative risk and child IQ at ages 3 and 4 will not be highly 

mediated by birth outcomes, demonstrating a direct effect of maternal cumulative risk during 

pregnancy on cognitive development in children.  Focusing on a high risk sample, the study employs 

a new measure of cumulative risk that accounts for pregnancy-specific and general sources of social 

and environmental stress. 

Using a gene by environment design, this study also explores five variants of the 

glucocorticoid receptor (GR) gene involved in glucocorticoid sensitivity.  It is the first to 

examine the effects of environmental maternal cumulative risk on fetal development with regards 

to variation in GR gene in children.  It is hypothesized that variability in the GR gene will 

moderate the relationship between maternal cumulative risk and birth outcomes as well as child 

IQ at ages 3 and 4 years.  Specifically, GR polymorphisms rs6190 and rs6198 in children will be 

associated with birthweight as well as IQ at ages 3 and 4 years.  Further, GR rs6190 and rs6198 

in children will moderate the relationship between maternal cumulative risk during pregnancy 

and child IQ at ages 3 and 4 years.  As an exploratory exercise due to lack of evidence in current 

literature, it is hypothesized that one or more of the polymorphisms GR rs12656106, rs4244032, 

and/or rs2918417 in children will be associated with birthweight as well as IQ at ages 3 and 4 

years.  Further, GR rs12656106, rs4244032, and/or rs2918417 will moderate the relationship 

between maternal cumulative risk during pregnancy and child IQ at ages 3 and 4 years.  Finally, 

the cumulative measures of genetic reactivity will also moderate the relationship between 

maternal cumulative risk during pregnancy and IQ at ages 3 and 4 years.  These hypotheses are 
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in accordance with recent research that highlights the role of glucocorticoids in fetal brain 

development and stress pathways. 

The following phenotypic research questions will be explored: 

1. Is higher maternal cumulative risk during pregnancy negatively associated with birth 

weight?   

2. Is higher maternal cumulative risk during pregnancy negatively associated with 

gestational age?   

3. Is higher maternal cumulative risk during pregnancy negatively associated with IQ scores 

in children at age 3?   

4. Examining the strength of the relationship between maternal cumulative risk and child 

IQ, is maternal cumulative risk during pregnancy still negatively associated with IQ 

scores in children at age 3 once controls for postnatal environment are introduced?  

5. Is higher maternal cumulative risk during pregnancy negatively associated with IQ scores 

in children at age 4?   

6. Examining the strength of the relationship between maternal cumulative risk and child 

IQ, is maternal cumulative risk during pregnancy still negatively associated with IQ 

scores in children at age 4 once controls for postnatal environment are introduced?  

7. If cumulative risk is negatively associated with IQ at age 4 and gestational age or birth 

weight, do birth outcomes mediate the relationship between maternal cumulative risk 

during pregnancy and IQ in children at age 4? 

8. Is maternal cumulative risk during pregnancy associated with change in IQ from age 3 to 

4 years?   

The following gene-environment research questions will be explored: 
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9. Are individual polymorphisms in the GR gene, such as rs6198, rs6190, rs4244032, and 

rs2918417, associated with birthweight? 

10. Are individual polymorphisms in the GR gene, such as rs6198, rs6190, rs4244032, and 

rs2918417, associated with IQ at ages 3 and 4 years? 

11. If maternal cumulative risk during pregnancy is associated with lower IQ at ages 3 and 4, 

do individual GR polymorphisms in children, such as rs4244032, rs6190, rs2918417, and 

rs6198, moderate these relationships? 

12. If maternal cumulative risk during pregnancy is associated with lower IQ at ages 3 and 4, 

does a cumulative measure of genetic reactivity in the GR gene moderate these 

relationships? 
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Method 

Data  

Data come from the longitudinal, randomized clinical trial of the Nurse Family 

Partnership Program that began in Elmira, New York in 1977.  In 1981, the semi-rural 

community was rated the worst Standard Metropolitan Statistical Area in the country in terms of 

economic conditions (Olds et al., 1983).  The Nurse Family Partnership Program Study assessed 

the effects of the Nurse Family Partnership Program on pregnancy outcomes, parenting quality, 

child health and development, and maternal life course development. 

Pregnant women were recruited through a free health department antepartum clinic, 

Planned Parenthood, public schools, a variety of health and human service agencies, and offices 

of private obstetricians.  Mothers who were either unmarried, from Hollingshead social class IV 

or V, and/ or under age 18 at registration were actively recruited.  However, in order to add to 

sample variability, anyone could participate regardless of age, SES, or marital status if she were 

nulliparous.  In all, 500 women were interviewed between April 1978 and September 1980 and 

there were no significant differences in age, marital status, and education between those women 

who participated and those who declined (Olds et al., 1983). 

The participants included 400 nulliparous women who were registered before their 30
th

 

week of pregnancy, or less than 26 weeks of gestation.  However, for the purposes of this study, 

two mothers were excluded because they gave birth to twins.  As a result, the full study sample 

included 398 mothers.  Of these mothers, 61.6% were married, 60.3% were 19 years old or 

younger, and 45.0% had not yet graduated from high school.  In addition, 88.5% were White 

with the remaining 11.5% characterized as “non-White”.  More information on the background 

characteristics are presented in Tables 1 and 2.  
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Before treatment group assignment, women were equivalent on all standard 

socioeconomic background characteristics (Olds et al., 1983).  Mothers were assigned at random 

to one of four treatment conditions.  Families in treatment group one served as the original 

control group with no services provided to the mother during pregnancy.  Children received 

health and developmental screenings by an infant specialist when they reached 1 or 2 years of 

age, as well as referrals to other specialists for further evaluation and treatment if necessary.  

Treatment group two consisted of families who were provided with free transportation for 

regular prenatal and well-child care at local clinics and physicians’ offices.  At one or two years 

of age, children received health and developmental screenings by an infant specialist.  Later, 

treatment groups one and two were combined to form the control group due to a lack of 

differences between the two in use of prenatal and well-child care (Olds et al., 1986).  Families 

in treatment group three were provided with a nurse home visitor only during pregnancy while 

families in treatment group 4 were provided with a nurse home visitor during pregnancy as well 

as the child’s first 2 years of life post delivery.  In addition, treatment groups three and four both 

received the aforementioned screenings and transportation (Olds et al., 1983).  

 The Elmira phenotypic data were collected at study intake, 32 weeks of pregnancy, and 

child birth as well as when the child was 6, 10, 12, 22, 24, 34, 36, 26, and 48 months of age.  

Information on family, child, and home characteristics was obtained from the study participant 

(mother), child, child’s father, child’s grandmother, pediatric and hospital medical records, and 

child protective service records in New York State as well as the 14 other states to which 

families dispersed over time.  During the first 4 years after service delivery, attrition rates varied 

from 15 to 21% (depending on assessment period), and there were no differences across 

treatment groups in the proportion of participants with completed assessments (Olds et al., 1983).     
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When the Elmira “children” were 27 years of age, DNA was collected through blood draws, 

buccal swabs, and saliva (N=241).  Background characteristics of the 241 mothers of children 

who submitted DNA samples are presented in Table 1.  

Early analyses of the Elmira data demonstrated program impacts on child abuse and 

neglect prevention and child emergency room visit decline, especially for accidents and 

poisoning, for women who felt they had less control over their lives (Olds et al., 1986).  There 

also were treatment differences in reports of maternal smoking during pregnancy, maternal social 

support, pre-term delivery, infant crying, positive mood, maternal conflict with and scolding of 

the child, and provision of appropriate play materials (Olds et al., 1986; Olds, 2002).  Though 

marginally statistically significant, improved intellectual functioning was demonstrated in 

children from the highest risk families who participated in the intervention (Olds et al., 1986).  

Positive programs effects were concentrated in mothers who were at the highest risk for care-

giving dysfunction (e.g. mothers who were unmarried, low-income, and had high external locus 

of control) (Olds et al., 1986).  The 15-year follow-up indicated long-term effects on the number 

of arrests, convictions, substance abuse, and promiscuity among children of low-income, 

unmarried mothers who participated in the treatment group (Olds, 2002).  Further, improved 

maternal life outcomes such as fewer subsequent pregnancies, greater workforce participation, 

and reduced use of public assistance, were associated with early intervention (Olds, 2002). 

Measures 

Maternal Cumulative Risk Index.  While research on cumulative risk in children has 

examined life course health and development, there is no consensus as to the best means to 

measure cumulative risk in pregnant women with the life course of the fetus in mind.  Founded 

on cumulative risk models presented by Sameroff and Evans, this cumulative risk index seeks to 
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capture environmental stressors that lead to persistent, elevated stress levels in mothers (Evans, 

Kim, Ting, Tesher, & Shannis, 2007; Sameroff, Seifer, Barocas, Zax, & Greenspan, 1987).  The 

index includes both tangible life stressors (major life events that have occurred) and general life 

anxiety (how sources of stress are perceived) components.  Requirements for index inclusion 

were 1) low multicollinearity among risk items (VIF = 1.19; See Table 3), 2) significant 

correlation between each risk item and IQ scores at ages 3 and 4) empirical basis in 

development, stress, and health literatures. In addition, variables were examined for normality 

and outliers.  For each of the 12 risk factors, bivariate analyses were performed to ensure that 

each factor was significantly correlated with child IQ score at ages 3 and 4 (See Table 4).   

Specifically, the cumulative risk index includes tangible life stress measures of maternal 

education (1 = high school dropout), number of individuals living in the household, maternal age 

(1 = 19 years old or younger), employment status (1 = unemployed), minority status (1 = non-

White), marital status (1 = unmarried), and household income as stressors collected at intake.  

Annual household income was reported at intake in 1977 dollars and included reported income 

from the mother, father, and “other” sources (1 = below the 1977 federal poverty level for a 

family of three).   

Because the models were based on Sameroff’s and Evans’ models in children, additional 

age-appropriate tangible stressors were added to reflect cumulative risk in mothers (Barker et al., 

2002; Brooks-Gunn, 1991; Harburg et al., 1993; Rozanski, Blumenthal, & Kaplan, 1999; Rutter, 

1979; Taylor & Repetti, 1997; Williams et al., 1990).  Supplementary measures of risk assessed 

at 32 weeks of pregnancy include whether or not the mother had recently become homeless and 

been engaged in criminal behavior.  The presence or absence of relationship problems at 32 

weeks of pregnancy was also included (1 = emotional and/or physical abuse from a significant 
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other, recent marital separation/divorce, or recent marital affair).  To account for possible effects 

of social isolation or impoverishment, the absence of a maternal support network at 32 weeks of 

pregnancy was also included (1 = no social support) (Cohen, Janicki-Deverts, & Miller, 2007; 

Collins, Dunkel-Schetter, Lobel, & Scrimshaw, 1993; Rozanski et al., 1999; Sameroff et al., 

1987; Taylor & Repetti, 1997).  Maternal support network was defined as having at least one 

individual with whom the mother reported feeling close.  In addition, if participants answered 

“Yes”, a score of 1 was also given.  For example, if the mother had suffered emotional or 

physical abuse by her partner, she was given 1.  All continuous items included in the cumulative 

risk index were re-coded dichotomously.  For example, the number of individuals living in the 

household in the top quartile of the sample distribution was given a score of 1.  A score of 0 was 

given to all other cases.   

The inclusion of a general life anxiety component was another augmentation based on 

existing stress literature targeted to an adult population (Cohen et al., 2007; Kivimaki et al., 

2006; MacArthur Research Network on Socioeconomic Status and Health, 2009; Melamed, 

1995; Rozanski et al., 1999; Taylor & Repetti, 1997).  General life anxiety was measured by a 

survey administered at 32 weeks of pregnancy that included questions regarding general anxiety 

about employment and/or school; living arrangements; finances; upsetting others due to 

pregnancy; caring for the baby once born; attributes and health of the baby; emotions, 

dependence, and appearance during pregnancy; giving birth; and own health (Olds et al., 1983).  

All general life anxiety items were evaluated using Likert scales that ranged from 1 to 5 (1 = 

“Not worried at all”; 5 = “Extremely worried”).  The 9 items were summed to create measure 

that ranged from 0 to 45, and the Cronebach’s α for the scale was 0.81. The general life anxiety 
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component was re-coded dichotomously with a score of 1 given if the mother’s exposure was in 

the top quartile of the sample distribution.   

Cumulative risk exposure (0-12) was calculated by summing across the 12 singular risk 

factors.  The index was then used as a continuous measure to preserve power.  The range of 

scores among the full sample of mothers was 1 to 9 with a mean of 4.2 and standard deviation of 

2.1.  In the sample of mothers whose children later provided DNA at age 27 years, the range of 

scores for cumulative risk exposure was 1 to 9 with a mean of 4.3 and standard deviation of 2.0. 

Birth outcomes.  Birthweight and gestational age have been found to predict IQ up to 18 

years later.  For example, research has shown that 8-month-old infants with lower birth weight 

and higher neonatal risk scores are at higher risk of neurological impairment and perform worse 

on measures of verbal IQ at age 8 years as compared to their peers with normal head sizes (Hack 

et al., 1991).  Although the strength of association declines with age, heavier birth weight and 

better neonatal health have been positively associated with cognitive outcomes at 12, 24, and 36 

months of age (Brooks-Gunn, Klebanov, Liaw, & Spiker, 1993).  In a high risk sample, very low 

birth weight was associated with lower IQ scores even at school age (McCormick, Brooks-Gunn, 

Workman-Daniels, Turner, & Peckham, 1992).  Infants who were born under 750 g performed 

worse than other infants on measures of psychomotor skills, cognitive ability, and academic 

achievement in kindergarten.  In addition, gestational age was significantly associated with IQ in 

children who had very low birth weight (Hack et al., 1994).  More recent work by Hack and 

colleagues (2002) has demonstrated that adolescents who were born under 1500 g had a lower 

mean IQ, had poorer academic achievement, and were less likely to graduate high school than 

their normal birth weight peers.  Gestational age has also been shown to be important with regard 
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to brain structure and function. Research has shown that babies born at 33 weeks or less have 

lower IQ scores in adolescence relative to their full term counterparts (Narberhaus et al., 2007).  

In this study, birthweight (in grams) was obtained from hospital records while gestational 

age was estimated by local pediatricians and nurse practitioners who conducted physical exams 

and a modified Dubowitz Gestational Age Assessment (Dubowitz, Dubowitz, & Goldberg, 

1970).  In addition, the estimated length of gestation was based upon the mother’s last reported 

menstrual period and ultrasound readings taken at less than 28 weeks of gestation for some 

women.  Both birth outcomes were employed as continuous variables in the analysis (See Table 

2).   

IQ at ages 3 and 4 years.  In the Western world, IQ is often seen to be a predictive 

measure of education and career progression and performance (Sternberg, Grigorenko, & Bundy, 

2001).  There is evidence that supports a negative relationship between IQ and delinquency, 

independent of social class, race, and gender.  Despite normative variations, IQ is fairly stable 

during development within individuals (Sternberg et al., 2001).  In addition, the predictability of 

IQ increases with child’s age (Sternberg et al., 2001). 

At ages 3 and 4 years, children’s IQ was assessed using the Stanford-Binet Form L-M 

Test of Intelligence, the most commonly used intelligence test for this age group (Sattler, 1992).  

