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Abstract

This paper evaluates and compares the performance of two-phase locking divergence control
(2PLDC) and optimistic divergence control (ODC) algorithms using a comprehensive centralized
database simulation model. We examine a system with multiclass workloads in which on-line update
transactions and long-duration queries progress based on epsilon serializability (ESR). Our results
demonstrate that significant performance enhancements can be achieved with a non-zero tolerable
inconsistency (€-spec). With sufficient €-spec and limited system resources, both algorithms achieve
comparable performance. However, with low resource contention, ODC performs significantly better

than 2PLDC. Moreover, given a small €-spec, ODC returns more accurate results on the committed

queries then 2PLDC.

Index Terms: divergence control algorithms, epsilon serializability, performance analysis,

transaction and query processing.



1 Introduction

Serializability (SR) is maintained by concurrency control (CC) algorithms [3] in online transaction
processing. Many applications have found SR too restrictive, and epsilon serializability (ESR) was
proposed to alleviate SR constraints by allowing some bounded inconsistency. In particular, a
limited amount of inconsistency (€-spec) can be seen by read-only transactions. Divergence control
(DC) algorithms have been designed [18, 14] to bound the amount of inconsistency for ESR the
same way concurrency control maintains SR. In fact, DC algorithms extend classic CC algorithms

such as two-phase locking, optimistic validation, and timestamps [11, 15].

Some important questions about ESR have been answered by previous papers. For example,
a formal characterization of ESR [15] explains its meaning and relationship to SR. Also, several
papers have described the divergence control algorithms used to guarantee ESR [11, 14, 18]. The
question on practical feasibility was answered by a simple implementation of two-phase locking
based divergence control built on top of Transarc Encina [12], a commercial transaction monitor.
These and other ESR papers have worked out the details of divergence control and shown the
feasibility of quick production quality implementation. However, except for one paper studying the
performance of hierarchical divergence control using timestamps [9], the quantitative behavior of

ESR systems remained unclear.

The main contributions of this paper, compared to the previous ESR work, are threefold. First,
we investigate the question of how much inconsistency must be tolerated before we see significant
performance gains in terms of transaction throughput and response time. We provide answers to a
wide range of representative system and workload parameters. Second, we evaluate and compare
the performance of two-phase locking divergence control and optimistic divergence control, finding
the strengths and weaknesses of both. Third, we explore the design space of divergence control
algorithms. This investigation found interesting system and workload parameters useful in guiding

the actual implementation of divergence control and its experimental evaluation.

Concretely, we explored the issue of ESR applicability to large-scale centralized TP environment.
A comprehensive simulation model is built to determine transaction throughput and response time.
The first quantitative performance evaluation [9] was based on a prototype using time stamp
ordering on both transaction and object levels in a hierarchical manner. Despite the limitation
of main memory database and small range of multiprogramming level (MPL), their paper clearly

demonstrated the shift of thrashing points to a higher MPL as €-spec increases. Our simulation



program showed significant performance improvement by both two-phase locking (2PLDC) and
optimistic (ODC) algorithms in a wider range of MPLs as inconsistency tolerance increases. Our
study further leads to a precise study on the distribution of inconsistency. Queries are found to be

more accurate in ODC than in 2PLDC, with a small inconsistency tolerance.

The rest of the paper is organized as follows. Section 2 briefly reviews ESR and DC algorithms.
In Section 3, we describe the performance model and outline the experiments. We present and
discuss performance results in Section 4. Finally, we summarize the main conclusions of this study

in Section 5.

2 Divergence Control Algorithms

A formal characterization of ESR can be found in [15]. We only informally introduce the basic ESR
concepts here. A classic transaction is extended to an epsilon-transaction (ET) by the addition of
inconsistency limits, called an €-spec. An ET is allowed to commit if the inconsistency accumulated
by the ET during its execution is lower than its €-spec specified by the application designer. For
example, when €-spec=0 ETs reduce to atomic transactions. Another example is a bank summary
query, which tells how many millions of dollars the bank has; since the query’s answer unit may
contain up to half a million round-off error, the query can tolerate a certain amount, say $100,000,

of bounded inconsistency.

There are two kinds of ETs: QET for query ET and UET for update ET. A QET contains a
sequence of one or more read-only (@) operations. An UET contains a mixture of read (R) and
write (W) operations in which R precedes W for any update operation as [1]. A QET (import
€-spec > 0) need not be serializable with other UETs whereas UETs (export €-spec > 0 but import
€-spec=0) must be serializable among themselves. Each W alters the database state. Database
state spaces can be metric spaces. In particular, bank dollars (integers) form a cartesian space.
Consequently, each W operation has an update amount, given by the distance between the old
state and the new state. ESR allows non-serializable behavior. Note that ESR never introduce

inconsistency to the database space because all database modifications (UETs) are serializable.

