
A Comparative Study of Divergence Control Algorithms

Akira Kawaguchi and Kui Mok Calton Pu

Department of Computer Science Dept� of Computer Science � Engineering

Columbia University Oregon Graduate Institute

New York� NY ����� P�O� Box 	����� Portland� OR 	��	�
����

Kun�Lung Wu and Philip S� Yu

IBM T�J� Watson Research Center

P�O� Box ���

Yorktown Heights� NY ���	

CUCS�������

Abstract

This paper evaluates and compares the performance of two�phase locking divergence control

�	PLDC
 and optimistic divergence control �ODC
 algorithms using a comprehensive centralized

database simulation model� We examine a system with multiclass workloads in which on�line update

transactions and long�duration queries progress based on epsilon serializability �ESR
� Our results

demonstrate that signi�cant performance enhancements can be achieved with a non�zero tolerable

inconsistency ���spec
� With su
cient ��spec and limited system resources� both algorithms achieve

comparable performance� However� with low resource contention� ODC performs signi�cantly better

than 	PLDC� Moreover� given a small ��spec� ODC returns more accurate results on the committed

queries then 	PLDC�

Index Terms� divergence control algorithms� epsilon serializability� performance analysis�

transaction and query processing�

� Introduction

Serializability �SR
 is maintained by concurrency control �CC
 algorithms ��� in online transaction

processing� Many applications have found SR too restrictive� and epsilon serializability �ESR
 was

proposed to alleviate SR constraints by allowing some bounded inconsistency� In particular� a

limited amount of inconsistency ���spec
 can be seen by read�only transactions� Divergence control

�DC
 algorithms have been designed ���� ��� to bound the amount of inconsistency for ESR the

same way concurrency control maintains SR� In fact� DC algorithms extend classic CC algorithms

such as two�phase locking� optimistic validation� and timestamps ���� ����

Some important questions about ESR have been answered by previous papers� For example�

a formal characterization of ESR ���� explains its meaning and relationship to SR� Also� several

papers have described the divergence control algorithms used to guarantee ESR ���� ��� ���� The

question on practical feasibility was answered by a simple implementation of two�phase locking

based divergence control built on top of Transarc Encina ��	�� a commercial transaction monitor�

These and other ESR papers have worked out the details of divergence control and shown the

feasibility of quick production quality implementation� However� except for one paper studying the

performance of hierarchical divergence control using timestamps ���� the quantitative behavior of

ESR systems remained unclear�

The main contributions of this paper� compared to the previous ESR work� are threefold� First�

we investigate the question of how much inconsistency must be tolerated before we see signi�cant

performance gains in terms of transaction throughput and response time� We provide answers to a

wide range of representative system and workload parameters� Second� we evaluate and compare

the performance of two�phase locking divergence control and optimistic divergence control� �nding

the strengths and weaknesses of both� Third� we explore the design space of divergence control

algorithms� This investigation found interesting system and workload parameters useful in guiding

the actual implementation of divergence control and its experimental evaluation�

Concretely� we explored the issue of ESR applicability to large�scale centralized TP environment�

A comprehensive simulation model is built to determine transaction throughput and response time�

The �rst quantitative performance evaluation ��� was based on a prototype using time stamp

ordering on both transaction and object levels in a hierarchical manner� Despite the limitation

of main memory database and small range of multiprogramming level �MPL
� their paper clearly

demonstrated the shift of thrashing points to a higher MPL as ��spec increases� Our simulation

�

program showed signi�cant performance improvement by both two�phase locking �	PLDC
 and

optimistic �ODC
 algorithms in a wider range of MPLs as inconsistency tolerance increases� Our

study further leads to a precise study on the distribution of inconsistency� Queries are found to be

more accurate in ODC than in 	PLDC� with a small inconsistency tolerance�

The rest of the paper is organized as follows� Section 	 brie�y reviews ESR and DC algorithms�

In Section �� we describe the performance model and outline the experiments� We present and

discuss performance results in Section �� Finally� we summarize the main conclusions of this study

in Section ��

� Divergence Control Algorithms

A formal characterization of ESR can be found in ����� We only informally introduce the basic ESR

concepts here� A classic transaction is extended to an epsilon�transaction �ET
 by the addition of

inconsistency limits� called an ��spec� An ET is allowed to commit if the inconsistency accumulated

by the ET during its execution is lower than its ��spec speci�ed by the application designer� For

example� when ��spec�� ETs reduce to atomic transactions� Another example is a bank summary

query� which tells how many millions of dollars the bank has� since the query�s answer unit may

contain up to half a million round�o� error� the query can tolerate a certain amount� say ���������

of bounded inconsistency�

There are two kinds of ETs� QET for query ET and UET for update ET� A QET contains a

sequence of one or more read�only �Q
 operations� An UET contains a mixture of read �R
 and

write �W
 operations in which R precedes W for any update operation as ���� A QET �import

��spec � �
 need not be serializable with other UETs whereas UETs �export ��spec � � but import

��spec��
 must be serializable among themselves� Each W alters the database state� Database

state spaces can be metric spaces� In particular� bank dollars �integers
 form a cartesian space�

Consequently� each W operation has an update amount� given by the distance between the old

state and the new state� ESR allows non�serializable behavior� Note that ESR never introduce

inconsistency to the database space because all database modi�cations �UETs
 are serializable�

In example ��
 below� each Q operates on a data item denoted by �i� In example �	
�W updates

�i with a distance between the old value and new value denoted by �
W
i �

��
 QET�Q���
� Q���

	

�	
 UET�R���
� W ��� ��
W
�
� R���
� W ��� � �

W
�
� R���

Consider the following interleaving of the above example QET and UET�

Q���
� R���
�W ���� �
W
�
� R���
�W �����

W
�
� Q���
� R���
�

Suppose also that inconsistency is evaluated simply by adding update amounts� Then� the QET

imported j�W
�
j� j�W

�
j from the UET� and the UET is said to have exported the same amount�

DC algorithms take advantage of the fact that CC algorithms must detect any potentially non�

serializable con�icts among transactions� When such con�icts are detected� a DC algorithm ensures

that inconsistency accumulation for each ET does not violate its ��spec� We call the CC and DC

algorithms as strict serialization and ESR extension respectively� In the next two sections� we

describe our implementation of strict two�phase locking divergence control ��� and broadcast�type

optimistic divergence control ���� 	�� 	�� in the way they integrate strict serialization and ESR

extension�

��� Two�phase Locking Divergence Control ��PLDC�

	PLDC is an extension of the classic 	PL concurrency control� We show a lock compatibility matrix

in Figure ��a
�� Suppose that DC initiates a process to schedule each ET� We call this process a

monitor� For strict serialization� when a monitor �nds a lock request created by a di�erent monitor

�i�e�� the operation having been issued by another ET
 such as a con�ict of R and W � 	PLDC forces

the current monitor to wait until the con�ict is cleared� unless deadlock occurs�

For ESR extension� a con�ict of Q andW between two ETs can be resolved only if inconsistency

accumulation by the new update operation�s amount does not exceed their ��specs� For clarity� we

denote a QET�s ��spec as ��specQ and UET�s as ��specU � We also denote monitorQ and monitorU

dealing with Q and W respectively� If the monitorQ �nds W or if the monitorU �nds Q in the lock

table�� the current monitor checks the following two conditions�

imp�accum�monitorQ �
P
j�W j � ��specQ�

exp�accum�monitorU �
P
j�W j � ��specU �

�AOK means always OK�

�The former is called LOK�� �Limited OK�� and the latter is called LOK���

�

If the conditions remain true� the operation is allowed to proceed� as if there were no con�icts�

Note that the accumulation of values in imp�accum and exp�accum happens only if both conditions

are met� If the conditions are violated� the action taken is the same as the corresponding strict

serialization� blocking for 	PL and abort for ODC�

Commit occurs after the monitor executes the ET�s last operation� All locks of the committing

ET are released� Abort occurs when the monitor detects deadlock in a resource wait�for graph�

Abort processing is essentially the same as the commit except that the ET is restarted�

Q R W

Q

R

W

AOK

+imp
+exp

+exp
+imp

w

w

Block

�a� �PLDC

+imp
+exp

+exp
+imp

AOK

Q R W R W

Q

R

W

R

W Mark Abort

w

w

AOK

^

^

^^

R

W

Block

�b� ODC

Figure �� Lock Compatibility Matrices

��� Optimistic Divergence Control �ODC�

Our optimistic validation divergence control method uses the weak lock�strong lock formulation�

which is equivalent to a graph traversal algorithm to determine whether there is any cycles in the

transaction dependence graph� In the weak lock scheme� data access happens after a weak lock is

acquired� Con�icts between weak locks are allowed� At commit time� each ET attempts to convert

its weak locks to strong locks� A con�ict between strong and weak locks causes aborts�

We show the lock compatibility matrix in Figure ��b
� Every ET starts from the non�blocking

phase and it escalates all locks associated with the past operations during the validation phase �	���

For strict serialization� when scheduling a new operation� a monitor investigates whether there

exists escalated locks from other ETs� An escalation��ag indicates the midst of commit� If the

monitor �nds such one� for instance� when monitorU �nds �W � it waits for the commit completion�

The monitor proceeds if there exists no con�ict�

�

For ESR extension� the con�ict between a Q and a committing �W is allowed only if new

inconsistency adjustments do not exceed their ��specs� However� ESR extension also occurs in the

opposite combination� i�e�� at the commit moment when W is escalated to �W and it encounters

another Q as explained below� Now� if the monitorQ �nds �W in the lock table�� it checks the

following two conditions�

imp�accum�monitorQ �
P
j�

�W j � ��specQ�

exp�accum�monitorU �
P
j�

�W j � ��specU �

Note that the replacement of values in imp�accum and exp�accum will be done only if both conditions

are met for every con�ict� Treatment right after this extension is the same as the strict serialization�

Commit occurs when the monitor �nds no remaining actions� When monitorU enters into the

validation stage� it at �rst escalates the status of all pertinent locks� This escalation marks every

other monitorU abort if they are scheduled with non�escalated W on the same entity� The monitorU

having non�escalated R is also marked for abort when the committing ET escalates to �W on the

same entity�

If the committing monitorU �nds a con�ict againstQ� it needs to check both ��specs as described

in the ESR extension� The monitorQ is marked for abort if the condition is unsatisfactory� UET

also fails to commit if it exceeds its own inconsistency boundary� The same check occurs when

the monitorQ for QET enters into the committing stage� although no escalation for action Q takes

place� Note again that values in accumulators are not updated until ETs commit� Finally� all locks

of committing ETs are released� and aborted ETs are restarted after clearing all locks�

� Centralized Database Performance Model

Our goal is to quantify the bene�ts gained by DC evolved from a traditional centralized TP �in�

cluding a shared database with high�speed LAN and clustered machines
 to the one with ESR� We

thus built the TP performance model based on the framework introduced by ��� �� which consists of

database� user� and transaction models� In the following two sections� we outline the structure and

implementation of our performance model� and provide a list of parameters used for experiments

presented in this paper�

�Strictly speaking� this situation occurs when the committing process does context switch to another transaction�

but this is not the case in our simulator�

�

��� Structure of Performance Model

Figure 	 shows three major components in our closed queuing model� First� Transaction Controller

generates ETs in a probabilistic way that each terminal from a prede�ned number of pools in the

system initiates a new ET when the previous one it issued returns� Each ET consists of an ordered

list of operations that target on the smallest data entities� At the moment of generation� each

terminal determines an ET �UET or QET
� as well as its size� For UETs� the W following a R is

determined by the conditional probability Pr�WjR
�

terminals

abort

commit

ready−queue

CPU−queue

DC

cpucpucpu

diskdiskdisk

I/O−queue
wait
 or
retry

Transaction Controller Divergence Server Resource Manager

Figure 	� Centralized Database Performance Model

Second� the Divergence Server picks up ready transactions from the ready�queue� It �rst checks

for strict serialization and further veri�es ESR extension� It then issues a request to the Resource

Manager where the CPU computation or disk I�O is evaluated subsequently� But for unsuccessful

scheduling� it defers rescheduling until an appropriate moment� or aborts and puts the correspond�

ing transaction back to the ready�queue� An aborted transaction is granted a higher priority from

which a successive rescheduling is promptly done�

Third� the Resource Manager conducts both computation and disk I�O activities in a tightly

connected multiprocessor system� As in ���� we de�ne CPUs as multiple servers through a common

queue� and each disk server has its own queue� In addition� we employ a data�bu�ering mechanism

driven by LRU replacement policy� Both CPU and I�O requests are served based on a FCFS

discipline� but CPU requests from DC have higher priority over other service requests�

The processing of an ET by the Resource Manager is as follows� Divergence Server forwards a

request to Resource Manager and it waits until the request completes� Within Resource Manger�

each service is simulated with deferred write policy� i�e�� updates are written �rst into the bu�er

pool and then onto the disks at commit time� Reading an object requires disk I�O followed by

�

CPU� Writing an object requires CPU on the read item but it involves disk I�O for writing�back at

commit� When the request is done� Divergence Server continues� Note that each Divergence Server

also uses CPU for its scheduling� Thus� CPU usage is preemptive by priority� Divergence Server

has a higher priority to use CPU� whereas each operation in ET has a lower priority� Thus� it can

steal CPU being spent on the operation at Resource Manager whenever its scheduling is possible�

��� Experiments

Table � summarizes our workload and resource parameter settings� Our simulation program is

implemented using CSIM ���� ���� The simulation is �exible with a large number of parameters�

which enables us to characterize the workload more precisely� For validation� we ran a set of

experiments with parameters identical to those used in ���� Furthermore� most of the values are

kept unchanged from ��� to maintain the validation and basis for comparison�

����� Workload Parameters

Our workload consists of two classes of transactions� short updates �UETs
 and lengthy queries

�QETs
� Unlike TPC benchmarks� where data contention is minimized� we introduce some interfer�

ence between UETs and QETs� We assume that such combination is realistic in many transaction

systems with decision support applications ����

The size of an UET is decided by the mean of a uniform distribution between tran Umin size

and tran Umax size� Each UET chooses a target entity randomly from a database of tran db size

entities� The percentage of a write operation on a read item is determined by tran write prob�

The size of a QET is modeled by a �xed length of tran Qmax size� We draw a starting point in

the database and generate QET read requests in an ascending order� The rate of QETs issued by

each terminal is determined by tran query prob� A pause of the submission of a new transaction

from a terminal is set by the exponential distribution with tran mean thinktime�

Since non�uniform data accesses always happen in real databases ��� �� ��� we characterize data

contention caused by skewed access patterns using tran access frac� where di�erent frequencies

of access relate to separate segments in the database� In our experiments� we choose an �� �	�

model� i�e�� �� of all accesses go to 	� of the database entities� We also distribute skewed

hot�spots evenly in the database so that sequentially generated QETs will access these hotspots�

Finally� each W operation is associated with an update amount from a normal distribution

�

between tran min offset and tran max offset with a standard deviation � set to one sixth of

this range� Note that the average amount of inconsistency between a Q and a W is �
p
	���

Workload Parameter Value System�Resource Parameter Value

tran db size �	�			 entities sys num terminal �		
tran mean thinktime � sec sys num cpu �	� �
tran access frac
	���	� sys num disk �	� �
tran Umax size �� entities sys mean cpu �� ms
tran Umin size
 entities sys mean disk �� ms
tran write prob 	��� bu�er size ��			
tran Qmax size �		 bu�er UET frac 	���
tran query prob 	��� bu�er algorithm LRU
tran min o�set ��		 sys dc cpu 	 ms
tran max o�set �		

Table �� Parameters

����� System and Resource Parameters

There are two sets of experiments� namely� resource�limited and resource�unlimited experiments�

The resource�limited case studies the relationships between data contention and other system bot�

tlenecks� The resource�unlimited case assumes in�nite system resources and focuses on the impact

of data contention only�

Physical con�guration of the system is determined in a straightforward way� They include

sys num terminal for external terminals and sys num cpu and sys num disk for the amount of CPU

and disk servers respectively� As in ���� we use one CPU and two disks as a basic resource unit�

We also inherit a constant service time spent on a single request to CPU and disk as sys mean cpu

and sys mean disk as well as negligible sys dc cpu overhead in scheduling�

Our characterization of bu�ering e�ect is determined by bu�er size and bu�er algorithm in

which bu�er UET frac speci�es area assigned for UETs� We limit � of the entire bu�er for QETs

because their sequential accesses take less advantage from bu�ering�

����� Performance Metrics

The three major performance metrics used in this study are throughput� response time� and disk

utilization of the underlying system� All these statistics are drawn within a MPL range from �

to ���� We additionally collect abort�commit ratio �average number of aborts per commit
 and

accumulated inconsistency for a QET�

�

The transaction throughput is de�ned as the total number of transactions successfully completed

per second� The response time is the elapsed time between a terminal issuing a new transaction

and the transaction actually being committed� Disk utilizations are useful to visualize the e�ect

of resource contention on the performance of both 	PLDC and ODC� Abort�commit ratio is the

average number of aborts �and retries
 until the transaction commits�

Average update amount �j�W j
 in our setting is ���� We set ��spec to ������ ����� and ����� as

well as an extreme value to approximate � for both UETs and QETs� They are rather ad hoc but

they range from several to a few dozens of update amounts� corresponding roughly from a small to

a large tolerance in this context�

� Results and Discussions

All statistics in the next three sections are derived using a batch means method ���� A maximum

of 	� batches were run on each simulation where each batch lasts ����� simulation seconds� The

transient period of the initial ��� seconds is not used in the computation of the �nal statistics�

Furthermore� we maintain the �� con�dence interval to be within � of each data point reported

in this paper�

	�� Experiments with Resource�Limited Environments

In this section� we investigate the combined performance impacts of both data and resource con�

tentions� For resource contention� we set a limited number of CPUs and disks� Due to the space

limitation� we only present the results of using �� resource units ��� CPUs and 	� disks
� Fig�

ure ��a
!�d
 show the throughputs and response times of UETs and QETs for both 	PLDC and

ODC under various ��specs and MPLs� Several interesting observations and detailed analyses about

these graphs are discussed as follows� We note that ��spec� ����� for a query ET is like missing

��� updates while scanning ��� data items�

First of all� both 	PLDC and ODC improve their throughputs substantially as ��spec increases�

This con�rms that ESR indeed helps to improve system concurrency as evidenced by the improve�

ment in the throughputs of UETs in Figure ��a
 and QETs in Figure ��b
�

Secondly� without ESR �i�e�� ��spec��
� the system throughput quickly declines as MPL in�

creases� However� with ��spec � �� the system throughput continues to improve even as MPL

increases� The peak of throughput shifts into a higher MPL as ��spec becomes larger� For exam�

�

ple� in Figure ��a
� the throughput of 	PLDC starts to decrease at MPL�	� for ��spec��� while it

does not until MPL��� for ��spec������� The above two observations match our intuition as ESR

alleviates the data�contention and it allows a larger number of transactions to progress�

Thirdly� with �� resource units� 	PLDC performs better than ODC for ��spec��� With ��spec

� �� however� the di�erence between 	PLDC and ODC becomes less distinguishable� In order to

understand this phenomenon� we inspect the disk utilizations in Figure � and abort�commit ratio

in Figure ��

In Figure �� 	PLDC extends the disk usage as ��spec increases� while ODC maintains almost

the same in the uppermost overlapped curves for all ��spec� However� for ODC some of the

disk utilization is due to wasteful work of aborted transactions� Note that in ODC transactions

use almost the same resources regardless of the ��spec� due to the immediate grant of accesses�

However� in 	PLDC the decrease of data contention due to the increase of ��spec causes less

blocking and results in less transactions being suspended at the scheduling queue� As a result�

more transactions issue disk requests and disk utilization increases as ��spec increases� If we

separate the disk utilization of committed transactions from the total disk utilization observed in