The Stanford-Binet measure of IQ has been shown to be fairly stable from age 3 to 12 years 

(Sternberg et al., 2001).  Normed for the 1973 population of American children, the L-M version 

of the test included vocabulary measures and a single age scale in order to assess general 

intelligence.  Form L-M maintains approximately a 0.80 correlation with current general 

intelligence components of new versions of the Stanford-Binet (Becker, 2003).  In this analysis, 

the Stanford-Binet Intelligence test was employed as a continuous variable.  At age 3 years, the 
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range of IQ scores was 61.0 to 160.0 with a mean of 102.8 and standard deviation of 14.6 points.  

At age 4 years, the range of scores was 68.0 to 160.0 with a mean of 109.6 and standard 

deviation of 13.8 (See Table 2).   

Maternal controls.  Because poor nutritional status is a form of prenatal stress that can 

modify HPA axis function as well as birth outcome, the maternal Nutrient Adequacy Reporting 

Survey (NARS) reported at 32 weeks of pregnancy was included (Cohen et al., 2007; Desai & 

Hales, 1997; Kapoor et al., 2006; Seckl & Holmes, 2007; Welberg & Seckl, 2001).  Maternal 

smoking status at intake, measured as the number of cigarettes smoked per day, was also 

included due to its association with impaired intellectual functioning in the first four years of life, 

among other adverse child outcomes (Olds, Henderson, & Tatelbaum, 1994).  Treatment group 

was also included as a control variable with participation in the Nurse Family Partnership 

Program coded as 1.  Maternal smoking and NARS were included as continuous variables (See 

Table 1).   

Child controls.  Child sex was included as a control variable to account for any possible 

sex differences in birth outcome as well as HPA axis stress response (Kudielka & Kirschbaum, 

2005; Muller & Bale, 2008; Seckl & Holmes, 2007; Willerman, 1972) (See Table 2).  

Postnatal environment.  In order to take into account the effects of both intra and extra-

uterine environments on cognitive development, the quality of the child’s home environment was 

assessed using Caldwell’s Early Childhood Home Observation for Measurement of the 

Environment (EC-HOME) at ages 3 and 4 years (Bradley & Caldwell, 1980; Caldwell & 

Bradley, 1979; Totsika & Sylva, 2004).  Based on direct observations of the home environment 

and semi-structured interviews with mothers, this 55-item measure assessed provision of 

appropriate play materials, organization, and variety in daily routine, as well as the safety of the 
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home environment with respect to home hazards and poisons.  It also examined maternal 

involvement, emotional and verbal responsiveness, and avoidance of restriction and punishment.  

The internal consistency for this version is 0.93 (Bradley & Caldwell, 1979) (See Table 2).   

The number of incidences of child abuse and neglect from birth until age 4 years were 

also included in the model, when applicable.  Extracted from the records of the county child-

protective services unit, only reports of verified cases of neglect or abuse as defined by New 

York State law were included.  Further, records were examined from state central registries from 

15 other states to which families dispersed until the child was age 4 years (See Table 2).   

Genetic markers.  DNA was extracted from samples collected via 5 mL vacutainer tubes 

containing ethylenediaminetetraacetic acid (EDTA).  Genomic DNA was then sent to Illumina 

for genotyping where it was immobilized in streptvidin-coated magnetic beads.  Assay 

oligonucleotides were then annealed to genomic DNA, and oligo extension and ligation 

occurred.  PCR amplification took place before hybridization and imaging using a BeadArray 

reader (Fan et al., 2003).  The glucocorticoid gene was sampled multiple times to account for 

multiple markers and haplotypes (blocks of combinations of SNPs within one gene).  SNPs were 

selected due to the following criteria: 1) empirical evidence of association with glucocorticoid 

sensitivity, 2) SNPs adequately represented the glucocorticoid receptor gene, and 3) availability 

of markers.  SNPS from the glucocorticoid receptor (GR) gene included rs12656106, rs4244032, 

rs6190, rs2918417, and rs6198.  Table 2 presents the SNPs examined in this study and the 

distribution of genotype frequencies.  For the five SNPs, missing data ranged from 1.2 to 2.0% 

and were not imputed.  All SNPs are located on chromosome 5 (5q31-32) (NCBI, 2010) (See 

Figure 1).  No samples failed genotyping consistently.   
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As a check of data quality and error in genotyping, Hardy-Weinberg Equilibrium (HWE) 

Testing was performed using Haploview.  Errors have been shown to lead to false homozygotes 

and a heterozygote deficiency (Ziegler & Konig, 2010).  HWE assumes that genotype and 

genotype frequencies remain stable over generations in a large, randomly mating sample.  It also 

assumes that there is a fixed relationship between allele and genotype frequencies (Ziegler & 

Konig, 2010).  Four out of five SNPs were in HWE; these included rs6198, rs6190, rs2918417, 

and rs4244032.  Glucocorticoid receptor rs12656106 deviated from HWE and was not included 

in analyses.   

To examine the association of GR alleles at given loci, linkage disequilibrium was 

examined using Haploview as well (See Figure 2).  For the remaining markers, linkage 

disequilibrium (LD) proved fairly low for all markers with R
2
 ranging from 0.03 to 0.38.  LD of 

0.8 and higher typically indicates high correlation (Ziegler & Konig, 2010).  Low LD indicated 

that each SNP employed in this analysis investigated a different section of the genome. 

All SNPs were coded in three different ways.  First, to examine “per allele” risk, each 

SNP was coded with the homozygous genotype composed of the highest frequency alleles as 0, 

heterozygous genotype as 1, and the homozygous genotype made of the lowest frequency alleles 

as 2.  Next, SNPs were coded dichotomously to examine risk of minor versus major alleles.  

Again, the homozygous genotype made of the highest frequency alleles was designated as 0.  

The remaining combination of hetero and homozygous genotypes were coded as 1.  Finally, to 

delve deeper, individual genotypes within a given SNP were dummy-coded.  For example, 

genotype A/A of rs6198 was coded as 1 with A/G and G/G coded as 0.  In a different variable 

characterizing rs6198, genotype A/G was coded as 1 with A/A and G/G coded as 0.  In yet 

another variable describing rs6198, genotype G/G was coded as 1 with A/A and A/G coded as 0.   
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Cumulative Genetic Risk.  An additive measure of genetic risk was created by coding 

reactive alleles that inferred risk as 1 and those that had no significant or served as a protective 

factor as 0.  Cumulative genetic risk exposure in children (0-2) was calculated by summing 

across the 2 reactive genetic risk factors—rs6190 G and rs6198 G (See Table 2).   

Analytic Strategy 

Data were analyzed using STATA versions 10 and 11.  To increase power, issues of 

missing data were remedied using multiple imputation chained equations (ICE in STATA) 

(UCLA: Academic Technology Services, Statistical Consulting Group, 2010) for all independent 

variables.  Multiple imputation methods were not employed for genetic data and dependent 

variables of interest.  Running appropriate regression models (e.g. linear, logistic, or multinomial 

regression) depending on data type, this multiple imputation strategy uses all other variables in 

the model as predictors of a single variable of interest that contains missing data.  Analyses of 

models of interest are run in each of the imputed data sets and later combined to produce a single 

set of results. 

Containing different sets of imputed variables, five imputed datasets were created to fit 

the multiple regression models.  In single imputation methods, imputations are only estimates 

and tend to overstate confidence in parameter estimates.  Multiple imputations allows for the 

uncertainty in the imputed values to be taken into account.  Five imputed datasets were employed 

due to the small amount of missing data in this study (UCLA: Academic Technology Services, 

Statistical Consulting Group, 2010).  It is important to note that only models examining 

phenotypic data employed imputed data. 
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To explore research questions 1, 2, 3, and 5, multiple regressions were employed to test 

the association between maternal cumulative risk during pregnancy and birth weight, gestational 

age, and child IQ scores at ages 3 and 4 years while controlling for various maternal and child 

characteristics.  With regards to research questions 4 and 6, tests for robustness of the association 

between maternal cumulative risk and child IQ at ages 3 and 4 were also performed.  Here, 

measures of home environment quality when children were 3 and 4 years old were added to 

previous models.  Reports of child abuse from birth to age 4 are also added to the model that 

included IQ at 4 years to further examine the strength of the association between maternal 

cumulative risk and IQ at age 4 years.  If the association proves significant, the analyses will 

demonstrate the direct association of maternal cumulative risk during pregnancy with cognitive 

deficit in early childhood after accounting for exposure to the extra-uterine environment.   

If maternal cumulative risk is associated with child IQ at 4 years and gestational age or 

birthweight, mediation effects of birth outcomes will be assessed using multiple regression and 

the Sobel-Goodman test of mediation in STATA to address research question 7 (UCLA: 

Academic Technology Services, Statistical Consulting Group, 2010).  With regards to research 

question 8, a paired t-test will be employed first to determine if mean IQ scores at ages 3 and 4 

differed.  Once a significant difference in scores is established, a Multivariate Analysis of 

Variance (MANOVA) will be used to determine if maternal cumulative risk during pregnancy is 

associated with change in IQ from age 3 to 4 years. 

The overall objective of the gene analyses was to examine whether there were individual 

effects of polymorphisms in the GR gene that moderate the association of maternal cumulative 

risk and IQ at ages 3 and 4.  To examine gene-environment hypotheses (research questions 9 and 

10), a distribution of 4 genetic variants in the GR gene were investigated using stepwise multiple 
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regressions.  Further, to address research question 11, multiple regression models with single 

SNP analyses were employed to examine two way interactions between maternal cumulative risk 

during pregnancy and various genotypes.  Linear combinations of estimators (lincom in STATA 

11.0) were then performed to compare the effects of maternal cumulative risk during pregnancy 

on IQ at ages 3 and 4 in the presence of specific genotypes within functional SNPs.  Finally, 

multiple regression was used to assess interaction effects of cumulative genetic reactivity in the 

GR gene on the association of maternal cumulative risk during pregnancy and IQ at ages 3 and 4. 

Sensitivity Checks 

For the phenotypic portion of this study, analyses were conducted in the full sample of 

398 subjects to make use of the larger sample size.  Due to attrition, DNA was only collected for 

241 of the children born to mothers in the original cohort.  Genetic analyses were accomplished 

using a restricted sample.  Therefore, several analyses were conducted in both the full and 

restricted samples to ensure comparability. 

In general, results were very similar in both the full sample and sample in which DNA 

was collected from children at age 27 years.  The largest difference was that maternal cumulative 

risk was associated with gestational age in the full sample but not the restricted sample.  After 

controlling for maternal and child characteristics, infants were born 0.17 weeks earlier (p<.05) 

per one unit increase in cumulative risk during pregnancy in the full sample (See Table 9).  As 

demonstrated by the R
2
, 2.0% of the variation in gestational age was predicted by maternal 

cumulative risk during pregnancy. 

Increased maternal cumulative risk during pregnancy was significantly associated with 

lower birth weight in both the full sample as well as the sample in which DNA was collected.  

After controlling for maternal and child characteristics, infants were born 47.49 grams lighter 
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(p<.01) per one unit increase in maternal cumulative risk during pregnancy in the full sample 

(See Table 9).  In the restricted sample for which DNA was collected, infants were born 47.17 

grams lighter (p<.01) per one unit increase in maternal cumulative risk during pregnancy.  As 

demonstrated by the R
2
, 6.0% of the variation in birth weight in the full sample and 7.0% in the 

restricted sample was predicted by maternal cumulative risk during pregnancy (See Table 9).    

Increased maternal cumulative risk during pregnancy was significantly associated with 

lower IQ scores in children at age 3 years in both the full sample as well as the sample in which 

DNA was collected.  Controlling for maternal and child characteristics, an increase of 1 point in 

cumulative risk during pregnancy was associated with a decrease of 1.56 points in IQ at age 3 

years (p≤0.001) in the full sample (See Table 10, Model 1).  In the restricted sample for which 

DNA was collected, an increase of 1 point in cumulative risk during pregnancy was associated 

with a decrease of 1.61 points in IQ at age 3 years (p≤0.001) (See Table 11, Model 1).  As 

reported by the R
2
, 7.0% of the variation in child IQ at 3 years was predicted by maternal 

cumulative risk during pregnancy in both the full and restricted samples while controlling for 

treatment group, maternal smoking, maternal nutrition, and child sex.    

Increased maternal cumulative risk during pregnancy was significantly associated with 

lower IQ scores in children at age 3 when postnatal home environment was included in both the 

full sample as well as the sample in which DNA was collected.  Controlling for maternal and 

child characteristics, an increase of 1 point in cumulative risk during pregnancy was associated 

with a decrease of 1.02 points in IQ at age 3 years (p≤0.01) in the full sample when postnatal 

controls were added (See Table 10, Model 2).  In the restricted sample for which DNA was 

collected, an increase of 1 point in cumulative risk during pregnancy was associated with a 

decrease of 1.06 points in IQ at age 3 years (p≤0.05) (See Table 11, Model 2).  As reported by 
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the R
2
, 17.0% of the variation in child IQ at 3 years was predicted by maternal cumulative risk 

during pregnancy in the full sample and 21.0% in the restricted sample while controlling for 

treatment group, maternal smoking, maternal nutrition, and child sex. 

Increased maternal cumulative risk during pregnancy was significantly associated with 

lower IQ scores in children at age 4 in both the full sample as well as the sample in which DNA 

was collected.  Controlling for maternal and child characteristics, an increase of 1 point in 

cumulative risk during pregnancy was associated with a decrease of 1.93 points in IQ at age 4 

years (p≤0.001) in the full sample (See Table 12, Model 1).   In the restricted sample for which 

DNA was collected, an increase of 1 point in cumulative risk during pregnancy was associated 

with a decrease of 1.98 points in IQ at age 4 years (p≤0.001) (See Table 13, Model 1).  As 

reported by the R
2
, 12.0% of the variation in child IQ at 4 years was predicted by maternal 

cumulative risk during pregnancy in the full sample and 11.0% in the restricted sample while 

controlling for treatment group, maternal smoking, maternal nutrition, and child sex. 

When measures of the postnatal environment were added to the model, maternal 

cumulative risk during pregnancy was still significantly associated with IQ scores in children at 

age 4 in both the full sample as well as the sample in which DNA was collected.  Specifically, 

when reports of child abuse from birth to age 4 and Caldwell HOME scores at age 4 were added 

to the model, 4 year-old children scored 1.01 points lower on IQ for each one unit increase in 

cumulative risk (p≤0.01) in the full sample (See Table 12, Model 2).  In the restricted sample, 4 

year-old children scored 1.14 points lower on IQ for each one unit increase in cumulative risk 

(p≤0.01) (See Table 13, Model 2).  As indicated by the R
2
, 26.0% of the variation in child IQ at 4 

years was predicted by maternal cumulative risk during pregnancy in the full and restricted 



40 

 

 

9
7 

samples while accounting for treatment group, maternal smoking, maternal nutrition, child sex, 

as well as the aforementioned postnatal controls. 
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Results: Maternal Cumulative Risk and IQ 

For ease in comparison and discussion, the following results sections will detail analyses 

performed in the restricted DNA sample.   

Birth weight .  Increased maternal cumulative risk during pregnancy was negatively 

associated with birth weight.  After controlling for maternal and child characteristics, infants 

were born 58.99 grams lighter (p<.01) per one unit increase in maternal cumulative risk during 

pregnancy (See Table 17, Model 1).  As demonstrated by the R
2
, 8.0% of the variation in birth 

weight was predicted by maternal cumulative risk during pregnancy.   