In example (1) below, each () operates on a data item denoted by p;. In example (2), W updates

p; with a distance between the old value and new value denoted by AY.

(1) QET(Q(p1), Q(p2))



(2) UET(R(p1), W(p1 + AYY), R(pa), W(pz + AY), R(ps))

Consider the following interleaving of the above example QET and UET:

Q(pl)v R(,O1), W(p1 + A?)v R(p2)7 W(p2 + Agv)v Q(p2)v R(pS)'

Suppose also that inconsistency is evaluated simply by adding update amounts. Then, the QET

imported |AY| + |AY]| from the UET, and the UET is said to have exported the same amount.

DC algorithms take advantage of the fact that CC algorithms must detect any potentially non-
serializable conflicts among transactions. When such conflicts are detected, a DC algorithm ensures
that inconsistency accumulation for each ET does not violate its €-spec. We call the CC and DC
algorithms as strict serialization and FESR extension respectively. In the next two sections, we
describe our implementation of strict two-phase locking divergence control [3] and broadcast-type
optimistic divergence control [18, 20, 21] in the way they integrate strict serialization and ESR

extension.

2.1 Two-phase Locking Divergence Control (2PLDC)

2PLDC is an extension of the classic 2PL concurrency control. We show a lock compatibility matrix
in Figure 1(a)l. Suppose that DC initiates a process to schedule each ET. We call this process a
monitor. For strict serialization, when a monitor finds a lock request created by a different monitor
(i.e., the operation having been issued by another ET) such as a conflict of R and W, 2PLDC forces

the current monitor to wait until the conflict is cleared, unless deadlock occurs.

For ESR extension, a conflict of @ and W between two ETs can be resolved only if inconsistency
accumulation by the new update operation’s amount does not exceed their €-specs. For clarity, we
denote a QET’s €-spec as €-spec?® and UET’s as €-spec”. We also denote monitor? and monitor”
dealing with @ and W respectively. If the monitor? finds W or if the monitor? finds Q in the lock

table?, the current monitor checks the following two conditions:

imp-accum.monitor® + 3 |[AW| < €-spec?;

exp-accum.monitor + 37 |AW| < €-specV.

' AOK means always OK.
2The former is called LOK-1 (Limited OK), and the latter is called LOK-2.



If the conditions remain true, the operation is allowed to proceed, as if there were no conflicts.
Note that the accumulation of values in ¢tmp-accum and exp-accum happens only if both conditions
are met. If the conditions are violated, the action taken is the same as the corresponding strict

serialization: blocking for 2P and abort for ODC.

Commit occurs after the monitor executes the E'T’s last operation. All locks of the committing
ET are released. Abort occurs when the monitor detects deadlock in a resource wait-for graph.

Abort processing is essentially the same as the commit except that the ET is restarted.
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Figure 1: Lock Compatibility Matrices

2.2  Optimistic Divergence Control (ODC)

Our optimistic validation divergence control method uses the weak lock/strong lock formulation,
which is equivalent to a graph traversal algorithm to determine whether there is any cycles in the
transaction dependence graph. In the weak lock scheme, data access happens after a weak lock is
acquired. Conflicts between weak locks are allowed. At commit time, each ET attempts to convert

its weak locks to strong locks. A conflict between strong and weak locks causes aborts.

We show the lock compatibility matrix in Figure 1(b). Every ET starts from the non-blocking
phase and it escalates all locks associated with the past operations during the validation phase [20].
For strict serialization, when scheduling a new operation, a monitor investigates whether there
exists escalated locks from other ETs. An escalation-flag indicates the midst of commit. If the
monitor finds such one, for instance, when monitor? finds W, it waits for the commit completion.

The monitor proceeds if there exists no conflict.



For ESR extension, the conflict between a ¢ and a committing W is allowed only if new
inconsistency adjustments do not exceed their €-specs. However, ESR extension also occurs in the
opposite combination, i.e., at the commit moment when W is escalated to W and it encounters
another Q as explained below. Now, if the monitor? finds W in the lock table®, it checks the

following two conditions:

imp-accum.monitor? + 37 |AW| < €-spec?;

exp-accum.monitor’ + 37 |AW| < €-specV.