Figure � for ODC� the useful utilization of ODC should be comparable to that of 	PLDC� Table 	

summarizes the disk utilization extracted fromMPL����� Notice that in 	PLDC the observed total

utilization is very close to the useful disk utilization because the abort�commit ratio of 	PLDC is

very small �see Figure �
� From Table 	� the useful disk utilization of ODC� from ��spec�������

becomes comparable to the observed total disk utilization of 	PLDC� Thus� with limited resources

and higher ��spec� ODC and 	PLDC performs comparably�

�PLDC ODC
��spec Observed Observed Useful

	 	��� 	��	 	�
�
��			 	��	 	��	 	��

��			 	�

 	��	 	�
�
��			 	��	 	��	 	��	

��			�			 	��	 	��	 	��	

Table 	� Disk Utilization

Another important issue related to the third observation is that a smaller ��spec a�ects the two

algorithms di�erently� In Figure ��a
� ODC outperforms 	PLDC with ��spec������ when MPL

� ���� Figure ��a
 plots the rate of UET�s performance improvement in throughput over the case

of ��spec�� for the cases of MPL���� ��� and ���� For example� the throughput of ODC at

��

MPL���� gains 	��� times from ��spec�� to ��spec������� whereas 	PLDC improves only ����

times� At MPL����� the rate of improvement in ODC is even larger ���� times
� which shows that

ODC gains an even larger improvement with a higher MPL� The similar property holds for QET

as well�

This higher rate of improvement in ODC can be explained as follows� Upon reaching its ��spec

limitation� 	PLDC starts to build up a wait�for chain due to blocking� And its performance quickly

reaches saturation because all suspended ETs hold locks and eventually result in more con�icts�

In contrast� ODC examines con�icts only during an instantaneous moment of the validation stage�

Thus� it captures comparably smaller set of interferences among active ETs due to immediate grant

of accesses without blocking� It thus enables more ETs� even with a small ��spec� to complete and

leave the system�

Finally� let us go back to Figure ��c
 and ��d
 where the response times of UETs and QETs are

shown� The response times of UETs are generally shorter in ODC than in 	PLDC �see Figure ��c

�

while the reverse is true for QETs �see Figure ��d

� In 	PLDC� UETs progress slowly once blocked

because they must wait until lengthy QETs complete� resulting in larger response times� On the

other hand� in ODC� QET is more likely to be aborted and aborting a QET is costly because it

takes a long time to re�execute� while UETs can be re�executed quickly� Thus� the response times

of QETs tend to be longer in ODC�

	�� Experiments with In
nite Resources

In this section� we use an in�nite number of CPU and disks and examine the performance impact

of data contention� Figure ��a
!�d
 show the throughputs and response times of UETs and QETs�

As in the limited�resource case� the throughputs of both 	PLDC and ODC improve substantially

as ��spec increases in Figures ��a
 and �b
� However� in contrast to Figures ��a
 and �b
� ODC

outperforms 	PLDC for almost all the ��spec� including ��spec��� That ODC is better than

	PLDC with in�nite resources and ��spec�� conforms with previous studies of 	PLCC and OCC

algorithms ��� ��� This is di�erent from the observation that 	PLDC is slightly better than ODC

with the resource�limited environment in the previous section�

Figure ��b
 plots the rate of UET�s performance improvement versus ��specs using throughput

extracted from MPL���� ��� and ���� Although the rate of improvement of 	PLDC is signi�cantly

better than that of ODC in Figure ��b
� 	PLDC begins at a much lower throughput level for the

case of ��spec��� In fact� the throughput of 	PLDC never catches up with that of ODC under any

��

��spec�

	�� Comparisons of Accumulated Inconsistency

In this section� we characterize how the two algorithms di�er in the amount of inconsistency in their

results by comparing the distributions of imported inconsistency of committed QETs by 	PLDC

and ODC�

Figure ��a
!�c
 show the histograms� �normalized frequency of sampled values
 drawn at

MPL���� in resource�limited setting� There is a signi�cant di�erence between the two algorithms�

For a small ��spec �see Figure ��a

� a signi�cant portion of committed QETs has a larger accu�

mulated inconsistency in 	PLDC than in ODC� For instance� the three highest buckets of 	PLDC

hold �	 of the total samples in Figure ��a
� If we increase ��spec� the inconsistency histogram

become less skewed toward the high end and more evenly distributed �see Figures ��b
 and �c

�

This phenomenon is closely related to the implementation of the two algorithms� In 	PLDC�

an ET is suspended when ESR extension fails� and it is blocked and waits until it succeeds� While

blocked� the accessed data items of a query ET can continue to be updated and result in more

inconsistency to accumulate for the waiting QET� However� in ODC an ET is marked for abort

whenever ESR extension fails� Therefore� most committed QETs end up with higher inconsistency

in 	PLDC than in ODC�

The spikes in the higher buckets in Figures ��a
!�c
 for 	PLDC diminish in magnitude when