Gestational age.  Maternal cumulative risk during pregnancy was not associated with 

gestational age.   

IQ at age 3.  Increased maternal cumulative risk during pregnancy was negatively 

associated with IQ scores in children at age 3 years.  Controlling for maternal and child 

characteristics, an increase of 1 unit in cumulative risk during pregnancy was associated with a 

decrease of 1.76 points in IQ at age 3 years (p≤0.001) (See Table 18, Model 1).  As reported by 

the R
2
, 9.0% of the variation in child IQ at 3 years was predicted by maternal cumulative risk 

while controlling for treatment group, maternal smoking, maternal nutrition, and child sex.   

IQ at age 3 with postnatal controls.  Increased maternal cumulative risk during 

pregnancy was negatively associated with IQ scores in children at age 3 when postnatal home 

environment was included.  When postnatal controls were added, an increase of 1 unit in 

maternal cumulative risk during pregnancy was associated with a decrease of 0.82 points in IQ at 

age 3 years (p≤0.05) (See Table 18, Model 2).  As reported by the R
2
, 24.0% of the variation in 

child IQ at 3 years was predicted by maternal cumulative risk during pregnancy while controlling 

for treatment group, maternal smoking, maternal nutrition, child sex, and home environment.  
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IQ at age 4.  Increased maternal cumulative risk during pregnancy was negatively 

associated with IQ scores in children at age 4.  Controlling for maternal and child characteristics, 

an increase of 1 unit in maternal cumulative risk during pregnancy was associated with a 

decrease of 2.62 points in IQ at age 4 years (p≤0.001) (See Table 21, Model 1).  As reported by 

the R
2
, 14.0% of the variation in child IQ at 4 years was predicted by maternal cumulative risk 

while controlling for treatment group, maternal smoking, maternal nutrition, and child sex.   

IQ at age 4 with postnatal controls.  When measures of the postnatal environment were 

added to the model, maternal cumulative risk during pregnancy was still negatively associated 

with IQ scores in children at age 4.  Specifically, when reports of child abuse from birth to age 4 

and Caldwell HOME scores at age 4 were added to the model, children scored 1.30 points lower 

on IQ for each one unit increase in cumulative risk (p≤0.05) (See Table 21, Model 2).  As 

indicated by the R
2
, 36.0% of the variation in child IQ at 4 years was predicted by maternal 

cumulative risk during pregnancy.  For an additional test of robustness, birth weight was added 

as a control, proved not to be significant, and had no impact on the strength of association 

between maternal cumulative risk during pregnancy and IQ at age 4 (See Table 14). 

Mediation of birth outcomes.  Because maternal cumulative risk was associated with 

birth outcomes as well as IQ at ages 3 and 4, a test of mediation was performed.  The Sobel-

Goodman test of mediation demonstrated that the mediation effect of low birth weight on IQ at 

ages 3 and 4 was significant, but small.  At age 3, low birth weight explained 8.9% of the total 

effect of maternal cumulative risk during pregnancy on Stanford-Binet scores (p≤.001).  At age 

4, low birth weight explained 8.2% of the total effect of maternal cumulative risk during 

pregnancy on Stanford-Binet scores (p≤.001).  There was no mediation effect of gestational age 
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with respect to the association of maternal cumulative risk during pregnancy and IQ at 3 and 4 

years of age.   

Change in IQ from ages 3 to 4.  Maternal cumulative risk during pregnancy is 

associated with change in IQ from age 3 to 4 years.  There was a significant difference in IQ 

from age 3 to 4 years (t (206) = 12.40, p < .001).  Further, maternal cumulative risk during 

pregnancy was associated with change in IQ from 3 to 4 years (F (2, 135) = 6.48, p < .01) (See 

Tables 15 and 16).  However, the Wilks’ lambda indicated that 93.6 percent of the variance in IQ 

change could not be explained by maternal cumulative risk during pregnancy alone. 
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Discussion: Maternal Cumulative Risk and IQ 

Consistent with prior literature, the current study examines the cumulative effects of 

chronic environmental stressors that contribute to increased levels of maternal stress hormones 

during pregnancy and poor cognitive outcomes in young children.  While it is well-known that 

birth outcomes reflect genetic predisposition and adaptation to exposures that influence the 

structure and function of physiological systems within the developing fetus, less is known about 

the consequences of fetal exposures to maternal stress on postnatal cognitive outcomes 

independent of birth outcomes (Davis & Sandman, 2010).  In contrast to singular components, 

past work has demonstrated that it is the cumulative effects from multiple risk factors during 

early childhood that increase the risk that development will be compromised (Evans et al., 2007; 

Rutter, 1979; Sameroff et al., 1987).  Further, more risk factors are associated with poorer 

cognitive outcomes (Klebanov & Brooks-Gunn, 2006; Sameroff et al., 1987).  Using a measure 

that seeks to capture multiple environmental stressors that lead to persistent, elevated stress 

levels in mothers during pregnancy, the current study extends this literature by demonstrating 

that increased levels of maternal cumulative risk are negatively associated with IQ scores in 

children at ages 3 and 4.   

As previously mentioned, birth outcomes are traditionally viewed as proxies for the 

intrauterine environment with growth retardation often acting as a protective mechanism for survival 

(Seckl, Drake, & Holmes, 2005).  Maternal cumulative risk during pregnancy was not associated 

with gestational age.  However, it is possible that this relationship exists but was difficult to detect 

due to sample size.  In the full sample of 398 mothers, an increase in maternal cumulative risk was 

associated with a decrease in gestational age.  However, this association did not hold true in the 

restricted sample that is the focus here.  In addition, the measure employed for gestational age in this 
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study was based on a modified Dubowitz Gestational Age Assessment for some participants and an 

estimate of length of gestation based upon last reported menstrual period and ultrasound readings 

taken at less than 28 weeks of gestation for others.  Therefore, the measure itself may not have 

internal consistency. 

Increases in maternal cumulative risk during pregnancy were negatively associated with birth 

weight.  Thus, we can conclude that cumulative risk did affect the intrauterine environment with 

impact on the developing fetus.
 
 However, tests of mediation showed that the effects of birth weight 

only partially mediated the relationship between maternal cumulative risk during pregnancy and IQ 

scores in preschoolers to a small extent, while gestational age had no mediation effect.  Cumulative 

risk during pregnancy therefore had a direct relationship with IQ.  Maternal cumulative risk during 

pregnancy was also negatively associated with IQ scores in children at ages 3 and 4 when accounting 

for some aspects of the postnatal environment.  These results add strength to the assertion that 

maternal cumulative risk during pregnancy is one common factor that gives rise to both poor birth 

outcomes and fetal programming for later developmental and physiological deficits.   

To put findings in a broader context, lead exposure studies in disadvantaged populations 

of school-age children demonstrate an estimated loss of 1.85 IQ points (+/- 0.92) per 10 to 20 

μg/dl increase in lead (Schwartz, 1994).  Impacts of lead poisoning in children have lead to 

action at the federal level through the Centers for Disease Control and Prevention’s Childhood 

Lead Poisoning Prevention.  Underscoring the importance of the detrimental, yet preventable, 

impacts of lead in children, the reduction of elevated blood levels in children is an objective in 

Healthy People 2020, the Nation’s roadmap for improving the health of all Americans (U.S. 

Department of Health and Human Services, 2011).  The current study demonstrates cognitive 

impacts similar to that of lead positioning in children---the effects of maternal cumulative risk 
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exposure during pregnancy on IQ at age 4 are comparable with an estimated loss of 1.98 IQ 

points (+/-0.45).  
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Results: Maternal Cumulative Risk and IQ with Genetic Moderation 

Birth weight:  GR rs6198, rs6190, rs4244032, and rs2918417.  Without controlling for 

genetic effects, infants were born 58.99 grams lighter (p<.01) per one unit increase in maternal 

cumulative risk.  As indicated by the R
2
, 8.0% of the variation in birthweight was predicted by 

maternal cumulative risk during pregnancy (See Table 17, Model 1). 

When genetic effects were added to the model, individual polymorphisms in the GR 

gene, rs6198, rs6190, rs4244032, and rs2918417, were not associated with birth weight.  Further, 

the inclusion of rs6190, rs4244032, and rs2918417 did not explain any additional variance (See 

Table 18).  The only exception was GR rs6198. 

When rs6198 (A/G and G/G) was included with controls, infants were born 51.84 grams 

lighter (p<.01) per one unit increase in maternal cumulative risk during pregnancy (See Table 17, 

Model 4).  As indicated by the R
2
, 9.0% of the variation in birthweight was predicted by 

maternal cumulative risk during pregnancy when accounting for rs6198. 

IQ at ages 3 and 4: GR rs4244032 and rs2918417.  The polymorphisms, rs4244032 

and/or rs2918417, in the GR gene in children were not associated with child IQ at ages 3 and 4 

years and did not considerably alter the effects of maternal cumulative risk on IQ when 

controlled for.  The polymorphisms, rs4244032 and/or rs2918417, in the GR gene in children did 

not moderate the relationship between maternal cumulative risk during pregnancy and child IQ at 

age 3 and 4 years.   

IQ at ages 3 and 4: GR rs6198.  Controlling for maternal and child characteristics, an 

increase of 1 point in maternal cumulative risk during pregnancy was associated with a decrease 

of 1.79 points in IQ at age 3 years (p≤0.01) when accounting for rs6198 (A/G and G/G) (See 

Table 18, Model 3).  However, this trend was similar when rs6198 (A/G and G/G) was not 
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included in the model (See Table 18, Model 1)  As indicated by the R
2
, 9.0% of the variation in 

IQ at age 3 years was predicted by maternal cumulative risk during pregnancy when accounting 

for rs6198.   

When postnatal controls were introduced, the association between maternal cumulative 

risk and IQ at 3 years was no longer significant (See Table 18, Model 4).  Again, this trend was 

similar in models when rs6198 (A/G and G/G) were not included (See Table 18, Model 2).  As 

indicated by the R
2
, 24.0% of the variation in IQ at age 3 years was predicted by maternal 

cumulative risk during pregnancy when accounting for minor alleles of rs6198 and postnatal 

home environment.  The association between maternal cumulative risk and IQ at age 3 years was 

also not significant with the inclusion of interaction terms in models with and without postnatal 

home environment (See Table 19, Models 1 and 2).  Further, there was no interaction effect of 

rs6198 (A/G and G/G) and maternal cumulative risk.   

However, examining the graph of these interactions, it appeared as if there was some type 

of interaction effect (See Figure 3).  When the relationship of maternal cumulative risk during 

pregnancy and IQ at age 3 was examined in the two allelic conditions, the effect of maternal 

cumulative risk on IQ at 3 years was significant when rs6198 (A/G and G/G) was present.  An 

increase of 1 point in cumulative risk during pregnancy was associated with a decrease of 3.11 

points in IQ at age 3 years (p≤0.001) in the presence of rs6198 (A/G and G/G) in contrast to no 

association when A/A was present (See Table 20). 

It is also important to note that when rs6198 was defined by per allele risk, the 

association between maternal cumulative risk and IQ at age 3 years was not significant.  Further, 

when A/G and G/G genotypes were added to the model individually, the association between 

maternal cumulative risk and IQ at age 3 years was not significant. 
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Controlling for maternal and child characteristics, an increase of 1 point in cumulative 

risk during pregnancy was associated with a decrease of 2.60 points in IQ at age 4 years 

(p≤0.001) when accounting for the per allele risk of rs6198 (See Table 21, Model 3).  However, 

this trend was similar when per allele risk of rs6198 was not accounted for in the model (See 

Table 21, Model 1).  As indicated by the R
2
, 14.0% of the variation in IQ at age 4 years was 

predicted by maternal cumulative risk during pregnancy when accounting for the per allele risk 

of rs6198.  

When postnatal controls of reports of child abuse from birth to age 4 and Caldwell 

HOME scores at age 4 were added to the model, the association between maternal cumulative 

risk and IQ at 4 years remained significant; an increase of 1 point in cumulative risk during 

pregnancy was associated with a decrease of 1.32 points in IQ at age 4 years (p≤0.05) when 

accounting for the per allele risk of rs6198 (See Table 21, Model 4).  However, this trend was 

similar in models without the inclusion of per allele risk of rs6198 (See Table 21, Model 2).  As 

indicated by the R
2
, 36.0% of the variation in IQ at age 4 years was predicted by maternal 

cumulative risk during pregnancy when accounting for per allele risk of rs6198 and postnatal 

home environment.  Interaction effects of per allele risk in rs6198 and maternal cumulative risk 

were significant without and with postnatal controls included (p≤0.05, p≤0.01, respectively) (See 

Table 22, Models 1 and 2, and Figure 4).  As indicated by the R
2
, 18.0% of the variation in IQ at 

age 4 years was predicted by maternal cumulative risk during pregnancy when accounting for per 

allele risk of rs6198 and interaction terms.  When postnatal controls were added to this model, 

39.0% of the variation in IQ at age 4 years was predicted by maternal cumulative risk during 

pregnancy.   
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The association between maternal cumulative risk during pregnancy and IQ at age 4 

years was also not significant with the inclusion rs6198 (A/G and G/G) without and with 

postnatal controls.  However, the interaction of rs6198 (A/G and G/G) and maternal cumulative 

risk was significant without and with postnatal controls (p≤0.05) (See Table 23, Models 1 and 2, 

and Figure 5).  As indicated by the R
2
, 18.0% of the variation in IQ at age 4 years was predicted 

by maternal cumulative risk during pregnancy when accounting for rs6198 (A/G and G/G) and 

interaction terms.  As indicated by the R
2
, 39.0% of the variation in IQ at age 4 years was 

predicted by maternal cumulative risk during pregnancy when accounting for rs6198 (A/G and 

G/G), interaction terms, and postnatal controls.  When G/G and A/G genotypes were run 

separately, there was no association between maternal cumulative risk during pregnancy and IQ 

at age 4 years with and without postnatal controls and no effects of moderation.  When the 

rs6198 A/A genotype and interaction terms for allelic and maternal cumulative risk were 

included, interaction effects were significant without and with postnatal controls (p≤0.05).  (See 

Table 23, Models 3 and 4, and Figure 5).  As indicated by the R
2
, 18.0 % of the variation in IQ at 

age 4 years was predicted by maternal cumulative risk during pregnancy when accounting for 

rs6198 A/A and interaction terms.  When postnatal controls were added to the model, 39.0% of 

the variation in IQ at age 4 was predicted by maternal cumulative risk during pregnancy. 

When the relationship of maternal cumulative risk during pregnancy and IQ at age 4 was 

examined in the two allelic conditions, the effect of maternal cumulative risk on IQ at 4 years 

was significant when rs6198 (A/G and G/G) was present.  An increase of 1 point in cumulative 

risk during pregnancy was associated with a decrease of 5.08 points in IQ at age 4 years 

(p≤0.001) in the presence of the combination of rs6198 genotypes A/G and G/G and a decrease 
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of 1.89 points in IQ at age 4 years (p≤0.01) in the presence of rs6198 genotype A/A (See Table 

24).   

IQ at ages 3 and 4: GR rs6190.  Controlling for maternal and child characteristics, an 

increase of 1 point in maternal cumulative risk during pregnancy was associated with a decrease 

of 1.85 points in IQ at age 3 years (p≤0.01) when accounting for the per allele risk of rs6190 

(See Table 25, Model 3).  When postnatal controls were added to the model, the association 

between maternal cumulative risk and IQ at 3 years was no longer significant (See Table 25, 

Model 4).  This trend was similar in models that did not control for the per allele risk of rs6190 

(See Table 25, Models 1 and 2).  As indicated by the R
2
, 8.0 % of the variation in IQ at age 3 

years was predicted by maternal cumulative risk during pregnancy when accounting for per 

allele risk of rs6190.  When postnatal controls were added to the model, 25.0% of the variation in 

IQ at age 3 was predicted by maternal cumulative risk during pregnancy. 

Controlling for maternal and child characteristics, an increase of 1 unit in maternal 

cumulative risk during pregnancy was associated with a decrease of 2.06 points in IQ at age 3 

years (p≤0.001) when accounting for the per allele risk of rs6190 and the interaction effects of 

maternal cumulative risk and per allele risk of rs6190 (See Table 26, Model 1).  Here, there were 

no significant interaction effects.  When postnatal home environment was added, again, the 

association between maternal cumulative risk during pregnancy and IQ at 3 years was no longer 

significant (See Table 26, Model 2).  As indicated by the R
2
, 13.0 % of the variation in IQ at age 

3 years was predicted by maternal cumulative risk during pregnancy when accounting for per 

allele risk of rs6190 and interaction effects.  When postnatal controls were added to the model, 

26.0% of the variation in IQ at age 3 was predicted by maternal cumulative risk during 

pregnancy. 
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Digging deeper, an increase of 1 point in maternal cumulative risk during pregnancy was 

associated with a decrease of 1.86 points in IQ at age 3 years (p≤0.01) when accounting for 

rs6190 (A/G and A/A), decrease of 1.95 points in IQ at age 3 (p≤0.001) when accounting for 

rs6190 A/G and rs6190 A/A, decrease of 1.91 points in IQ at age 3 (p≤0.001) when accounting 

for rs6190 G/G, decrease of 2.03 points in IQ at age 3 (p≤0.001) when accounting for the 

interaction of rs6190 (A/G and A/A) and maternal cumulative risk during pregnancy (See Table 

27).  When rs6190 A/G and A/A genotypes were run separately, there was no association 

between maternal cumulative risk and IQ at age 3 years.  When postnatal home environment was 

added, the association between maternal cumulative risk and IQ at 3 years was no longer 

significant.  There were no interaction effects with and without postnatal controls. 

However, examining the graph of these interactions, it appeared as if there was some type 

of interaction effect (See Figure 6).  When the relationship of maternal cumulative risk during 

pregnancy and IQ at age 3 was examined in the two allelic conditions, an increase of 1 point in 

cumulative risk during pregnancy was associated with a decrease of 2.03 points in IQ at age 3 

years (p≤0.001) in the presence of rs6198 G/G in contrast to no association when rs6190 (A/G 

and A/A) was present (See Table 28). 

Controlling for maternal and child characteristics, an increase of 1 unit in cumulative risk 

during pregnancy was associated with a decrease of 2.56 points in IQ at age 4 years (p≤0.001) 

when accounting for the per allele risk of rs6190 (See Table 29, Model 3).  However, this trend 

was similar when per allele risk of rs6190 was not included in the model (See Table 29, Model 

1).  As indicated by the R
2
, 17.0% of the variation in IQ at age 4 years was predicted by maternal 

cumulative risk during pregnancy when accounting for the per allele risk of rs6190.  
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When postnatal controls of reports of child abuse from birth to age 4 and Caldwell 

HOME scores at age 4 were added to the model, the association between maternal cumulative 

risk and IQ at 4 years remained significant.  This trend was similar in models where per allele 

risk of rs6190 was not included (See Table 29, Model 2).  Controlling for maternal and child 

characteristics as well as postnatal environment, an increase of 1 point in cumulative risk during 

pregnancy was associated with a decrease of 1.31 points in IQ at age 4 years (p≤0.05) when 

accounting for the per allele risk of rs6190 (See Table 29, Model 4).  As indicated by the R
2
, 

36.0% of the variation in IQ at age 4 years was predicted by maternal cumulative risk during 

pregnancy when accounting for per allele risk of rs6190 and postnatal environment.   

When adding interaction terms of per allele risk of rs6190 and maternal cumulative risk, 

an increase of 1 unit in maternal cumulative risk during pregnancy was associated with a 

decrease of 2.84 points in IQ at age 4 years (p≤0.001) (See Table 30, Model 1).  There were no 

interaction effects.  As indicated by the R
2
, 19.0% of the variation in IQ at age 4 years was 

predicted by maternal cumulative risk during pregnancy when accounting for per allele risk of 

rs6190 and interaction terms.   

When postnatal controls of reports of child abuse from birth to age 4 and Caldwell 

HOME scores at age 4 were added to this model, the association between maternal cumulative 

risk and IQ at 4 years remained significant (See Table 30, Model 2).  In this model, per allele risk 

of rs6190 and the interaction effects proved significant, as well.  As indicated by the R
2
, 38.0% 

of the variation in IQ at age 4 years was predicted by maternal cumulative risk during pregnancy 

when accounting for per allele risk of rs6190, interaction terms, and postnatal environment.   

Digging deeper, an increase of 1 unit in cumulative risk during pregnancy was associated 

with a decrease of 2.87 points in IQ at age 4 years (p≤0.001) when accounting for interaction 
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effects of rs6190 (A/G and A/A) and maternal cumulative risk (See Table 31, Model 1).  

However, there were no interaction effects.  As indicated by the R
2
, 19.0% of the variation in IQ 

at age 4 years was predicted by maternal cumulative risk during pregnancy when controlling for 

rs6190 (A/G and A/A) and interaction terms.  When postnatal environment was added, the 

association between maternal cumulative risk and IQ at 4 years remained significant.  Here, there 

were interaction effects between maternal cumulative risk during pregnancy and rs6190 (A/G 

and A/A) (p≤0.01) (See Table 31, Model 2).  As indicated by the R
2
, 40.0% of the variation in IQ 

at age 4 years was predicted by maternal cumulative risk during pregnancy when accounting for 

postnatal environment, rs6190 (A/G and A/A), and interaction terms.   

An increase of 1 point in cumulative risk during pregnancy was associated with a 

decrease of 2.92 points in IQ at age 4 years (p≤0.001) when accounting for interaction effects of 

rs6190 A/G and maternal cumulative risk (See Table 31, Model 3).  However, there were no 

interaction effects.  As indicated by the R
2
, 19.0% of the variation in IQ at age 4 years was 

predicted by maternal cumulative risk during pregnancy when controlling for rs6190 A/G and 

interaction terms.  When postnatal environment was added, the association between maternal 

cumulative risk and IQ at 4 years remained significant.  Here, there were interaction effects 

between maternal cumulative risk during pregnancy and rs6190 A/G (p≤0.001) (See Table 31, 

Model 4).  As indicated by the R
2
, 42.0% of the variation in IQ at age 4 years was predicted by 

maternal cumulative risk during pregnancy when accounting for postnatal environment, rs6190 

A/G, and interaction terms.   

An increase of 1 unit in cumulative risk during pregnancy was associated with a decrease 

of 2.62 points in IQ at age 4 years (p≤0.001) when accounting for rs6190 G/G (See Table 32, 

Model 1).  When postnatal environment was added, the association between maternal cumulative 
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risk and IQ at 4 years remained significant.  An increase of 1 unit in cumulative risk during 

pregnancy was associated with a decrease of 1.32 points in IQ at age 4 years (p≤0.05) when 

accounting for rs6190 G/G and postnatal controls (See Table 32, Model 2).  

There were no interaction effects without postnatal controls (See Table 32, Model 3).  

However, when postnatal controls were included, there was an interaction effect of rs6190 G/G 

on the association of maternal cumulative risk during pregnancy and IQ at 4 years (p≤0.01) (See 

Table 32, Model 4).  As indicated by the R
2
, 19.0% of the variation in IQ at age 4 was predicted 

by maternal cumulative risk during pregnancy when controlling for rs6190 G/G and interaction 

terms.  As indicated by the R
2
, 40.0% of the variation in IQ at age 4 years was predicted by 

maternal cumulative risk during pregnancy when accounting for postnatal environment, rs6190 

G/G, and interaction terms.  It is also important to note that rs6190 A/A had no significant 

impact on the association of maternal cumulative risk during pregnancy and IQ at age 4. 

Despite a lack of interaction effect demonstrated in the models that did not include 

postnatal controls, it appeared as if there was an interaction when examining a graph of the 

effects (See Figure 7).  When the relationship of maternal cumulative risk during pregnancy and 

IQ at age 4 was examined in the two allelic conditions, the effect of maternal cumulative risk on 

child IQ at 4 years was not significant when rs6190 (A/G and A/A) genotypes were present.  

However, a one unit increase in maternal cumulative risk was associated with a 2.87 decrease in 

IQ at 4 years in the presence of G/G rs6190 (p≤0.001) (See Table 33). 

IQ at Ages 3 and 4: Cumulative Genetic Risk.  When cumulative genetic risk in 

children was included in models that examined the association of maternal cumulative risk 

during pregnancy and IQ at age 3, there were no main or interaction effects without and with 

postnatal controls.  However, when cumulative genetic risk was included in models that 
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examined the association of maternal cumulative risk during pregnancy and IQ at age 4 with 

postnatal controls, a 1 point increase in maternal cumulative risk during pregnancy was 

associated with a 1.35 decrease in IQ at age 4 (p≤0.05) (See Table 34, Model 1).  As indicated by 

the R
2
, 36.0% of the variation in IQ at age 4 years was predicted by maternal cumulative risk 

during pregnancy when accounting for postnatal environment and cumulative genetic risk.   

In addition, there was an interaction effect between cumulative genetic risk in children 

and maternal cumulative risk during pregnancy with postnatal controls (p≤0.05) (See Table 34, 

Model 2).  As indicated by the R
2
, 39.0% of the variation in IQ at age 4 years was predicted by 

maternal cumulative risk during pregnancy when accounting for postnatal environment, 

cumulative genetic risk, and interaction terms.  When examining a graph of this interaction, it is 

clear that the addition of reactive alleles that infer risk, whether it’s one or two, lead to lower IQ 

scores in children age 4 years with greater maternal cumulative risk during pregnancy (See 

Figure 8). 
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Discussion: Maternal Cumulative Risk and IQ with Genetic Moderation 

Using a gene by environment design, this study explored five variants of the 

glucocorticoid receptor (GR) gene involved in glucocorticoid sensitivity.  It is the first to 

examine the effects of environmental maternal cumulative risk on fetal development with regards 

to variation in GR gene in children.  This study contributes to the growing body of evidence that 

connects maternal psychosocial and environmental stress during pregnancy with cognitive 

outcomes in children.  Further, it implicates glucocorticoids and their receptors in this causal 

pathway by demonstrating that the presence of certain glucocorticoid receptor alleles in children 

moderates the relationship between maternal cumulative risk during pregnancy and child IQ at 

ages 3 and 4.  Specifically, the rs6198 and rs6190 polymorphisms in the GR gene may explain 

some of the variation in sensitivity to glucocorticoids and, in turn, the consequences of those 

stress hormones on cognitive development in young children.   

In general, rs6198 and rs6190 behaved consistently in their influence on the association 

between maternal cumulative risk during pregnancy and IQ at both ages 3 and 4.  At age 3, 

results indicated that child IQ decreased to a greater degree in the presence of the rs6198 G allele 

as compared to when genetic influence was not accounted for.  Results also showed that child IQ 

decreased to a greater degree in the presence of the rs6190 G allele as compared to when genetic 

influence was not included in models.  However, when postnatal controls were included these 

associations disappeared.  It is possible that this trend was due to an underpowered sample or a 

lack of stability in IQ measurement at age 3.  In both rs6198 and rs6190, A alleles were not 

significant. 

At age 4, results appeared to be more robust.  Again, child IQ decreased to a greater 

degree in the presence of rs6198 and rs6190 G alleles, individually.  In contrast to age 3, at age 
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4, the association remained significant when reports of child abuse from birth to age 4 and 

Caldwell HOME scores at age 4 were accounted for.  Also of note, child IQ decreased to a lesser 

extent in the presence rs6198 A allele as compared to models that did not include genetic 

influence.  Specifically, an increase of 1 unit in cumulative risk during pregnancy was associated 

with a decrease of 5.08 points in IQ at age 4 years (p≤0.001) in the presence of the combination 

of rs6198 genotypes A/G and G/G and a decrease of 1.89 points in IQ at age 4 years (p≤0.01) in 

the presence of rs6198 genotype A/A.  Thus, rs6198 A and G alleles as well as rs6190 G alleles 

can be considered reactive.  Specifically, rs6198 G and rs6190 G infer risk while rs6198 A serves 

as a protective factor with respect to the association of maternal cumulative risk during 

pregnancy and IQ in young children.  Finally, when examining cumulative genetic risk, the 

addition of reactive alleles, whether it’s one or two, leads to lower IQ scores in children age 4 

years with greater maternal cumulative risk during pregnancy. 

As detailed earlier in this paper, work in adult populations has demonstrated an 

association between functional variants of the GR gene and decreased sensitivity to 

glucocorticoids while others have shown an association between GR SNPs and increased 

sensitivity.  The findings of this study are consistent with previous literature with respect to the 

functionality of GR rs6198 and rs6190 G alleles and decreased sensitivity to glucocorticoids.  As 

a result of a lack of receptor sensitivity, it is possible that higher concentrations of circulating 

glucocorticoids negatively impact fetal brain development.  However, GR rs6198 A alleles serve 

as a protective factor and are associated with a increased sensitivity.  In the presence of rs6198 

A, it is possible that glucocorticoid receptors have a higher affinity for glucocorticoids, reducing 

circulating levels of glucocorticoids.  Further research in this area is clearly warranted to better 

understand the biological mechanisms at work.  Regardless, the moderation effects of rs6198 and 
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rs6190 as well as the protective and risky nature of the alleles may contribute to the variability in 

outcomes seen in previous work. 
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Limitations  

As previously mentioned, there is no consensus on how to measure cumulative risk, in 

general, as well as women during pregnancy with respect to toxic stress.  While there are many 

common elements, variability exists with regards to singular components of cumulative risk 

indices.  It is possible that relevant risk factors were not included in the maternal cumulative risk 

index as factor inclusion was limited by the availability of data in the Nurse Family Partnerships 

Elmira sample.  Furthermore, it is possible that specific risk factors have thresholds of impact 

and risk depending on the coping strategies and abilities of a given family; what could be 

considered challenging in one family may not be in another. 

There may also be limitations in analytic approach with regards to studying cumulative 

risk versus individual risks.  However, as previously mentioned, studies by Rutter (1979), 

Sameroff and colleagues (1987), and Williams and colleagues (1990) have demonstrated that 

cumulative disadvantage measures are more predictive than any single risk factor.  Theory and 

prior research tell us that risk factors often are compounded in families and lives producing a 

snowball effect (Masten, 2011).  In the present study, multiple regressions were used to compare 

the effects of cumulative risk versus singular risk factors on outcome of interest (See Tables 4 

and 5).  While both models proved significant with respect to IQ at age 4 and total explained 

variance by both models was similar, it appears that each singular factor was not significant.  If 

any one of these singular elements, unemployment or low income status for example, were not 

included due to lack of significance, the complete picture of social and emotional stress would 

not be captured.   
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Still, the use of cumulative risk indices may not the best means of assessing the combined 

effects of multiple risks.  Recent work in the United Kingdom compared confirmatory factor 

analysis with formative measurement to a cumulative risk index created from the same risk 

factors to predict children’s cognitive development at 36 and 58 months of age (Hall et al., 

2010).  Results showed that factor analysis demonstrated greater predictive power of cognitive 

outcomes in children (Hall et al., 2010).  Nonetheless, factor analysis requires a large sample size 

that is not typical of current research on high-risk populations (Sameroff et al., 2003).  The 

sample size in the current study, in particular, is fairly small and factor analysis may not be 

prudent.  

It is also important to recognize that there is constancy in many of the risk factors 

included in the maternal cumulative risk index examined in this study.  Limitations in data 

collection did not allow for information on all risk factors to be gathered before and after child 

birth.  As a result, it is not possible to control for the same risks that impacted the mother during 

pregnancy that may still be present and influential with respect to the child after birth.  However, 

Caldwell HOME scores and reports of child abuse and neglect were included in analyses to 

account for some of these postnatal risks.   

Another limitation of the study is the possibility that the biological mechanisms that give 

rise to the association of maternal cumulative risk and later child cognitive outcomes are 

misunderstood.  While past research has demonstrated a correlation with cumulative risk and 

stress hormone levels (Evans et al., 2007), it is possible that the utilized definition of cumulative 

risk in this study is not a true measure of the antecedents of allostatic load.  However, direct 

biological measures such as cortisol were not available.  Still, utilizing a measure of cumulative 

environmental risk, serving as a precursor to toxic stress and biological impacts, helps to 
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characterize findings as an opportunity for intervention and risk prevention in the family 

environment.  As a result, early interventions can be better targeted to mitigate risk and support 

protective factors as opposed to treating biological and developmental outcomes after insult has 

occurred. 

Also, there may be threats to external validity as the community of Elmira, New York is 

not representative of inner cities or extremely isolated, rural areas.  Although the study represents 

a proportion of women in the United States, there are many for whom these results cannot be 

applied (e.g. minority populations, such as Hispanic or African American, who register for 

prenatal care after 30 weeks of gestation).  However, there is limited work on low-income, high 

risk White children who live in rural areas, despite the fact that 53% of poor American children 

under age 6 live in rural areas and 30% are White (Evans et al., 2007; Wight, Chau, & Aratani, 

2010).  Although this work contributes the literature with respect to a considerable portion of 

low-income children, further work examining how these same risk factors may influence other 

populations such as urban minority samples should be conducted. 

While this study includes multiple SNPs from the glucocorticoid receptor gene, a 

possible limitation is that the project does not examine associated haplotypes.  The human 

genome is an incredibly complex foundation from which multifaceted structures, traits, 

behaviors, and conditions arise (Grigorenko et al., 2010).  It is possible that multiple genetic 

factors impact the relationship between maternal cumulative risk during pregnancy and IQ in 

young children as well as other biological influences in this molecular pathway.  Analyses of 

haplotypes appear to provide more information in differentiating groups of interest (i.e. 

populations with higher vs. lower cumulative risk) and result in a higher power of differentiation.  

Further, they minimize statistical issues with making multiple comparisons because they require 
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fewer (Grigorenko et al., 2010).  Future steps for this work may include examination of 

haplotypes in the glucocorticoid receptor gene.   

Finally, another limitation of this study is the small nature of the sample size.  Due to this 

challenge, variance was limited.  For example, findings with respect to rs6198 may be more 

robust than rs6190 given available SNP frequencies.  Although significant effects were 

demonstrated, it would be beneficial to replicate these findings in a larger sample that is more 

diverse in geography, culture, race, and SNPs. 
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Conclusion and Future Directions 

Integration of biological theory and research with social science gives a more complete 

picture of the ecological context in which families live and strive to flourish.  The mechanisms 

by which environmental impacts on early development are biologically embedded and sustained 

into childhood will become increasingly important to understand as science is leveraged to 

design and implement effective interventions in education and health.  It is important to 

recognize that none of the aforementioned processes are deterministic and absolute.  For young 

children who experience toxic stress, interventions that provide specialized services targeted at 

mitigating environmental risk factors for the family unit as a whole can prevent disruption of 

brain architecture and promote better developmental outcomes (Center on the Developing Child 

at Harvard University, 2007).  As evidenced by the current study, the prenatal period is an 

especially important time to mitigate the untoward effects of poverty, as well as other types of 

chronic stressors, on child development and stimulate positive growth (Liaw & Brooks-Gunn, 

1994).  Building nurturing family relationships may positively influence a number of domains 

that make up the complex system of child development.  Social support and nurturance can 

lessen negative effects of toxic stress on the developing fetus both during and after pregnancy 

(Taylor & Repetti, 1997; Weaver, et al., 2005 

Although the protective effects of informal and formal social networks appear to be 

robust (Cohen, Janicki-Deverts, & Miller, 2007; Collins, Dunkel-Schetter, Lobel, & Scrimshaw, 

1993; Gluckman & Hanson, 2005; Rozanski et al., 1999; Sameroff et al., 1987; Taylor & 

Repetti, 1997), little is known about the quality and quantity of interventions targeted towards 

mitigating cumulative risk (Shonkoff, Boyce, & McEwen, 2009).  Challenge remains in 

identifying specific influences of risk and developing strategies to mitigate those influences 
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while promoting protective factors.  In general, there is much more known about social and 

environmental risk and protective factors than genetic ones.  More work towards identifying and 

understanding genetic and environmental influences and the application thereof to policy and 

programming is incredibly important.  As evidenced here, multiple SNPs within a single gene 

can have very different influences on phenotypes.  This is especially relevant in a policy and 

program context given that the range of phenotypic outcome is impacted by both environment 

and genetic make-up.  Targeted interventions and resources should include an assortment of 

services to cater to this variability in range.  In addition, future research could include more work 

on factors that promote resiliency by examining measures of cumulative protective factors within 

the individual and community in which he or she lives. 

Further exploration is needed on the cumulative effects of lifelong stress and support with 

regards to endocrine function, health, and development using larger, more diverse samples of 

longitudinal data (Flinn & England, 1997; Lupien et al., 2000).  This work must include 

empirically-based measures of allostatic load and/or cumulative risk in adult and child 

populations to address the lack of consensus in current measures.  New research directions could 

also include examination of the durations of specific stressors within cumulative risk models as 

well as models of cumulative risk during different developmental periods.  It is possible that 

there could there be periods where certain genotypes are more influential than others with respect 

to stress.   

Emerging research also suggests that early life experiences can cause the attachment 

and/or detachment of methyl groups to specific regions of genes, reducing gene expression.  

While phenotypic consequences have yet to be fully defined, epidemiological studies 

demonstrate that the effects of hyper or hypomethylation can even remain throughout the 
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lifespan (Harris & Seck, 2011).  It is also possible that the effects of this programming are 

transgenerational if chromosomal and epigenetic changes are stable (Harris & Seckl, 2011).  

Epigenetic modification presents a new area in which to study the effects of maternal prenatal 

stress on fetal cognitive development.  Further, it provides another outcome for which to design 

interventions and examine the efficacy of social programs and policy targeted towards 

prevention of cumulative risk and allostatic load as well as support of protective factors that 

optimize child health and development. 

Through opportunities such as early care and education settings, such as Early Head Start 

and Head Start, and home visiting programs, the current study supports arguments for greater 

investment of resources in early intervention opportunities to best target the cumulative effects of 

a myriad of risk factors that may serve as pathways linking socioeconomic status to health and 

developmental outcomes (Shonkoff et al., 2009).  The importance of maternal health and mental 

well-being cannot be underscored enough with respect to supporting healthy, happy children.  

We cannot expect to eliminate the stressors of life nor would that be prudent if we could.  The 

real issue emerges when life events and stress surpass the coping ability of families. Although 

the science behind it is complicated, competence and resiliency arise from basic adaptive 

attributes and processes.  Only through innovative, multidisciplinary approaches targeted toward 

families as a unit can we face multidimensional problems and give children the foundations to 

reach their full potential and contribute to a sustainable society. 
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Table 1.  
Characteristics of mothers in full sample and sample in which DNA was collected  

 Full Sample DNA Sample 
 N Mean(SD)/% Range N Mean(SD)/% Range 

Nurse Family Partnership Program
1
 398   241   

Treatment  54.3%   50.2%  
Control  45.7%   49.8%  

Maternal education level
1
  398  11.2 (1.6)  6.0-17.0 241 11.2 (1.5) 6.0-16.0 

Did not graduate from high school  45.0%   45.2%  
Graduated from high school   55.0%   54.8&  

Maternal employment
1
 330   235   

Employed  32.7%   34.9%  
Unemployed  67.3%   65.1%  

Marital status
1
 398   241   

Married  38.4%   38.2%  
Unmarried  61.6%   61.8%  

Maternal age
1
 398 19.4 (3.2) 13.0-34.0 241 19.1 (2.9) 13.0-31.0 

19 years old and younger  60.3%   63.1%  
20 years old and older  39.7%   36.9%  

Maternal race
1
 398   241   

White  88.7%   88.8%  
Non-White  11.3%   11.2%  

Annual household income in 1977 dollars
1
 313 7368.3 (5996.7) 0.0-31044.0 193 

7061.6 
(5767.2) 0.0-31044.0 

Below 1977 federal poverty level  34.8%   36.3%  
Above 1977 federal poverty level  65.2%   63.7%  

Number of people in support network
1
 396 1.8 (1.5) 0.0-10.0 239 1.7 (1.4) 0.0-8.0 

No support  12.4%   12.6%  
Some support  87.6%   87.4%  

Number of members in household
1
  396 1.2 (1.0) 0.0-7.0 239 1.3 (0.9) 0.0-4.0 

Mother lives alone  18.7%   16.3%  
Mother lives with one or more people  81.3%   83.7%  

Maternal cigarettes per day
1
  398 6.8 (9.2)  0.0-55.0 241 6.4 (8.5) 0.0-40.0 

Maternal Nutrient Adequacy Reporting 
Index (NARS)

 2
 398 73.2 (18.6) 14.0-100.0 241 71.8 (18.8) 14.0-100.0 

Criminal engagement
2
 398   241   

Yes  26.6%   17.8%  
No  73.4%   82.2%  

Homeless
2
 306   205   

Yes  4.6%   2.0%  
No  95.4%   98.0%  

Relationship problems
2
 398   241   

Yes  46.5%   41.1%  
No  53.5%   58.9%  

General life anxiety
2
 358 19.6 (5.7) 2.0-37.0 228 19.4 (5.7) 2.0-37.0 

Maternal cumulative risk
3
 220 4.2 (2.1) 0.0-9.0 157 4.3 (2.0) 0.0-9.0 

0 risks 3 1.4%  2 1.2%  
1 risk 16 7.3%  10 6.4%  

2 risks 32 14.6%  22 14.0%  
3 risks 41 18.6%  23 14.7%  
4 risks 34 15.5%  26 16.6%  
5 risks 28 12.73%  23 14.7%  
6 risks 34 15.5%  28 17.8%  
7 risks 17 7.7%  13 8.3%  
8 risks 11 5.0%  9 5.7%  
9 risks 4 1.8%  1 0.6%  

Source: Nurse Family Partnership Program Data Set, Elmira Sample 
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Note: Table describes non-imputed data 
1
Data collected at intake 

2
Data collected at 32 weeks of pregnancy 

3
Data collected from intake to 32 weeks of pregnancy 



85 

 

 

9
7 

Table 2.  
Characteristics of children in full sample and sample in which DNA was collected  

 Full Sample DNA Sample 
 N Mean(SD)/% Range N Mean(SD)/% Range 

Child sex
1
 389   241   

Male  48.3%   48.1%  
Female  51.7%   51.9%  

Birth weight
1
  372 3206.7 (631.2) 567.0-4947.0 233 3248.1 (558.2) 1673.0-4947.0 

Gestational age
1
  372 39.4 (2.7) 23.0-48.0 233     39.7 (2.1)       30.5 -48.0 

IQ score
2
 325 102.8 (14.6) 61.0-160.0 226     102.4 (14.3)          64.0-149.0 

IQ score
3
 302 109.6 (13.8) 68.0-160.0 214      109.5 (13.7)         68.0-154.0 

Home environment (HOME) score
2
 315 38.3 (7.3) 16.0-52.0 219     37.8 (7.4)         16.0-51.0 

Home environment (HOME) score
3
 309 39.2 (6.2) 19.0-54.0 218     39.0 (6.5)          19.0-54.0 

Reports of child abuse and neglect
4
 380   237       

Yes  15.3%   15.6%  
No   84.7%    84.4%  

Glucocorticoid receptor genotype
5
        

rs6198    241   
A/A n/a n/a  173 71.8%  
A/G n/a n/a  55 22.8%  
G/G n/a n/a  8 3.3%  

Missing n/a n/a  5 2.1%  
rs6190      241   

A/A n/a n/a  1 0.4%  
A/G n/a n/a  14 5.8%  
G/G n/a n/a  223 92.5%  

Missing n/a n/a  3 1.3%  
rs2918417     241   

A/A n/a n/a  24 10.0%  
A/G n/a n/a  101 41.9%  
G/G n/a n/a  113 46.9%  

Missing n/a n/a  3 1.2%  
rs4244032     241   

A/A n/a n/a  160 66.4%  
A/G n/a n/a  65 26.9%  
G/G n/a n/a  12 5.0%  

Missing n/a n/a  4 1.7%  
rs12656106     241   

G/G n/a n/a  72 29.9%  
G/C n/a n/a  130 53.9%  
C/C n/a n/a  36 14.9%  

Missing n/a n/a  3 1.3%  
Cumulative Genetic Risk    236   

0 reactive G rs6190  
and/or rs6198 alleles 

n/a n/a  14 5.9% 
 

1 reactive G rs6190  
and/or rs6198 alleles 

n/a n/a  214 90.7% 
 

2 reactive G rs6190 
 and/or rs6198 alleles 

n/a n/a  8 3.4% 
 

Source: Nurse Family Partnership Program Data Set, Elmira Sample 
Note: Table describes non-imputed data 
1
Data collected at child birth 

2
Data collected at age 3 years 

3
Data collected at age 4 years 

4
Data collected from birth to 4 years 

5
Data collected at age 27 years 

../Local%20Settings/Local%20Settings/AppData/Roaming/Microsoft/AppData/Local/Local%20Settings/AppData/Local/AppData/Local/Local%20Settings/AppData/Local/Local%20Settings/AppData/Local/Local%20Settings/AppData/Local/Local%20Settings/AppData/Roaming/Microsoft/AppData/Local/Local%20Settings/AppData/Local/Local%20Settings/AppData/Local/Local%20Settings/Local%20Settings/AppData/Local/Local%20Settings/Temp/General%20Empirical_Disertation/Empirical%20Tables%20Cumulative%20Risk%20Measure%201%2006_12_10%20OLD.xls#RANGE!_edn1
../Local%20Settings/Local%20Settings/AppData/Roaming/Microsoft/AppData/Local/Local%20Settings/AppData/Local/AppData/Local/Local%20Settings/AppData/Local/Local%20Settings/AppData/Local/Local%20Settings/AppData/Local/Local%20Settings/AppData/Roaming/Microsoft/AppData/Local/Local%20Settings/AppData/Local/Local%20Settings/AppData/Local/Local%20Settings/Local%20Settings/AppData/Local/Local%20Settings/Temp/General%20Empirical_Disertation/Empirical%20Tables%20Cumulative%20Risk%20Measure%201%2006_12_10%20OLD.xls#RANGE!_edn2
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Table 3.           
Correlations of individual risk factors from maternal cumulative risk index 

 

High 
school 

drop-out Unemployed Unmarried 
Teenage 
mother 

Non-
White 

Household 
income 
below 
1977 

poverty 
line 

No 
support 
network 

Higher 
number 

of 
members 

in 
household 

Paternal or 
maternal 
criminal 

engagement Homeless 
Relationship 

problems 

General 
life 

anxiety 
    High school drop-out 1.00            

Unemployed 0.31***  1.00           

Unmarried 0.29***  0.17***  1.00          
Teenage mother 0.50***  0.28***  0.27***  1.00         

Non-White 0.16***  0.09***  0.18***  0.11***  1.00        

Household income 
below 1977 poverty line 0.21***  0.27***  0.28***  0.19***  0.17***  1.00       

No support network 0.10***  0.04 0.05* 0.04* 0.03 0.04 1.00      
Higher number of 

members in household 0.08***  0.04* -0.04 0.12***  0.03 -0.07***  -0.07***  1.00     

Paternal or maternal 
criminal engagement 0.09***  0.08***  0.11***  0.05** -0.05* 0.12***  0.03 0.01 1.00    

Homeless 0.07***  0.00 0.04 0.00 -0.03 0.08***  -0.03 -0.01 0.28***  1.00   

Relationship problems 0.21***  0.09***  0.16***  0.11***  0.00 0.12***  0.01 -0.09***  0.41***  0.21***  1.00  

General life anxiety 0.08***  0.05** 0.11***  0.10***  0.03 0.10***  -0.11***  -0.13***  0.06** 0.06** 0.18***  1.00 
Source: Nurse Family Partnership Program Data Set, Elmira Sample   

*p<.05, **p≤.01, ***p≤.001           
Note:  Imputed data; Maternal locus of control was originally included in the cumulative risk index but validity of the measure proved questionable. 

Note:  Mean VIF = 1.19 
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Table 4.  
Correlations of maternal cumulative risk index and individual risk factors with child IQ at age 3 and 4 years  
 IQ score at age 3 years IQ score at age 4 years VIF 

Maternal cumulative risk index -0.24***  -0.31***   
High school drop-out -0.17***    -0.18***  1.44 

Unemployed -0.12***    -0.17***  1.15 
Unmarried -0.02   -0.07** 1.24 

Teenage mother -0.13***    -0.20***  1.37 
Non-White -0.14***    -0.17***  1.08 

Household income below 1977 poverty line -0.12***   -0.15***  1.24 
No support network -0.14***   -0.09***  1.04 

Higher number of members in household -0.07***  -0.17***  1.10 
Paternal or maternal criminal engagement -0.13***    -0.08***  1.20 

Homeless -0.04   -0.09***  1.11 
Relationship problems -0.12***   -0.14***  1.22 

General life anxiety -0.04   -0.05* 1.11 
Source: Nurse Family Partnership Program Data Set, Elmira Sample  

*p<.05, **p≤.01, ***p≤.001  
Note:  Imputed data  

 

 

 

 

 

 
 
Table 5. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy without (Model 1) and 
with (Model 2) postnatal influences in full sample 

 IQ score at age 4 years 
 Model 1  Model 2 

 B SE B  ̡ B SE B ɰ 

          
Maternal cumulative risk -1.93 ***  0.36 -0.30 -1.01 **  0.37 -0.16 
         
Treatment group 1.71     1.52 0.06 0.60  1.41 0.02 
         
Maternal smoking -0.10  0.09 -0.06 -0.00  0.09 -0.00 
         

NARS 0.05  0.05 0.06 0.03  0.04 0.04 

         
Child sex  -2.97 *  1.51 -0.11 -3.06 *  1.40 -0.11 
         
Reports of child abuse and neglect n/a  n/a n/a -4.33 *  1.98 -0.12 
         
Caldwell EC-HOME n/a  n/a n/a 0.79 ***  0.15 0.36 
          

F Statistic 7.53 (5, 281.6) ***    13.06 (7, 260.2) ***    
Total R

2
 0.12    0.26    

n 302      302      

*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
Note:  Imputed data 
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Table 6. 
Multiple regressions of Stanford-Binet at age 4 years on individual maternal risks during pregnancy without (Model 1) and 
with (Model 2) postnatal influences in full sample 
 IQ score at age 4 years 

 Model 1 Model 2 
 B SE B  ̡ B SE B ɰ 

         
Higher numbers of members in 
household -5.80 **  2.05 -0.16 -4.72 *  1.94    -0.13 
Household income below 1977 poverty 
line -2.13      1.83 -0.07 -1.05  1.71    -0.04 
Unemployed -2.38      1.87 -0.08 -1.68  1.72    -0.06 
Teenage Mother  -3.05      1.80 -0.11 -2.22  1.70   -0.08 
High school drop-out -0.21      1.86 -0.01 1.24  1.75     0.04 
Unmarried 1.81      1.75 -0.06 1.47  1.61      0.05 
Non-White -6.87     **  2.64  -0.15 -6.38 **  2.53     -0.14 
No support network -4.70   *  2.44   -0.11 -3.12  2.29    -0.07 
Paternal or maternal criminal 
engagement -0.99   3.14   -0.02 0.53  2.77      0.01 
Homeless -4.00     4.21   -0.06 -4.09  3.79     -0.07 
Relationship problems -2.11      1.77    -0.07 -1.16  1.73    -0.04 
General life anxiety -1.67      1.82    -0.05 -1.38  1.69 -0.04 
         
Treatment group 1.45       1.54      0.05 0.51  1.44    0.01 
         
Maternal cigarettes per day  -0.16      0.10  -0.10 -0.07  0.09  -0.04 
         
NARS 0.04  0.05     0.04 0.03  0.04  0.03 
         
Child sex  -2.96     *  1.53    -0.11 -3.01 *  1.42 -0.11 
         
Reports of child abuse and neglect n/a  n/a n/a -5.43 **  2.05     -0.15 
         
Caldwell EC-HOME n/a  n/a n/a 0.73 ***  0.15    0.33 
         
F Statistic 3.05 (17, 274.1) ***    5.53 (19, 271.0) ***    
Total R

2
 0.17    0.29    

n 302    302    

*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
Note:  Imputed data 
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Table 7. 
Frequency (%) of rs6190 within each level of maternal cumulative risk 

 rs6190
2
 

Number of Maternal Risks During Pregnancy
1
 A/A A/G G/G Missing Total 

0 0 1 (10.0) 1 (0.7) 0 2 (1.3) 
1 0 0 10 (6.9) 0 10 (6.4) 
2 0 3 (30.0) 19 (13.2) 0 22 (14.0) 
3 0 2 (20.0) 21 (14.6) 0 23 (14.7) 
4 0 1 (10.0) 25 (17.4) 0 26 (16.5) 
5 0 0 23 (16.0) 0 23 (14.7) 
6 0 2 (20.0) 24 (16.7 2 (100.0) 28 (17.8) 
7 1 (100.0) 1 (10.0) 11 (7.6) 0 13 (8.3) 
8 0 0 9 (6.3) 0 9 (5.7) 
9 0 0 1 (0.6) 0 1 (0.6) 

Total 1 (100.0) 10 (100.0) 144 (100.0) 2 (100.0) 157 (100.0) 

Source: Nurse Family Partnership Program Data Set, Elmira Sample 
1
Data collected from intake to child birth 

2
Data collected at child age 27 years 

 
 
 

Table 8. 
Frequency (%) of rs6198 within each level of maternal cumulative risk 

 rs6198
2
 

Number of Maternal Risks During Pregnancy
1
 A/A A/G G/G Missing Total 

0 0 1 (2.9) 1 (16.7) 0 2 (1.3) 
1 5 (4.4) 3 (8.8) 1 (16.7) 1 (25.0) 10 (6.4) 
2 13 (11.5) 7 (20.6) 1 (16.7) 1 (25.0) 22 (14.1) 
3 18 (15.9) 4 (11.8) 1 (16.7) 0 23 (14.7) 
4 16 (14.2) 9 (26.5) 1 (16.6) 0 26 (16.6) 
5 20 (17.7) 2 (5.9) 1 (16.6) 0 23 (14.7) 
6 22 (19.5) 4 (11.8) 0 2 (50.0) 28 (17.8) 
7 11 (9.7) 2 (5.9) 0 0 13 (8.3) 
8 7 (6.2) 2 (5.8) 0 0 9 (5.6) 
9 1 (0.9) 0 0 0 1 (0.5) 

Total 113 (100.0) 34 (100.0) 6 (100.0) 4 (100.0) 157 (100.0) 

Source: Nurse Family Partnership Program Data Set, Elmira Sample 
1
Data collected from intake to child birth 

2
Data collected at child age 27 years 
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Table 9. 
Multiple regressions of gestational age and birth weight on maternal cumulative risk during pregnancy. 

 Gestational age (Full sample) Birth weight (Full sample) Birth weight (DNA sample) 

 B SE B  ̡ B SE B  ̡ B SE B ɰ 
             
Maternal cumulative risk -0.17 *  0.07 -0.13 -47.49 **  16.32 -0.16 -47.17 **  16.32 -0.17 
             
Treatment group -0.24  0.29 -0.04 -32.04  64.37 -0.03 9.99  72.27 0.01 
             

Maternal smoking 0.01  0.02 0.02 -10.39 **  3.61 -0.15 -10.89 **  3.60 -0.17 

             
NARS 0.00  0.01 0.01 0.98  1.87 0.03 0.89  2.13 0.03 
             
Child sex  -0.07  0.28 -0.01 95.77  64.04 0.08 95.50  72.12 0.09 
             
Total R

2
 0.02    0.06    0.07    

n 372    372   233      
*p≤.05, **p≤.01 
Source: Nurse Family Partnership Elmira Sample 
Note: Gestational age was not significant in the restricted sample. 
Note:  Imputed data 

 

Table 10. 
Multiple regressions of Stanford-Binet at age 3 years on maternal cumulative risk during pregnancy without (Model 1) and 
with (Model 2) postnatal influences in full sample 

 IQ score at age 3 years 
 Model 1 Model 2 

 B SE B  ̡ B SE B ɰ 
         
Maternal cumulative risk -1.56       ***  0.37 -0.24 -1.02     **  0.37 -0.16 
         
Treatment group 1.34       1.58 0.05 0.69       1.56 0.02 
         
Maternal cigarettes per day  -0.14      0.10 -0.08 -0.11      0.09 -0.06 
         

NARS 0.01       0.05 0.01 -0.04      0.05 -0.05 

         
Child sex  -2.21      1.58 -0.08 -2.01      1.56 -0.07 
         
Caldwell EC-HOME n/a  n/a n/a 0.67      ***  0.11  0.33 
         

Total R
2
 0.07    0.17    

n 325    302    

*p≤.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
Note: With respect to the association of maternal cumulative risk during pregnancy and IQ at 3 years of age, the mediation 
effect of low birth weight was significant, but small (7.6%). There was no effect of gestational age. 
Note:  Imputed data 
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Table 11. 
Multiple regressions of Stanford-Binet at age 3 years on maternal cumulative risk during pregnancy without (Model 1) and 
with (Model 2) postnatal influences in DNA sample 

 IQ score at age 3 years 

 Model 1 Model 2 
 B SE B  ̡ B SE B ɰ 

         

Maternal cumulative risk -1.61   ***  0.47 -0.24 -1.06 *  0.45 -0.16 

         
Treatment group -0.06  1.87 -0.00 -0.35    1.78 -0.01 

         

Maternal cigarettes per day  -0.17    0.11 -0.10 -0.10  0.11 -0.06 
         
NARS -0.03  0.05 -0.04 -0.07  0.05 -0.09 
         
Child sex  -2.23  1.88 -0.08 -1.72  1.78 -0.06 
         
Caldwell EC-HOME n/a  n/a n/a 0.72 ***  0.13 0.38 
         
Total R

2
 0.07    0.21    

n 226    212    

*p≤.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
Note: With respect to the association of maternal cumulative risk during pregnancy and IQ at 3 years of age, the mediation 
effect of low birth weight was significant, but small (8.9%). There was no effect of gestational age. 
Note:  Imputed data 
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Table 12. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy without (Model 1) and 
with (Model 2) postnatal influences in full sample 

 IQ score at age 4 years 

 Model 1 Model 2 
 B SE B  ̡ B SE B ɰ 

         
Maternal cumulative risk -1.93 ***  0.36 -0.30 -1.01 **  0.37 -0.16 
         
Treatment group 1.71     1.52 0.06 0.60  1.41 0.02 
         
Maternal cigarettes per day  -0.10  0.09 -0.06 -0.00  0.09 -0.00 
         
NARS 0.05  0.05 0.06 0.03  0.04 0.04 
         
Child sex  -2.97 *  1.51 -0.11 -3.06 *  1.40 -0.11 
         
Reports of child abuse and neglect n/a  n/a n/a -4.33 *  1.98 -0.12 
         
Caldwell EC-HOME n/a  n/a n/a 0.79 ***  0.15 0.36 
         
Total R

2
 0.12    0.26    

n 302      302      

*p<.05, **p≤.01, ***p≤.001 
Note: With respect to the association of maternal cumulative risk during pregnancy and IQ at 4 years of age, the mediation 
effect of low birth weight was significant, but small (3.1%). There was no effect of gestational age. 
Source: Nurse Family Partnership Elmira Sample 
Note:  Imputed data 
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Table 13. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy without (Model 1) and 
with (Model 2) postnatal influences in DNA sample 

 IQ score at age 4 years 

 Model 1 Model 2 
 B SE B  ̡ B SE B ɰ 

          

Maternal cumulative risk -1.98 ***  0.45 -0.30 -1.14 **  0.44 -0.17 

         

Treatment group 1.42  1.81 0.05 0.90  1.67 0.03 
         
Maternal cigarettes per day  -0.12  0.11 -0.07 -0.01  0.10   -0.01 
         
NARS 0.00  0.05 0.01 0.00  0.05  0 .00 
         
Child sex  -2.33  1.82 -0.09 -1.61  1.41 -0.06 
         
Reports of child abuse and neglect n/a  n/a n/a -3.30  2.31 -0.09 
         
Caldwell EC-HOME n/a  n/a n/a 0.82 ***  0.14 0.39 
         

Total R
2
 0.11    0.26    

n 214    214    

*p<.05, **p≤.01, ***p≤.001 
Note: With respect to the association of maternal cumulative risk during pregnancy and IQ at 4 years of age, the mediation 
effect of low birth weight was significant, but small (8.2%). There was no effect of gestational age. 
Source: Nurse Family Partnership Elmira Sample 
Note:  Imputed data 
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Table 14. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy without (Model 1), 
inclusion of birthweight (Model 2),  and addition of (Model 3) HOME score  in full sample 
 IQ score at age 4 years 

 Model 1 Model 2 Model 3 
 B SE B  ̡ B SE B  ̡ B SE B  ̡

              
Maternal cumulative risk -1.93 ***  0.36 -0.30 -1.88 ***  0.37 -0.29 -1.00 **  0.37 -0.16 
             
Treatment group 1.71     1.52 0.06 1.68  1.52 0.06 0.67  1.42 0.02 
             
Maternal smoking  -0.10  0.09 -0.06 -0.08  -0.09 -0.05 -0.01  0.09 -0.01 
             
NARS 0.05  0.05 0.06 0.04  0.05 0.05 0.03  0.04 0.03 
             
Child sex  -2.97 *  1.51 -0.11 -3.15 *  1.53 -0.11 -3.17 *  1.42 -0.11 
             
Birthweight n/a  n/a n/a 0.00  0.00 0.05 0.00  0.00 0.02 
            
Caldwell EC-HOME n/a  n/a n/a n/a  n/a n/a 0.84 ***  0.14 0.39 
             
Total R

2
 0.12    0.12    0.24    

n 302      302    302    

*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
Note:  Imputed data 
 

 

 
Table 15.  Maternal risk during pregnancy by mean IQ at ages 3 and 4 years in DNA sample 

Maternal cumulative risk IQ at age 3 years IQ at age 4 years 
Low (4 risks or fewer) 105.20 113.00 
High (5 risks or more) 99.70 106.00 

Average 102.40 109.50 

n 226 214 

Note:  Imputed data 
Source: Nurse Family Partnership Elmira Sample 

 
 
 

Table 16.  Multivariate repeated measures of maternal cumulative 
risk during pregnancy on change in IQ from 3 to 4 years 

F statistic 6.48(2.0, 135.0) p=0.002 
Wilks' lambda       0.91  

Pillai's trace      0.09  
Lawley-Hotelling trace 0.10  

Roy's largest root 0.10  

n             138 

Note:  Imputed data 
Source: Nurse Family Partnership Elmira Sample 
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Figure 2.  HapMap of Glucocorticoid Receptors rs6198, rs6190, rs2918417, and rs4244032 
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Table 17. 
Multiple regressions of birth weight on maternal cumulative risk during pregnancy (Model 1) and controlling for rs2918417 (Model 2), rs4244032 (Model 3), rs6198 (Model 4) 
and rs6190 (Model 5), respectively 

 Birth weight 
 Model 1 Model 2 Model 3 Model 4 Model 5 

 B SE B  ̡ B SE B  ̡ B SE B  ̡ B SE B  ̡ B SE B  ̡

Maternal 
cumulative 
risk 

-
58.99 **  

21.53 -0.22 -60.36    **  21.59     -0.22 -63.18    **  21.66     -0.23 -51.84    *  22.04     -0.19 -62.30 **  21.39 -0.23 
                     
Treatment 
group 

40.62  
86.26 0.04 40.95     86.60      0.04 50.50      86.54      0.05 34.65     86.07      0.03 53.61  86.77 0.05 

                     
Maternal 
smoking  

-9.63  
5.13 -0.15 -10.16    *  5.13     -0.16 -9.95     5.16     -0.16 -9.83     5.11     0.16 -10.16     *  5.13 -0.16 

                     

NARS 
0.81  

2.48 0.03 0.60     2.45      0.02 0.73     2.49      0.02 0.87     2.47      0.03 0.67      2.50 0.02 
                     

Child sex  
40.66  

86.75 0.04 24.60     86.27 0.02  30.83    87.01      0.03 41.86     86.45      0.04 32.98      86.94 0.03 
                     
Rs2918417 
(A/G and A/A) 

n/a  
n/a n/a 48.84     87.01 0.04 n/a  n/a n/a n/a  n/a n/a n/a  n/a n/a 

                     
Rs4244032 
(A/G and G/G) 

n/a  
n/a n/a n/a  n/a n/a -45.72     91.69 -0.04 n/a  n/a n/a n/a  n/a n/a 

                     
Rs6198 (A/G 
and G/G) 

n/a  
n/a n/a n/a  n/a n/a n/a  n/a n/a 141.8     100.1    0.12 n/a  n/a n/a 

                     
Rs6190 (A/G 
and A/A) n/a  n/a n/a n/a  n/a n/a n/a  n/a n/a n/a  n/a n/a -37.90  170.2 -0.02 
                     

Total R
2
 0.08   0.08   0.08   0.09    0.08    

n 153   155   154   153      155    

*p≤.05, **p≤.01, ***p≤.001 
Note: No change in significance with gene and risk interactions 
Source: Nurse Family Partnership Elmira Sample 

 

Table 18. 
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Multiple regressions of Stanford-Binet at age 3 years on maternal cumulative risk during pregnancy without and with postnatal influences (Models 1 and 2) and rs6198 
without and with postnatal influences (Models 3 and 4) 
 IQ score at age 3 years 

 Model 1 Model 2 Model 3 Model 4 
 B SE B  ̡ B SE B  ̡ B SE B  ̡ B SE B  ̡

                 
Maternal cumulative risk -1.76 **  0.60 -0.24 -0.82  0.58 -0.11 -1.79    **  0.62     -0.25 -0.84    0.60  -0.12 
                 
Treatment group -0.83  2.44 -0.03 -0.44  2.24 -0.01 -0.80    2.45 -0.03 -0.42   2.26    -0.01 
                 

Maternal smoking  -0.23  0.13 -0.13 -0.13  0.14 -0.07 -0.23  0.15 -0.13 -0.13    0.14  -0.07 
                 
 NARS -0.11  0.07 -0.13 -0.16 **  0.07 -0.20 -0.11    0.07  -0.13 -0.17    **  0.07     -0.20 
                 
Child sex  -2.86  2.46 -0.10 -2.35  2.26 -0.08 -2.87    2.47  -0.10 -2.36     2.27    -0.08 
                 
Caldwell EC-HOME n/a  n/a n/a 0.82 ***  0.16 0.42 n/a  n/a n/a 0.82        ***  0.16 0.42 
                 
rs6198 (A/G and G/G) n/a  n/a n/a n/a  n/a n/a -0.59     2.81    -0.02 -0.42    2.59    -0.01 
                 
Total R

2
 0.09    0.24    0.09    0.24    

N 142    142    142    142    
*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
Note: Models 1 and 2 are imputed. 
Note:  A/G and G/G genotypes run separately were not significant.  Also, rs6198 defined by per allele risk was not significant. 
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Table 19. 
Multiple regressions of Stanford-Binet at age 3 years on maternal cumulative risk during pregnancy with rs6198 and 
moderation effects without and with postnatal influences (Models 1 and 2)  

 IQ score at age 3 years 
 Model 1 Model 2 

 B SE B  ̡ B SE B  ̡

        
Maternal cumulative risk -1.29    0.73     -0.17 -0.51    0.69   -0.07 
        
Treatment group -0.01 2.44     -0.00 -0.20     2.27   -0.01 
        
Maternal smoking  -0.22    0.15   -0.12 -0.11    0.14    -0.06 
        
 NARS -0.12    0.07     -0.15 -0.17    **  0.07   -0.20 
        
Child sex  -2.42   2.45     -0.08 -2.34    2.27     -0.08 
        
Caldwell EC-HOME n/a n/a n/a 0.80   ***  0.16     0.41 
        
rs6198 (A/G and G/G) 6.76    5.96    0.20 4.20   5.52 0.13 
        
rs6198 (A/G and G/G)*risk -1.83   1.36 -0.24 -1.19      1.26    -0.16 
        

Total R
2
 0.10   0.24    

n 145   142    
*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
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Figure 3.  Maternal Cumulative Risk during Pregnancy and IQ at Age 3 Years without Postnatal 
Controls in the presence of rs6198 A/G and G/G vs. A/A Genotypes in Children 

9
0

9
5

1
0

0
1

0
5

1
1

0
1

1
5

IQ
 a

t 
A

g
e

 3
 Y

e
a

rs

0 2 4 6 8 10
Maternal Cumulative Risk During Pregnancy

rs6198 A/G + G/G rs6198 A/A

 
 

 

 

 

Table 20.   
Summary of effects of maternal cumulative risk on IQ at age 3 years with presence of glucocorticoid receptor rs6198 
genotypes 

 A/A A/G and G/G 
 B  SE B B  SE B 

Effect of maternal cumulative risk on IQ at age 3 years -1.29  0.73 -3.11 **  1.14 
IQ at age 3 years n/a  n/a 6.76  5.96 

Note: Model run without postnatal controls 
*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
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Table 21. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy without and with postnatal influences (Models 1 and 2) and rs6198 per 
allele risk without and with postnatal influences (Models 3 and 4) 

 IQ score at age 4 years 

 Model 1 Model 2 Model 3 Model 4 

 B SE B  ̡ B SE B  ̡ B SE B  ̡ B SE B  ̡
                 
Maternal cumulative risk -2.62 ***  0.59 -0.36 -1.30 *  0.56 -0.18 -2.60 ***  0.60 -0.36 -1.32 *  0.57 -0.18 

                 
Treatment group 0.82  2.34 0.03 1.31  2.05 0.05 0.81  2.33 0.03 1.31  2.06 0.05 
                 
Maternal smoking -0.21  0.14 -0.12 -0.03  0.13 -0.02 -0.21  0.14 -0.12 0.03  0.13 0.02 
                 
NARS -0.04  0.07 0.04 -0.02  0.05 -0.02 -0.04  0.07 -0.04 -0.02  0.06 -0.02 
                 
Child sex -0.75  2.36 -0.03 0.68  2.06 0.02 -0.74  2.36 -0.03 0.67  2.07 0.02 
                 
Reports of child abuse and neglect n/a  n/a n/a -7.03 *  3.00 -0.17 n/a  n/a n/a -6.98 *  3.02 -0.17 
                 
Caldwell EC-HOME n/a  n/a n/a 1.07 ***  0.18 0.47 n/a  n/a n/a 1.08 ***  0.18 0.48 
                 
rs6198 per allele risk n/a  n/a n/a n/a  n/a n/a 0.33  2.33 0.01 -0.51  2.45 -0.02 
                 

Total R
2
 0.14    0.36    0.14    0.36    

N 137    137    138    137    

*p<.05, **p≤.01, ***p≤.001 
Note: Models 1 and 2 are imputed. 
Source: Nurse Family Partnership Elmira Sample 
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Table 22. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy and rs6198 per allele risk 
with interaction effects without and with postnatal influences  

 IQ score at age 4 years 

 Model 1 Model 2 

 B SE B  ̡ B SE B  ̡

         
Maternal cumulative risk -1.90 **  0.67 -0.26 -0.67  0.62 -0.09 
         
Treatment group 1.48  2.32 0.05 1.94  2.04 0.07 
         
Maternal smoking -0.17  0.14 -0.10 0.06  0.13 0.04 
         
NARS -0.04  0.07 -0.05 -0.02  0.06 -0.03 
         
Child sex -0.70  2.32 -0.02 0.71  2.03 0.02 
         
Reports of child abuse and neglect n/a  n/a n/a -7.02 *  2.97 -0.17 
         
Caldwell EC-HOME n/a  n/a n/a 1.07 ***  0.18 0.47 
         
rs6198 per allele risk 10.37 *  5.00 0.37 8.97 *  4.35 0.32 
         
rs6198*Maternal  cumulative risk -2.74 *  1.21 -0.40 -2.58 **  1.05 0.37 
         
Total R

2
 0.18    0.39    

n 138    137    

*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



102 

 

 

9
7 

Figure 4.  Maternal Cumulative Risk during Pregnancy and IQ at Age 4 Years in Children in presence of 
rs6198 A/A, A/G, and G/G Genotypes in Children without Postnatal Controls 
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Table 23. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy and rs6198  genotypes with interaction effects without (Models 1 and 3) 
and with postnatal influences(Models2 and 4)   

 IQ score at age 4 years 
 Model 1 Model 2 Model 3 Model 4 

 B SE B  ̡ B SE B  ̡ B SE B  ̡ B SE B  ̡

                 
Maternal cumulative risk -1.89   **  0.68     -0.26 -0.65     0.63    -0.09 -5.08  ***  1.20     -0.70 -3.61    ***  1.08     -0.49 
                 
Treatment group 1.32     2.31      0.05 1.79     2.03      0.06 1.32    2.31    0.05 1.79     2.03      0.06 

                 
Maternal smoking  -0.17     0.14     -0.10 0.07     0.13     0.04 -0.17    0.14    -0.10 0.07     0.13      0.04 
                 

NARS -0.04     0.07    -0.05 -0.02     0.06   -0.03 -0.04    0.07    -0.05 -0.02     0.06     -0.03 

                 
Child sex  -0.68    2.32     -0.02 0.73         2.03 0.03 -0.68    2.32     -0.02 0.73     2.03      0.03 
                 
Reports of child abuse and neglect n/a  n/a n/a -7.01    *  2.97  -0.17 n/a  n/a n/a -7.01   *  2.97    -0.17 
                 
Caldwell EC-HOME n/a  n/a n/a 1.07  ***  0.18     0.47 n/a  n/a n/a 1.07   ***  0.18     0.47 
                 
rs6198 (A/G and G/G)   11.61     6.13     0.35 10.06      5.34      0.30 n/a  n/a n/a n/a  n/a n/a 
                 
rs6198 (A/G and G/G)* risk -3.19  *  1.39    -0.42 -2.96   *  1.20     -0.39 n/a  n/a n/a n/a  n/a n/a 
                 
rs6198 A/A n/a  n/a n/a n/a  n/a n/a -11.61        6.13 -0.35 -10.06      5.34    -0.30 
                 

rs6198 A/A*risk n/a  n/a n/a n/a  n/a n/a 3.19    *  1.39     0.58 2.96    *  1.20      0.54 

                 

Total R
2
 0.18    0.39    0.18    0.39    

N 138    137    138    137    

*p<.05, **p≤.01, ***p≤.001 

Source: Nurse Family Partnership Elmira Sample 
Note: A/G and G/G genotypes were not significant when run separately or as interaction terms with cumulative risk. 
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Figure 5.  Maternal Cumulative Risk during Pregnancy and IQ at Age 4 Years in Children in presence of 
rs6198 A/A vs. A/G and G/G Genotypes in Children without Postnatal Controls  
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Table 24.   
Summary of effects of maternal cumulative risk on IQ at age 4 years with presence of glucocorticoid receptor rs6198 
genotypes 

 A/A A/G and G/G 

 B  SE B B  SE B 

Effect of maternal cumulative risk on IQ at age 4 years -1.89   **  0.68     -5.08 ***  1.20 
 IQ at age 4 years n/a  n/a 11.61     6.13     

Note: Model run without postnatal controls 
*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
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Table 25. 
Multiple regressions of Stanford-Binet at age 3 years on maternal cumulative risk during pregnancy without and with postnatal influences (Models 1 and 2) and per allele risk 
of rs6190 without and with postnatal influences (Models 3 and 4) 

 IQ score at age 3 years 

 Model 1 Model 2 Model 3 Model 4 

 B SE B  ̡ B SE B  ̡ B SE B  ̡ B SE B  ̡
                 

Maternal cumulative risk  -1.74   **  0.59  -0.24 -0.82    0.57  -0.11  -1.85    **  0.58     -0.25 -0.89       0.57 -0.12 
                 
Treatment group -1.13    2.42   -0.04 -0.65     2.22     -0.02 0.03     2.39     0.00 -0.33     2.24 -0.01 
                 
Maternal smoking -0.22     0.15     -0.13 -0.12     0.14  -0.07 -0.25     0.15 -0.14 -0.13     0.14 -0.07 
                 
NARS -0.11     0.07   -0.13 -0.17   **  0.06  -0.20 -0.13     0.07     -0.16 -0.17   **  0.07    -0.20 
                 
Child sex -2.79    2.43     -0.09 -2.34  2.23 -0.08 -1.75      2.41     -0.06 -2.04      2.25    -0.07 
                 
Caldwell EC-HOME n/a  n/a n/a 0.83     ***  0.16      0.42 n/a  n/a n/a 0.79    ***  0.16    0.40 
                 
rs6190 per allele risk n/a  n/a n/a n/a  n/a n/a -4.25      3.85    -0.17 -4.25     3.85    0.09 
                 

Total R
2
 0.09    0.24    0.08    0.25    

N 144    144    147    144    

*p<.05, **p≤.01, ***p≤.001 
Note: Models 1 and 2 are imputed. 
Source: Nurse Family Partnership Elmira Sample 
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Table 26. 
Multiple regressions of Stanford-Binet at age 3 years on maternal cumulative risk during pregnancy without and with 
postnatal influences with per allele risk of rs6190 and moderation effects without and with postnatal influences (Models 1 
and 2)  

 IQ score at age 3 years 

 Model 1 Model 2 

 B SE B  ̡ B SE B  ̡

         
Maternal cumulative risk -2.06        ***  0.61   -0.28 -1.11    0.59   -0.15 
         
Treatment group -0.05  0.39 -0.00 -0.41        2.23 -0.01 
         
Maternal smoking   -0.24        0.15 -0.13 -0.12       0.14 -0.07 
         
NARS -0.13     0.07    -0.15 -0.17    **  0.06 -0.20 
         
Child sex -1.80        2.41 -0.06 -2.10       2.24 -0.07 
         
Caldwell EC-HOME n/a  n/a n/a 0.79      ***  0.16 0.40 
         
rs6190 per allele risk -17.45  *  0.64 -0.35 -13.59   8.03     -0.28 
         
rs6190*risk 1.94     0.68 0.20 2.06    1.56      0.22 
         
Total R

2
 0.13    0.26    

n 147    144    

*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 

 

Please note: Interactions from this analysis were not able to be graphed due to an 

insufficient number of observations per allele. 
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Table 27. 
Multiple regressions of Stanford-Binet at age 3 years on maternal cumulative risk during pregnancy and rs6190 genotypes without postnatal influence (Models 1, 2, 3) with 
interaction effects (Model 4). 
 IQ score at age 3 years 

 Model 1 Model 2 Model 3 Model 4 

 B SE B  ̡ B SE B  ̡ B SE B  ̡ B SE B  ̡

                 

Maternal cumulative risk -1.86   **  0.58    -0.26 -1.95    ***  0.59 -0.27 -1.91 ***  0.06 -0.26 -2.03    ***  0.61   -0.28 
                 
Treatment group -0.40   2.40 0.01 0.01  2.39 0.00 .0.07  2.38 0.00 -0.01  2.39    -0.00 

                 

Maternal smoking  -0.23    0.14     -0.13 -0.25    0.14 -0.14 -0.25  0.14 -0.14 -.024    0.15     -0.13 

                 

NARS -0.13      0.07     -0.16 -0.13     0.07 -0.16 -0.13 *  0.07 -0.16 -0.13   0.07    -0.16 
                 
Child sex  -2.12  2.41   -0.07 -1.79     2.41 -0.06 -1.72  2.40 -0.06 -1.78     2.40     -0.06 
                 
rs6190 (A/G and A/A) -10.77  *  4.55    -0.19 n/a  n/a n/a n/a  n/a n/a -16.23   8.99    -0.29 
                 

rs6190 A/G n/a  n/a n/a -11.66    **  4.78 -0.20 n/a  n/a n/a n/a  n/a n/a 

                 

rs6190 A/A n/a  n/a n/a -2.96    14.51 -0.2 n/a  n/a n/a n/a  n/a n/a 

                 

rs6190 G/G n/a  n/a n/a n/a  n/a n/a 10.87 *  4.56 0.19 n/a  n/a n/a 

                 

rs6190 (A/G and A/A)*risk n/a  n/a n/a n/a  n/a n/a n/a  n/a n/a 1.40   2.02 -0.06 

                 

Total R
2
 0.13    0.13    0.13    0.13    

N 144    147    147    147    

*p<.05, **p≤.01, ***p≤.001  

Source: Nurse Family Partnership Elmira Sample  
Note: No interaction effects, No significance of rs6190 when postnatal HOME scores were included.   
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Figure 6.  Maternal Cumulative Risk during Pregnancy and IQ at Age 3 Years without Postnatal 
Controls in the presence of rs6190 A/G and A/A vs. G/G Genotypes in Children 
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Table 28.   
Summary of effects of maternal cumulative risk on IQ at age 3 years with presence of glucocorticoid receptor rs6190 
genotypes. 

 G/G A/G and A/A 

 B  SE B B  SE B 

Effect of maternal cumulative risk on IQ at age 3 years -2.03   ***  0.61     -0.64  1.93 
IQ at age 3 years n/a  n/a -16.23    8.99    

Note: Model run without postnatal controls 
*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
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Table 29. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy without and with postnatal influences (Models 1 and 2) and rs6190 per 
allele risk with interaction effects without and with postnatal influences (Models 3 and 4).  

 IQ score at age 4 years 
 Model 1 Model 2 Model 3 Model 4 

 B SE B  ̡ B SE B  ̡ B SE B  ̡ B SE B  ̡

                 
Maternal cumulative risk -2.54   ***  0.58     -0.35 -1.27   *  0.55     -0.18 -2.56   ***  0.58     -0.35 -1.31 *  0.56     -0.18 
                 
Treatment group 0.45    2.33      0.02 0.91      2.04      0.03 1.24    2.32      0.04 1.07     2.07     0.04 
                 
Maternal smoking -0.19     0.14     -0.11 0.03     0.13   0.02 -0.20     0.14     -0.11 0.03     0.13     0.02 
                 
NARS -0.03      0.07     -0.04 -0.02        0.06 -0.02 -0.04   0.07     -0.05 -0.02     0.06     -0.02 
                 
Child sex  -0.50     2.35     -0.02 0.76     2.05      0.03 0.03  2.33     0.00 0.81  2.06      0.03 
                 
Reports of child abuse and neglect n/a  n/a n/a -6.90   *  3.01     -0.16 n/a  n/a n/a -6.80       *  3.02 -0.16 
                 
Caldwell EC-HOME n/a  n/a n/a 1.08   ***  0.18    0.47 n/a  n/a n/a 1.05   ***  0.19      0.46 
                 
rs6190 per allele risk  n/a  n/a n/a n/a  n/a n/a -9.23   *  4.09     -0.18 -1.98    3.81     -0.04 
                 
rs6190*risk n/a  n/a n/a n/a  n/a n/a n/a  n/a n/a n/a  n/a n/a 
                 

Total R
2
 0.14    0.36    0.17    0.36    

N 139    139    139    139    

*p<.05, **p≤.01, ***p≤.001 
Note: Models 1 and 2 are imputed. 
Source: Nurse Family Partnership Elmira Sample 
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Table 30. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy and rs6190 with 
interaction effects without and with postnatal influences (Models 1 and 2).  
 IQ score at age 4 years 

 Model 1 Model 2 

 B SE B  ̡ B SE B  ̡

         
Maternal cumulative risk -2.84       ***  0.59 -0.39 -1.60   **  0.56     -0.22 
         
Treatment group 1.44     2.29     0.05 1.28     2.04      0.04 
         
Maternal smoking -0.19     0.14  -0.11 0.04   0.13      0.02 
         
NARS -0.05  0.07     -0.06 -0.02     0.06    -0.03 
         
Child sex  -0.21     2.30     -0.01 0.60     2.04      0.02 
         
Reports of child abuse and neglect n/a  n/a n/a -6.92   *  2.98     -0.17 
         
Caldwell EC-HOME n/a  n/a n/a 1.06   ***  0.19     0.46 
         
rs6190 per allele risk  -25.36   **  9.72     -0.50 -19.34    *  8.63     -0.38 
         
rs6190*risk 3.36    1.84      0.35 3.63    *  1.63     0.38 

Total R
2
 0.19    0.38    

n 140    139    

*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 

 

Please note: Interactions from this analysis were not able to be graphed due to an 

insufficient number of observations per rs6190 genotype. 
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Table 31. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy and rs6190 genotypes with interaction effects without (Models 1 and 3) 
and with postnatal influences (Models 2 and 4). 

 IQ score at age 4 years 

 Model 1 Model 2 Model 3 Model 4 

 B SE B  ̡ B SE B  ̡ B SE B  ̡ B SE B  ̡
                 
Maternal cumulative risk -2.87   ***  0.59     -0.40 -1.62   **  0.56     -0.22 -2.92   ***  0.58   -0.40 -1.59    **  0.54     -0.22 
                 
Treatment group 1.39    2.28      0.04 1.24    2.02      0.04 1.39    2.28     0.05 1.54      1.97      0.05 

                 

Maternal smoking  -0.19    0.14     -0.11 0.06     0.13      0.04 -0.18   0.14    -0.10 0.10     0.12     0.06 

                 

NARS -0.05    0.07     -0.06 -0.02       0.06 -0.03 -0.05     0.07     -0.06 -0.02     0.06    -0.03 
                 
Child sex  0.28     2.30     -0.01 0.48     2.01      0.02 -0.36    2.29   -0.01 0.62     1.96     0.02 

                 

Reports of child abuse and neglect n/a  n/a n/a -7.50    **  2.96    -0.18 n/a  n/a n/a -8.64    **  2.94     -0.21 

                 

Caldwell EC-HOME n/a  n/a n/a 1.13    ***  0.19      0.49 n/a  n/a n/a 1.19     ***  0.18     0.52 
                 
rs6190 (A/G and A/A)  -26.32  **  10.40     -0.45 -24.87    **  9.08     -0.43 n/a  n/a n/a n/a  n/a n/a 
                 
rs6190 (A/G and A/A)* risk 3.73        2.31 0.29 5.87   **  2.04     0.45 n/a  n/a n/a n/a  n/a n/a 
                 

rs6190 A/G n/a  n/a n/a n/a  n/a n/a -29.64    **  11.08     -0.48 -32.93    ***  9.50    -0.53 

                 

rs6190 A/G* risk n/a  n/a n/a n/a  n/a n/a 4.97   2.70      0.33 9.02    ***  2.38     0.59 
                 

Total R
2
 0.19    0.40    0.19    0.42    

n 140    139    140    139    

*p<.05, **p≤.01, ***p≤.001 

Source: Nurse Family Partnership Elmira Sample 
Note: A/A genotype alone was not significant (n = 1). 
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Table 32. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy and rs6190 without interaction effects and without and with postnatal 
influences (Models 1 and 2) and with interaction effects without and with postnatal influences (Models 3 and 4). 

 IQ score at age 4 years 
 Model 1 Model 2 Model 3 Model 4 

 B SE B  ̡ B SE B  ̡ B SE B  ̡ B SE B  ̡

                 
Maternal cumulative risk -2.62 ***  0.57 -0.36 -1.32 *  0.56 -0.18 0.86  2.23 0.12 4.24 *  2.01 0.59 
                 
Treatment group 1.27     2.30 0.04 1.03     2.07 0.04 1.39     2.28 0.05 1.24      2.02 0.04 
                 

Maternal smoking -0.20     0.14 -11.48 0.03     0.13 0.02 -0.19     0.14 -0.11 0.06     0.13 0.04 
                 

NARS -0.05     0.07 -0.06 -0.02     0.06 0.02 -0.05         0.07 -0.06 -0.02         0.06 -0.03 
                 
Child sex  -0.04     2.30 0.00 0.81     2.06 0.03 -0.28     2.30 -0.01 0.48     2.01 0.02 
                 
Reports of child abuse and neglect n/a  n/a n/a -6.78    *  3.03 -0.16 n/a  n/a n/a -7.50    **  2.96 -0.18 
                 

Caldwell EC-HOME n/a  n/a n/a 1.06    ***  0.19 0.46 n/a  n/a n/a 1.13    ***  0.19 0.49 
                 

rs6190 G/G 11.28    *  4.70 0.19 1.90          4.46 0.03 26.32    **  10.40 -0.45 24.87    **  9.01 0.43 

                 

rs6190 G/G*risk n/a  n/a n/a n/a  n/a n/a -3.73     2.31 -0.57 -5.87     **  2.04 -0.90 
                 

Total R
2
 0.17    0.36    0.19    0.40    

N 140    139    140    139    

*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
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Figure 7.  Maternal Cumulative Risk during Pregnancy and IQ at Age 4 Years in Children in presence of 

rs6190 G/G vs. A/G and A/A Genotypes in Children without Postnatal Controls  
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Table 33.   
Summary of effects of maternal cumulative risk on IQ at age 4 years with presence of glucocorticoid receptor rs6190 
genotypes. 

 G/G A/G and A/A 
 B  SE B B  SE B 

Effect of maternal cumulative risk on IQ at age 4 years -2.87   ***  0.59     0.86     2.23 

 IQ at age 4 years n/a  n/a -26.32  **  10.40     
Note: Model run without postnatal controls 
*p<.05, **p≤.01, ***p≤.001 
Source: Nurse Family Partnership Elmira Sample 
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Table 33. 
Multiple regressions of Stanford-Binet at age 4 years on maternal cumulative risk during pregnancy with cumulative genetic 
risk, postnatal controls, and without and with interaction effects. 
 IQ score at age 4 years 

   
 B SE B  ̡ B SE B  ̡

         
Maternal cumulative risk -1.32 *  0.56 -0.18 2.97  1.84 0.41 
         

Cumulative genetic risk  2.30  3.73 0.05 17.96 *  7.40 0.37 
         

Treatment group 1.49  2.08 0.05 1.82  2.04 0.06 
         

Maternal smoking 0.02  0.13 0.01 0.06  0.13 0.04 
         

NARS -0.02  0.06 0.01 -0.02  0.06 -0.03 
         

Child sex  0.76  2.07 0.03 0.53  2.04 0.02 
         

Reports of child abuse and neglect -6.81 *  3.03 -0.16 -7.31 *  3.00 -0.18 
         

Caldwell EC-HOME 1.04 ***  0.19 0.46 1.12 ***  0.19 0.49 
         

Maternal cumulative risk*cumulative genetic reactivity n/a  n/a n/a -4.33 *  1.78 -0.67 

         
Total R

2
 0.36    0.39    

n 137    137    

*p<.05, **p≤.01, ***p≤.001 
Note:  Because rs6198 A is reactive and protective in this analysis it is not included in cumulative genetic risk. 
Note: There were no main effects or interaction effects at age 3 years. 
Source: Nurse Family Partnership Elmira Sample 
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Figure 8.  Maternal Cumulative Risk during Pregnancy and IQ at Age 4 Years in Children with 
Cumulative Genetic Risk in Children 
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