Note that the replacement of values in imp-accum and exp-accum will be done only if both conditions

are met for every conflict. Treatment right after this extension is the same as the strict serialization.

Commit occurs when the monitor finds no remaining actions. When monitor” enters into the
validation stage, it at first escalates the status of all pertinent locks. This escalation marks every
other monitor! abort if they are scheduled with non-escalated W on the same entity. The monitor!
having non-escalated R is also marked for abort when the committing T escalates to W on the

same entity.

If the committing monitor? finds a conflict against @, it needs to check both €-specs as described
in the ESR extension. The monitor? is marked for abort if the condition is unsatisfactory. UET
also fails to commit if it exceeds its own inconsistency boundary. The same check occurs when
the monitor? for QET enters into the committing stage, although no escalation for action @ takes
place. Note again that values in accumulators are not updated until ETs commit. Finally, all locks

of committing ETs are released, and aborted ETs are restarted after clearing all locks.

3 Centralized Database Performance Model

Our goal is to quantify the benefits gained by DC evolved from a traditional centralized TP (in-
cluding a shared database with high-speed LAN and clustered machines) to the one with ESR. We
thus built the TP performance model based on the framework introduced by [1, 4] which consists of
database, user, and transaction models. In the following two sections, we outline the structure and
implementation of our performance model, and provide a list of parameters used for experiments

presented in this paper.

IStrictly speaking, this situation occurs when the committing process does context switch to another transaction,

but this is not the case in our simulator.



3.1 Structure of Performance Model

Figure 2 shows three major components in our closed queuning model. First, Transaction Controller
generates F'Ts in a probabilistic way that each terminal from a predefined number of pools in the
system initiates a new ET when the previous one it issued returns. Each ET consists of an ordered
list of operations that target on the smallest data entities. At the moment of generation, each
terminal determines an ET (UET or QET), as well as its size. For UETs, the W following a R is
determined by the conditional probability Pr(W|R).
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Figure 2: Centralized Database Performance Model

Second, the Divergence Server picks up ready transactions from the ready-queue. It first checks
for strict serialization and further verifies ESR extension. It then issues a request to the Resource
Manager where the CPU computation or disk I/O is evaluated subsequently. But for unsuccessful
scheduling, it defers rescheduling until an appropriate moment, or aborts and puts the correspond-
ing transaction back to the ready-queue. An aborted transaction is granted a higher priority from

which a successive rescheduling is promptly done.

Third, the Resource Manager conducts both computation and disk I/O activities in a tightly
connected multiprocessor system. As in [1], we define CPUs as multiple servers through a common
queue, and each disk server has its own queue. In addition, we employ a data-buffering mechanism
driven by LRU replacement policy. Both CPU and I/O requests are served based on a FCFS

discipline, but CPU requests from DC have higher priority over other service requests.

The processing of an ET by the Resource Manager is as follows. Divergence Server forwards a
request to Resource Manager and it waits until the request completes. Within Resource Manger,
each service is simulated with deferred write policy; i.e., updates are written first into the buffer

pool and then onto the disks at commit time. Reading an object requires disk I/O followed by



CPU. Writing an object requires CPU on the read item but it involves disk 1/O for writing-back at
commit. When the request is done, Divergence Server continues. Note that each Divergence Server
also uses CPU for its scheduling. Thus, CPU usage is preemptive by priority. Divergence Server
has a higher priority to use CPU, whereas each operation in ET has a lower priority. Thus, it can

steal CPU being spent on the operation at Resource Manager whenever its scheduling is possible.

3.2 Experiments

Table 1 summarizes our workload and resource parameter settings. Our simulation program is
implemented using CSIM [16, 17]. The simulation is flexible with a large number of parameters,
which enables us to characterize the workload more precisely. For validation, we ran a set of
experiments with parameters identical to those used in [1]. Furthermore, most of the values are

kept unchanged from [1] to maintain the validation and basis for comparison.

3.2.1 Workload Parameters

Our workload consists of two classes of transactions: short updates (UETs) and lengthy queries
(QETs). Unlike TPC benchmarks, where data contention is minimized, we introduce some interfer-
ence between UETs and QETs. We assume that such combination is realistic in many transaction

systems with decision support applications [7].

The size of an UET is decided by the mean of a uniform distribution between tran_Umin_size
and tran_Umaz_size. Each UET chooses a target entity randomly from a database of tran_db_size
entities. The percentage of a write operation on a read item is determined by tran_write_prob.
The size of a QET is modeled by a fixed length of tran_@Qmaz_size. We draw a starting point in
the database and generate QET read requests in an ascending order. The rate of QETs issued by
each terminal is determined by tran_query_prob. A pause of the submission of a new transaction

from a terminal is set by the exponential distribution with tran_mean_thinktime.