MPL reduces �see Figure ��d
 where MPL is ���
� This is because lower MPL will result in less

data contention and smaller inconsistency for QETs�

� Summary

In this paper� we developed a comprehensive simulation program to evaluate and compare perfor�

mance gains by two�phase locking divergence control �	PLDC
 and optimistic validation divergence

control �ODC
 for transaction processing based on epsilon serializability �ESR
� Our simulation ex�

tends Agrawal et al�s study ��� on the performance of concurrency control methods� whose results

are used for validation of our simulation program� We investigated a wide range of workload and

system parameter settings and found the following signi�cant results�

�The �rst bucket refers to zero accumulated inconsistency� The last bucket means maximum inconsistency� Other
buckets divide ��spec into even ranges�

�	

First� ESR extends classic serializability by allowing a bounded amount of inconsistency ���spec

in each transaction� Therefore� we expect the system concurrency level to rise as ��spec increases�

Our simulation results con�rm that both divergence control methods �	PLDC and ODC
 allow more

e�ective concurrency than traditional concurrency control for serializability� under a mixed load of

small updates and long running queries� Both 	PLDC and ODC provide substantial performance

improvement �i�e� throughput and response time
 even with a small ��spec� More speci�cally� they

achieve better peak performance at higher MPL as ��spec is raised� Thrashing points also shift

to higher MPL� This is true under both resource limited and unlimited environments� This result

ampli�es and complements previous work on timestamp�based divergence control ����

Second� we compared the performance of 	PLDC and ODC beyond the con�rmation of ����s

results when ��spec��� On the other end of spectrum� since su
ciently large ��spec values allow

free access �without concurrency control
 to a great majority of transactions� it matters little which

divergence control method is used� For moderate to small values of ��spec� ODC performance is

more sensitive to ��spec changes than 	PLDC� Furthermore� as ��spec grows ODC�s concurrency

improvement rate is faster� For experiments focused on data contention �using in�nite hardware

resources
� ODC allows better throughput and response time for both UETs and QETs� this is

particularly obvious at high MPL�

Finally� the simulation program is useful in guiding our ongoing research� For example� we have

implemented 	PLDC on Transarc Encina ��	�� a commercial transaction monitor� The performance

measurements of the implementation� using TPC benchmarks� have been limited by hardware re�

sources �less than 	� MPL on a SUN IPX
� The simulation shows that by increasing data contention

we should be able to measure some interesting results on a SUN Sparc�� server �about � to � times

faster
�

References

��� R� Agrawal� M� J� Carey� and M� Livny� Concurrency control performance modeling� Alterna�

tives and implications� ACM Trans� on Database Systems� �	��
��������� Dec� �����

�	� R� Alonso� D� Barbara� and H� Garcia�Molina� Data Caching issues in an informational retrieval

systems� ACM Trans� on Database Systems� ����
��������� Sept� �����

��� P� A� Bernstein and V� Hadzilacos� and N� Goodman� Concurrency Control and Recovery in

Database Systems� Addison�Wesley� �����

��

��� M� J� Carey� and M� R� Stonebraker� The performance of concurrency control algorithms for

database management systems� In Proc� of the ��th Int� Conf� on Very Large Data Bases�

pages �������� Aug� �����

��� A� Dan� D� M� Dias� and P� S� Yu� The e�ect of skewed data access on bu�er hits and data

contention in a data sharing environment� In Proc� of the �	th Int� Conf� on Very Large Data

Bases� pages �������� �����

��� A� Dan� and D� Towsley� An approximate analysis of the LRU and FIFO bu�er replacement

schemes� In Proc� of ACM SIGMETRICS�May �����

��� A� Dan� P� S� Yu� and J��Y� Chung� Characterization of database access skew in a transaction

processing environment� In Proc� of Int� Conf� on Data Engineering� pages �������� �����

��� P� Franaszek and J� T� Robinson� Limitations of concurrency in transaction processing� ACM

Trans� on Database Systems� ����
���	�� Mar� �����

��� M� Kamath� and K� Ramamritham� Performance characteristics of epsilon serializability with

hierarchical inconsistency bounds� Proc� of Int� Conf� on Data Engineering� �����

���� H� T� Kung and J� T� Robinson� On optimistic methods for concurrency control� ACM Trans�

on Database Systems� ��	
�	���		�� June �����

���� C� Pu� Generalized transaction processing with epsilon�serializability� In Proc� of �

� Int�

Workshop on High Performance Transaction Systems� �����

��	� C� Pu and S �W� Chen� ACID Properties need fast relief� Relaxing consistency using epsilon

serializability� In Proc� of �th Int� Workshop on High Performance Transaction Systems� �����

���� C� Pu� W� Hseush� G� E� Kaiser� K��L� Wu and P� S� Yu� Distributed Divergence Control for

Epsilon Serializability� In ��th Int� Conf� on Distributed Computing Systems� pages ��������

May �����

���� C� Pu and A� Le�� Execution autonomy in distributed transaction processing� In Proc�

of the
nd Int� Workshop on Research Issues in Data Engineering� Transaction and Query

