Academic Commons

Articles

Regularization of PET Reconstruction Using Multi-scale Adaptive Thresholding

Jin, Yinpeng; Esser, Peter D.; Aikawa, Taro; Kuang, Barbara; Duan, Sheila; Laine, Andrew F.

A multi-scale adaptive thresholding scheme is presented in this study. It was evaluated as a regularization process to filtered back-projection (FBP) for reconstructing clinical PET brain data. Adaptive selection of thresholding operators for each multi-scale sub-band enabled a unified process for noise removal and feature enhancement. A cross-scale regularization process was utilized as an effective signal recovering operator. Together with non-linear thresholding and enhancement operators, they offered remarkable postprocessing to FBP reconstructed data. In addition, such effectiveness was formulated as a regularization process to optimize FBP reconstruction. A comparison study with multiscale regularized FBP (MFBP), standard FBP with clinical settings and iterative reconstruction (OSEM) was reported. The proposed regularization process has shown competitive improvement in the image quality of PET reconstructions when compared to the current state-of-the-art method used in clinical commercial systems (OSEM).

Files

More About This Work

Academic Units
Biomedical Engineering
Published Here
August 13, 2010

Notes

EMBC 2004: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Conference Proceedings: Linkages for Innovation in Biomedicine: 1-5 September, 2004, San Francisco, California (Piscataway, N.J.: IEEE, 2004), pp. 1616-1619.

Academic Commons provides global access to research and scholarship produced at Columbia University, Barnard College, Teachers College, Union Theological Seminary and Jewish Theological Seminary. Academic Commons is managed by the Columbia University Libraries.