Impact of soil moisture-atmosphere interactions on surface temperature distribution

Berg, Alexis M.; Lintner, Benjamin R.; Findell, Kirsten L.; Malyshev, Sergey; Loikith, Paul C.; Gentine, Pierre

Understanding how different physical processes can shape the probability distribution function (pdf) of surface temperature, in particular the tails of the distribution, is essential for the attribution and projection of future extreme temperature events. In this study, the contribution of soil moisture-atmosphere interactions to surface temperature pdfs is investigated. Soil moisture represents a key variable in the coupling of the land and atmosphere, since it controls the partitioning of available energy between sensible and latent heat flux at the surface. Consequently, soil moisture variability driven by the atmosphere may feed back on near-surface climate, in particular temperature. In this study, two simulations of the current-generation Geophysical Fluid Dynamics Laboratory (GFDL) earth system model, with and without interactive soil moisture, are analyzed in order to assess how soil moisture dynamics impact the simulated climate. Comparison of these simulations shows that soil moisture dynamics enhance both temperature mean and variance over regional ’hotspots’ of land-atmosphere coupling. Moreover, higher-order distribution moments such as skewness and kurtosis are also significantly impacted, suggesting an asymmetric impact on the positive and negative extremes of the temperature pdf. Such changes are interpreted in the context of altered distributions of the surface turbulent and radiative fluxes. That the moments of the temperature distribution may respond differentially to soil moisture dynamics underscores the importance of analyzing moments beyond the mean and variance to characterize fully the interplay of soil moisture and near surface temperature. In addition, it is shown that soil moisture dynamics impacts daily temperature variability at different time scales over different regions in the model.


Also Published In

Journal of Climate

More About This Work


This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. Since it is being posted so soon after acceptance, it has not yet been copyedited, formatted, or processed by AMS Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please be aware that there will be visual differences and possibly some content differences between this version and the final published version.