Processing� pages 	���� ���	�

���� K� Ramamritham and C� Pu� A formal characterization of epsilon serializability� IEEE Trans�

on Knowledge and Data Engineering� to appear�

���� H� Schwetman� CSIM Reference Manual �Revision ��
� Microelectronic and Computer Tech�

nology Corporation� May ���	�

���� H� Schwetman� CSIM Users� Guide �Revision 	
� Microelectronic and Computer Technology

Corporation� July ���	�

���� K��L� Wu� P� S� Yu� and C� Pu� Divergence control for epsilon�serializability� In Proc� of �th

Int� Conf� on Data Engineering� pages �������� Feb� ���	�

���� K��L� Wu� P� S� Yu� and J� Z� Teng� Performance Comparison of Thrashing Control Policies

for Concurrent Mergesorts with Parallel Prefetching� In Proc� of ACM SIGMETRICS� pages

������	� �����

��

�	�� P� S� Yu and D� M� Dias� Performance analysis of concurrency control using locking with

deferred blocking� IEEE Trans� on Software Engineering� �����
���	����� Oct� �����

�	�� P� S� Yu and D� M� Dias� Analysis of hybrid concurrency control schemes for a high data

contention environment� IEEE Trans� on Software Engineering� ���	
������	�� Feb� ���	�

�		� P� S� Yu� D� M� Dias� and S� S Lavenberg� On the analytical modeling of database concurrency

control� Journal of the ACM� ����
�������	� Sept� �����

��

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

25 50 75 100 125 150 175

T
hr

ou
gh

pu
t

(t
ra

ns
ac

tio
n/

se
c.

)

Multiprogramming Level

2PLDC, Epsilon-spec=0
ODC, Epsilon-spec=0

2PLDC, Epsilon-spec=1,000
ODC, Epsilon-spec=1,000

2PLDC, Epsilon-spec=3,000
ODC, Epsilon-spec=3,000

2PLDC, Epsilon-spec=5,000
ODC, Epsilon-spec=5,000

2PLDC, Epsilon-spec=1,000,000
ODC, Epsilon-spec=1,000,000

�a� Throughput for UETs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

25 50 75 100 125 150 175

T
hr

ou
gh

pu
t

(t
ra

ns
ac

tio
n/

se
c.

)

Multiprogramming Level

2PLDC, Epsilon-spec=0
ODC, Epsilon-spec=0

2PLDC, Epsilon-spec=1,000
ODC, Epsilon-spec=1,000

2PLDC, Epsilon-spec=3,000
ODC, Epsilon-spec=3,000

2PLDC, Epsilon-spec=5,000
ODC, Epsilon-spec=5,000

2PLDC, Epsilon-spec=1,000,000
ODC, Epsilon-spec=1,000,000

�b� Throughput for QETs

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

256

272

288

304

320

25 50 75 100 125 150 175

A
ve

ra
ge

 R
es

po
ns

e
 T

im
e

 (
se

c.
)

Multiprogramming Level

2PLDC, Epsilon-spec=0
ODC, Epsilon-spec=0

2PLDC, Epsilon-spec=1,000
ODC, Epsilon-spec=1,000

2PLDC, Epsilon-spec=3,000
ODC, Epsilon-spec=3,000

2PLDC, Epsilon-spec=5,000
ODC, Epsilon-spec=5,000

2PLDC, Epsilon-spec=1,000,000
ODC, Epsilon-spec=1,000,000

�c� Response Time for UETs

0

75

150

225

300

375

450

525

600

675

750

825

900

975

1050

1125

1200

1275

1350

1425

1500

25 50 75 100 125 150 175

A
ve

ra
ge

 R
es

po
ns

e
 T

im
e

 (
se

c.
)

Multiprogramming Level

2PLDC, Epsilon-spec=0
ODC, Epsilon-spec=0

2PLDC, Epsilon-spec=1,000
ODC, Epsilon-spec=1,000

2PLDC, Epsilon-spec=3,000
ODC, Epsilon-spec=3,000

2PLDC, Epsilon-spec=5,000
ODC, Epsilon-spec=5,000

2PLDC, Epsilon-spec=1,000,000
ODC, Epsilon-spec=1,000,000

�d� Response Time for QETs

Figure �� Performance of 	PLDC and ODC with �� Resource Units

��

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25 50 75 100 125 150 175

T
ot

al
 D

IS
K

 U
til

iz
at

io
n

Multiprogramming Level

2PLDC, Epsilon-spec=0
ODC, Epsilon-spec=0

2PLDC, Epsilon-spec=1,000
ODC, Epsilon-spec=1,000

2PLDC, Epsilon-spec=3,000
ODC, Epsilon-spec=3,000

2PLDC, Epsilon-spec=5,000
ODC, Epsilon-spec=5,000

2PLDC, Epsilon-spec=1,000,000
ODC, Epsilon-spec=1,000,000

Figure �� Total Disk Utilization

0

0.12

0.24

0.36

0.48

0.6

0.72

0.84

0.96

1.08

1.2

25 50 75 100 125 150 175

A
bo

rt
/C

om
m

it

Multiprogramming Level

2PLDC, Epsilon-spec=0
ODC, Epsilon-spec=0

2PLDC, Epsilon-spec=1,000
ODC, Epsilon-spec=1,000

2PLDC, Epsilon-spec=3,000
ODC, Epsilon-spec=3,000

2PLDC, Epsilon-spec=5,000
ODC, Epsilon-spec=5,000

2PLDC, Epsilon-spec=1,000,000
ODC, Epsilon-spec=1,000,000

Figure �� Abort�Commit

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 1,000 3,000 5,000 1,000,000