Since non-uniform data accesses always happen in real databases [5, 6, 7], we characterize data
contention caused by skewed access patterns using tran_access_frac, where different frequencies
of access relate to separate segments in the database. In our experiments, we choose an 80%-20%
model, i.e., 80% of all accesses go to 20% of the database entities. We also distribute skewed

hot-spots evenly in the database so that sequentially generated QETs will access these hotspots.

Finally, each W operation is associated with an update amount from a normal distribution



between tran_min_of fset and tran_max_of fset with a standard deviation ¢ set to one sixth of

this range. Note that the average amount of inconsistency between a @) and a W is o/2/7.

Workload Parameter Value System/Resource Parameter | Value
tran_db_size 10,000 entities || sys_num_terminal 200
tran_mean_thinktime 1 sec sys_num_cpu 10, co
tran_access_frac 80%-20% sys_num_disk 20, co
tran_Umazx_size 12 entities sys_mean_cpu 15 ms
tran_Umin_size 4 entities sys_mean_disk 35 ms
tran_write_prob 0.25 buffer_size 2,000
tran_Qmazx_size 500 buffer . UFT _frac 0.95
tran_query_prob 0.25 buffer_algorithm LRU
tran_min_offset -500 sys_dc_cpu 0 ms
tran_mazx_offset 500

Table 1: Parameters

3.2.2 System and Resource Parameters

There are two sets of experiments, namely, resource-limited and resource-unlimited experiments.
The resource-limited case studies the relationships between data contention and other system bot-
tlenecks. The resource-unlimited case assumes infinite system resources and focuses on the impact

of data contention only.

Physical configuration of the system is determined in a straightforward way. They include
sys_num_terminal for external terminals and sys_num_cpu and sys_num_disk for the amount of CPU
and disk servers respectively. As in [1], we use one CPU and two disks as a basic resource unit.
We also inherit a constant service time spent on a single request to CPU and disk as sys_mean_cpu

and sys_mean_disk as well as negligible sys_dc_cpu overhead in scheduling.

Our characterization of buffering effect is determined by buffer_size and buffer_algorithm in
which buffer_UET_frac specifies area assigned for UETs. We limit 5% of the entire buffer for QETs

because their sequential accesses take less advantage from buffering.

3.2.3 Performance Metrics

The three major performance metrics used in this study are throughput, response time, and disk
utilization of the underlying system. All these statistics are drawn within a MPL range from 5
to 175. We additionally collect abort/commit ratio (average number of aborts per commit) and

accumulated inconsistency for a QET.



The transaction throughput is defined as the total number of transactions successfully completed
per second. The response time is the elapsed time between a terminal issuing a new transaction
and the transaction actually being committed. Disk utilizations are useful to visualize the effect
of resource contention on the performance of both 2PLDC and ODC. Abort/commit ratio is the

average number of aborts (and retries) until the transaction commits.

Average update amount (JAY]) in our setting is 133. We set €-spec to 1,000, 3,000 and 5,000 as
well as an extreme value to approximate oo for both UETs and QETs. They are rather ad hoc but
they range from several to a few dozens of update amounts, corresponding roughly from a small to

a large tolerance in this context.

4 Results and Discussions

All statistics in the next three sections are derived using a batch means method [1]. A maximum
of 20 batches were run on each simulation where each batch lasts 1,000 simulation seconds. The
transient period of the initial 100 seconds is not used in the computation of the final statistics.
Furthermore, we maintain the 90% confidence interval to be within 5% of each data point reported

in this paper.
4.1 Experiments with Resource-Limited Environments

In this section, we investigate the combined performance impacts of both data and resource con-
tentions. For resource contention, we set a limited number of CPUs and disks. Due to the space
limitation, we only present the results of using 10 resource units (10 CPUs and 20 disks). Fig-
ure 3(a)—(d) show the throughputs and response times of UETs and QETs for both 2PLDC and
ODC under various €-specs and MPLs. Several interesting observations and detailed analyses about
these graphs are discussed as follows. We note that €-spec= 1,000 for a query ET is like missing

7.5 updates while scanning 500 data items.

First of all, both 2PLDC and ODC improve their throughputs substantially as €-spec increases.
This confirms that ESR indeed helps to improve system concurrency as evidenced by the improve-

ment in the throughputs of UETs in Figure 3(a) and QETs in Figure 3(b).

Secondly, without ESR (i.e., €-spec=0), the system throughput quickly declines as MPL in-
creases. However, with €-spec > 0, the system throughput continues to improve even as MPL

increases. The peak of throughput shifts into a higher MPL as €-spec becomes larger. For exam-



ple, in Figure 3(a), the throughput of 2PLDC starts to decrease at MPL=25 for €-spec=0, while it
does not until MPL=75 for €-spec=3,000. The above two observations match our intuition as ESR

alleviates the data-contention and it allows a larger number of transactions to progress.

Thirdly, with 10 resource units, 2PLDC performs better than ODC for €-spec=0. With €-spec
> 0, however, the difference between 2PLDC and ODC becomes less distinguishable. In order to
understand this phenomenon, we inspect the disk utilizations in Figure 4 and abort/commit ratio

in Figure 5.

In Figure 4, 2PLDC extends the disk usage as €-spec increases, while ODC maintains almost
the same in the uppermost overlapped curves for all €-spec. However, for ODC some of the
disk utilization is due to wasteful work of aborted transactions. Note that in ODC transactions
use almost the same resources regardless of the €-spec, due to the immediate grant of accesses.
However, in 2PLDC the decrease of data contention due to the increase of €-spec causes less
blocking and results in less transactions being suspended at the scheduling queue. As a result,
more transactions issue disk requests and disk utilization increases as €-spec increases. If we
separate the disk utilization of committed transactions from the total disk utilization observed in
Figure 4 for ODC, the useful utilization of ODC should be comparable to that of 2PLDC. Table 2
summarizes the disk utilization extracted from MPL=100. Notice that in 2PLDC the observed total
utilization is very close to the useful disk utilization because the abort/commit ratio of 2PLDC is
very small (see Figure 5). From Table 2, the useful disk utilization of ODC, from €-spec=3,000,
becomes comparable to the observed total disk utilization of 2PLDC. Thus, with limited resources

and higher €-spec, ODC and 2PLDC performs comparably.

2PLDC ODC
€-spec Observed | Observed | Useful
0 0.31 0.90 0.49
1,000 0.60 0.90 0.64
3,000 0.84 0.90 0.83
5,000 0.90 0.90 0.90
1,000,000 0.90 0.90 0.90

Table 2: Disk Utilization

Another important issue related to the third observation is that a smaller €-spec affects the two
algorithms differently. In Figure 3(a), ODC outperforms 2PLDC with €-spec=1,000 when MPL
> 100. Figure 6(a) plots the rate of UET’s performance improvement in throughput over the case
of €-spec=0 for the cases of MPL=50, 100 and 150. For example, the throughput of ODC at

10



MPL=100 gains 2.35 times from €-spec=0 to €-spec=1,000, whereas 2PLDC improves only 1.37
times. At MPL=150, the rate of improvement in ODC is even larger (5.5 times), which shows that
ODC gains an even larger improvement with a higher MPL. The similar property holds for QET

as well.

This higher rate of improvement in ODC can be explained as follows. Upon reaching its €-spec
limitation, 2PLDC starts to build up a wait-for chain due to blocking. And its performance quickly
reaches saturation because all suspended ETs hold locks and eventually result in more conflicts.
In contrast, ODC examines conflicts only during an instantaneous moment of the validation stage.
Thus, it captures comparably smaller set of interferences among active ETs due to immediate grant
of accesses without blocking. It thus enables more ETs, even with a small €-spec, to complete and

leave the system.

Finally, let us go back to Figure 3(c) and 3(d) where the response times of UETs and QETs are
shown. The response times of UETSs are generally shorter in ODC than in 2PLDC (see Figure 3(c¢)),
while the reverse is true for QETs (see Figure 3(d)). In 2PLDC, UETs progress slowly once blocked
because they must wait until lengthy QETs complete, resulting in larger response times. On the
other hand, in ODC, QET is more likely to be aborted and aborting a QET is costly because it
takes a long time to re-execute, while UETs can be re-executed quickly. Thus, the response times

of QETs tend to be longer in ODC.
4.2 Experiments with Infinite Resources

In this section, we use an infinite number of CPU and disks and examine the performance impact

of data contention. Figure 7(a)—(d) show the throughputs and response times of UETs and QETs.

Asin the limited-resource case, the throughputs of both 2PLDC and ODC improve substantially
as €-spec increases in Figures 7(a) and (b). However, in contrast to Figures 3(a) and (b), ODC
outperforms 2PLDC for almost all the €-spec, including €-spec=0. That ODC is better than
2PLDC with infinite resources and €-spec=0 conforms with previous studies of 2PLCC and OCC
algorithms [1, 4]. This is different from the observation that 2PLDC is slightly better than ODC

with the resource-limited environment in the previous section.

Figure 6(b) plots the rate of UET’s performance improvement versus €-specs using throughput
extracted from MPL=50, 100 and 150. Although the rate of improvement of 2PLDC is significantly
better than that of ODC in Figure 6(b), 2PLDC begins at a much lower throughput level for the
case of €-spec=0. In fact, the throughput of 2PLDC never catches up with that of ODC under any

11



€-spec.
4.3 Comparisons of Accumulated Inconsistency

In this section, we characterize how the two algorithms differ in the amount of inconsistency in their
results by comparing the distributions of imported inconsistency of committed QETs by 2PLDC
and ODC.

Figure 8(a)—(c) show the histograms* (normalized frequency of sampled values) drawn at
MPL=150 in resource-limited setting. There is a significant difference between the two algorithms.
For a small €-spec (see Figure 8(a)), a significant portion of committed QETs has a larger accu-
mulated inconsistency in 2PLDC than in ODC. For instance, the three highest buckets of 2PLDC
hold 32% of the total samples in Figure 8(a). If we increase €-spec, the inconsistency histogram

become less skewed toward the high end and more evenly distributed (see Figures 8(b) and (c)).

This phenomenon is closely related to the implementation of the two algorithms. In 2PLDC,
an ET is suspended when ESR extension fails, and it is blocked and waits until it succeeds. While
blocked, the accessed data items of a query ET can continue to be updated and result in more
inconsistency to accumulate for the waiting QET. However, in ODC an ET is marked for abort

whenever ESR extension fails. Therefore, most committed QETs end up with higher inconsistency

in 2PLDC than in ODC.

The spikes in the higher buckets in Figures 8(a)—(c) for 2PLDC diminish in magnitude when
MPL reduces (see Figure 8(d) where MPL is 100). This is because lower MPL will result in less

data contention and smaller inconsistency for QETs.

5 Summary

In this paper, we developed a comprehensive simulation program to evaluate and compare perfor-
mance gains by two-phase locking divergence control (2PLDC) and optimistic validation divergence
control (ODC) for transaction processing based on epsilon serializability (ESR). Our simulation ex-
tends Agrawal et al’s study [1] on the performance of concurrency control methods, whose results
are used for validation of our simulation program. We investigated a wide range of workload and

system parameter settings and found the following significant results.

*The first bucket refers to zero accumulated inconsistency. The last bucket means maximum inconsistency. Other
buckets divide €-spec into even ranges.
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First, ESR extends classic serializability by allowing a bounded amount of inconsistency (€-spec)
in each transaction. Therefore, we expect the system concurrency level to rise as €-spec increases.
Our simulation results confirm that both divergence control methods (2PLDC and ODC) allow more
effective concurrency than traditional concurrency control for serializability, under a mixed load of
small updates and long running queries. Both 2PLDC and ODC provide substantial performance
improvement (i.e. throughput and response time) even with a small €-spec. More specifically, they
achieve better peak performance at higher MPL as €-spec is raised. Thrashing points also shift
to higher MPL. This is true under both resource limited and unlimited environments. This result

amplifies and complements previous work on timestamp-based divergence control [9].

Second, we compared the performance of 2PLDC and ODC beyond the confirmation of [9]’s
results when €-spec=0. On the other end of spectrum, since sufficiently large €-spec values allow
free access (without concurrency control) to a great majority of transactions, it matters little which
divergence control method is used. For moderate to small values of €-spec, ODC performance is
more sensitive to €-spec changes than 2PLDC. Furthermore, as €-spec grows ODC’s concurrency
improvement rate is faster. For experiments focused on data contention (using infinite hardware
resources), ODC allows better throughput and response time for both UETs and QETs; this is

particularly obvious at high MPL.

Finally, the simulation program is useful in guiding our ongoing research. For example, we have
implemented 2PLDC on Transarc Encina [12], a commercial transaction monitor. The performance
measurements of the implementation, using TPC benchmarks, have been limited by hardware re-
sources (less than 20 MPL on a SUN IPX). The simulation shows that by increasing data contention
we should be able to measure some interesting results on a SUN Sparcl0 server (about 3 to 5 times

faster).
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