Academic Commons

Reports

Hazards, Critical Races, and Metastability

Unger, Stephen

The various modes of failure of asynchronous sequential logic circuits due to timing problems are considered. These are hazards, critical races and metastable states. It is shown that there is a mechanism common to all forms of hazards and to metastable states. A similar mechanism, with added complications, is shown to characterize critical races. Means for defeating various types of hazards and critical races through the use of one sided delay constraints are introduced. A method is described for determining from a flow table situations in which metastable states may be entered. A circuit technique for defeating metastability problems in self timed systems is presented. It is shown that the use of simulation for verifying the correctness of a circuit with given bounds on the branch delays cannot be relied upon to expose all timing problems. An example is presented that refutes the conjecture that replacing pure delays with inertial delays can only eliminate glitches. Key Words asynchronous, critical race, delays, dynamic hazards, essential hazards, inertial delays, metastability, pure delays, sequential logic, timing problems, timing simulation.

Subjects

Files

More About This Work

Academic Units
Computer Science
Publisher
Department of Computer Science, Columbia University
Series
Columbia University Computer Science Technical Reports, CUCS-028-93
Published Here
January 27, 2012