R
at

e
of

 Im
pr

ov
em

en
t

Epsilon Specification

2PLDC, MPL=50
ODC, MPL=50

2PLDC, MPL=100
ODC, MPL=100

2PLDC, MPL=150
ODC, MPL=150

�a� �	 Resource Units

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0 1,000 3,000 5,000 1,000,000

R
at

e
of

 Im
pr

ov
em

en
t

Epsilon Specification

2PLDC, MPL=50
ODC, MPL=50

2PLDC, MPL=100
ODC, MPL=100

2PLDC, MPL=150
ODC, MPL=150

�b� � Resources

Figure �� Rate of Throughput Improvement �UETs

��

0

2

4

6

8

10

12

14

16

18

20

22

25 50 75 100 125 150 175

T
hr

ou
gh

pu
t

(t
ra

ns
ac

tio
n/

se
c.

)

Multiprogramming Level

2PLDC, Epsilon-spec=0
ODC, Epsilon-spec=0

2PLDC, Epsilon-spec=1,000
ODC, Epsilon-spec=1,000

2PLDC, Epsilon-spec=3,000
ODC, Epsilon-spec=3,000

2PLDC, Epsilon-spec=5,000
ODC, Epsilon-spec=5,000

2PLDC, Epsilon-spec=1,000,000
ODC, Epsilon-spec=1,000,000

�a� Throughput for UETs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

25 50 75 100 125 150 175

T
hr

ou
gh

pu
t

(t
ra

ns
ac

tio
n/

se
c.

)

Multiprogramming Level

2PLDC, Epsilon-spec=0
ODC, Epsilon-spec=0

2PLDC, Epsilon-spec=1,000
ODC, Epsilon-spec=1,000

2PLDC, Epsilon-spec=3,000
ODC, Epsilon-spec=3,000

2PLDC, Epsilon-spec=5,000
ODC, Epsilon-spec=5,000

2PLDC, Epsilon-spec=1,000,000
ODC, Epsilon-spec=1,000,000

�b� Throughput for QETs

0

15

30

45

60

75

90

105

120

135

150

165

180

195

210

225

240

255

270

285

300

25 50 75 100 125 150 175

A
ve

ra
ge

 R
es

po
ns

e
 T

im
e

 (
se

c.
)

Multiprogramming Level

2PLDC, Epsilon-spec=0
ODC, Epsilon-spec=0

2PLDC, Epsilon-spec=1,000
ODC, Epsilon-spec=1,000

2PLDC, Epsilon-spec=3,000
ODC, Epsilon-spec=3,000

2PLDC, Epsilon-spec=5,000
ODC, Epsilon-spec=5,000

2PLDC, Epsilon-spec=1,000,000
ODC, Epsilon-spec=1,000,000

�c� Response Time for UETs

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

400

420

25 50 75 100 125 150 175

A
ve

ra
ge

 R
es

po
ns

e
 T

im
e

 (
se

c.
)

Multiprogramming Level

2PLDC, Epsilon-spec=0
ODC, Epsilon-spec=0

2PLDC, Epsilon-spec=1,000
ODC, Epsilon-spec=1,000

2PLDC, Epsilon-spec=3,000
ODC, Epsilon-spec=3,000

2PLDC, Epsilon-spec=5,000
ODC, Epsilon-spec=5,000

2PLDC, Epsilon-spec=1,000,000
ODC, Epsilon-spec=1,000,000

�d� Response Time for QETs

Figure �� Performance of 	PLDC and ODC with � Resources

��

Bucket Number

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Im
p

o
rt

 In
co

n
si

st
en

cy
 (

%
)

0.00

5.00

10.00

15.00

20.00

25.00

2PLDC
ODC

�a� ��spec���			� MPL���	

Bucket Number

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Im
p

o
rt

 In
co

n
si

st
en

cy
 (

%
)

0.00

5.00

10.00

15.00

20.00

25.00

2PLDC
ODC

�b� ��spec���			� MPL���	

Bucket Number

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Im
p

o
rt

 In
co

n
si

st
en

cy
 (

%
)

0.00

5.00

10.00

15.00

20.00

25.00

2PLDC
ODC

�c� ��spec���			� MPL���	

Bucket Number

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Im
p

o
rt

 In
co

n
si

st
en

cy
 (

%
)

0.00

5.00

10.00

15.00

20.00

25.00

2PLDC
ODC

�d� ��spec���			� MPL��		

Figure �� QET Imported Inconsistency

��

