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Abstract 

Long-term consequences of environmental lead exposure in Kosovo:  Effects 

of pre and postnatal lead exposure in early adulthood 

 

Pashko R. Camaj 

 

Between May 1985 and December 1986, a cohort of 1,502 pregnant women was 

recruited at two government clinics in Kosovo (formerly a province of Yugoslavia) for a study of 

the relationship between environmental lead (Pb) exposure and birth outcomes.  Subsequently, a 

representative group of 541 of their children were selected for long-term follow up.  The children 

were followed longitudinally at six-month intervals for 12 years to examine the effects of 

environmental Pb exposure on a variety of health outcomes including cognitive and motor 

function, anemia, endocrine function and growth.   This work produced numerous landmark 

publications (Popovac et al, 1982; Graziano et al., 1990, 1991, 2004; Murphy et al., 1990; 

Factor-Litvak et al, 1993, 1996, 1998, 1999; Wasserman et al,. 1992, 1994, 1997, 1998, 2000) 

that contributed to the modification of environmental policies to reduce Pb exposure worldwide.  

The long-term study ultimately linked environmental Pb exposure from the Trepca mining and 

smelting operations in Mitrovica to adverse effects on intelligence, motor function, blood 

pressure, renal, endocrine and hematological functioning.  Follow up rates over time were 

excellent in that 70% of the total cohort was evaluated at 6 years of age, and 65% were evaluated 

at 12 years of age, at which point the study was - until now - concluded.   

For the present study, we located 101 members of the original study cohort and requested 

their participation in a follow-up study in which participants were evaluated to assess their 

current blood lead (BPb) levels and health outcomes as follows: a) blood pressure; b) biomarkers 



 

 

 

of endothelial cell function that are associated with cardiovascular disease; c) and measurements 

of erythropoietin, a glycoprotein hormone produced in the kidney that regulates the production of 

red blood cells in the bone marrow.   The participants, whose environmental exposure history is 

very well documented from 12 weeks of gestation through 12 years of age, were between 25-26 

years of age during the follow-up study. 

We found a statistically significant association between BPb and systolic blood pressure 

(sBP), and a marginally significant association between BPb and diastolic blood pressure (dBP), 

which is consistent with a multitude of studies and meta-analyses referenced in this dissertation.  

These results provide further evidence that recent circulating dose, as estimated by BPb, or as 

estimated by lifetime cumulative exposure, is associated with slight increase in sBP.  

Furthermore, we detected a suggestive relationship between BPb and levels of circulating serum 

intercellular adhesion molecules (sICAM-1) and serum intravascular adhesion molecules 

(sVCAM-1), possibly a mechanism by which Pb may lead to increased BP.  These findings 

support the hypothesis that the exposure to Pb either prenatally or in early adulthood, may lead to 

increased BP and increased circulating levels of sICAM-1 and sVCAM-1 later in life.  Lastly, 

the results regarding the serum erythropoietin (EPO) production presented here resemble the 

findings reported in this cohort at 4.5 and 6.5 years of age and in contrast with the findings in 

this cohort when the study participants were 9.5 and 12 years of age (Graziano et al., 2004).  In 

addition, they also contrast the findings reported in the anemic mothers of this study cohort 

(Graziano et al., 1991) where serum-EPO levels were lower in those with higher BPb levels. 
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CHAPTER I:  SPECIFIC AIMS AND HYPOTHESES OF THE STUDY 

  

 The review of the literature for this dissertation study has shown inconsistencies and 

missing links between environmental Pb exposure (pre-and postnataly and in early adulthood) 

and health outcomes later in life.  Additional studies in populations with a wide range of 

exposures are necessary in order to better elucidate dose-response relationships between Pb and 

its effect of BPb on blood pressure, as well as on kidneys and hemopoietic system.  Although the 

effects of Pb on blood pressure are well documented, we have not come across any studies, 

prospective in a nature, with a wealth of early documented exposure and follow-up in adulthood. 

The studies that are the basis for this dissertation will try to address the inconsistencies that we 

have identified making use of the data from this population based on this longitudinal study.  

This study differs from other studies in the following ways: BPb, EPO, Hemoglobin (Hgb), and 

blood pressure (BP) measurements were obtained numerous times between birth and age of 12.5 

and again at the age of ~ 24-25 years. The fact that we have a full complement of data from birth 

through 12.5 years of age, and again at 24-25, sets this cohort apart from many other cohorts.  In 

addition, the wide range of BPbs in the studied population enables a better assessment of a dose-

response relationship.  When examining associations between health outcomes and Pb exposure, 

we and others have typically used alternative ways of determining the most critical period of 

exposure.  Of course, we will examine the association with concurrent BPb.  However, we will 

also examine the associations between health outcomes and the total area under the BPb vs. age 

curve (AUC) (using the trapezoidal method), for pre-natal and AUC for early post-natal periods 

(birth to age 2, 2-4, 4-7, and 7-12 years old).  In this manner we will attempt to determine if there 



 

 

2 

 

is a critical time period of exposure with regard to each health outcome.  The study will have the 

following specific aims and hypotheses listed below: 

 

1.1. Specific Aim 1  

 

Using the baseline cross-sectional information of the previous study and current cohort, our 

first aim was to examine the association between environmental Pb exposure and blood pressure 

and cardiovascular health at age ~ 24-25 years.  Pb exposure was estimated using past 

measurements of BPb which were already available from birth through age of 12, as well as a 

new concurrent measurement. 

We will also examine the impact of environmental lead exposures on the cardiovascular system 

by examining the association between BPb over time manifested by changes in the circulating 

levels of two biomarkers of endothelial cell functioning, namely soluble intercellular adhesion 

molecule (sICAM-1) and soluble vascular cell adhesion molecule (sVCAM-1).  This specific 

aim was developed to test the following hypothesis:  

 

i. Hypothesis 1: Higher levels of prenatal and early adulthood Pb exposure are 

associated with an increase in blood pressure in adulthood. 

ii. Hypothesis 2: Higher levels of prenatal and early adulthood Pb exposure are 

associated with increased levels of the circulating sICAM-1 and sVCAM-1 in 

adults. 
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1.2 Specific Aim 2 

 

Using the baseline cross-sectional information on child participants of the previously 

described prospective study, we aimed to assess the association between cumulative Pb exposure 

and its effect on renal endocrine function by measuring serum EPO. This specific aim was 

developed to test the following hypothesis:  

 

i. Hypothesis 3: Higher levels of prenatal and early adulthood Pb exposure are 

associated with a decline in the slope of the relationship between EPO and BPb 

with age (after adjusting for Hgb), suggesting that individuals with elevated BPb 

early in life have a decreased capacity to produce EPO over time.  
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CHAPTER II:  INTRODUCTION AND LITERATURE REVIEW 

 

2.1 Background and Significance 

In the field of environmental health, exposure to Pb has remained one of the most studied 

topics. However, even with persistent research on this topic, and continued efforts to reduce 

exposure, long term effects of Pb on public health still require more adequate attention.  More 

specifically, analyses of relationships between prenatal and early childhood Pb exposure and 

blood pressure and effects on erythropoietin production later in life are not adequate.  A 

significant study undertaken in two Kosovo towns beginning in the mid 1980s shed much light 

on these topics, and produced numerous landmark publications (Popovac et al, 1982; Graziano et 

al., 1990, 1991, 2004; Factor-Litvak et al,. 1993, 1996, 1998, 1999; Wasserman et al,. 1992, 

1994, 1997, 1998, 2000) that contributed to the implementation of environmental policies.  The 

research studies cited in this dissertation examine the relationship between prenatal and early 

childhood exposure to environmental Pb and increases in blood pressure and effects on EPO 

production.  As background and introduction to these studies, this section provides an extensive 

literature review concerning the effects of Pb exposure on blood pressure and renal function as 

measured by EPO production.  

The town of Mitrovica with its 115,000 inhabitants is located in a mountainous region of 

Kosovo (part of Yugoslavia until Kosovo’s independence in 2008) and approximately 40 km 

from the capitol city of Prishtina.  Until recently, the region’s industry was dominated by the 

“Trepca Lead Mines and Smelter” located on the outskirts of the town of Mitrovica.  At the 

height of production, it employed up to 23,000 workers and was one of the biggest companies in 

the former Yugoslavia, as well as one of the largest Pb smelters in Europe. In terms of air 
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pollution, Pb dust was the most abundant pollutant in the region; in 1979, 5,756 kg of Pb dust 

were emitted daily from the Pb smelter alone.  The air-Pb concentrations ranged from 21.3-29.2 

µg/m
3
 in the mid 1980s (Popovac et al., 1982).  This was 100 times greater than allowable limits 

of air-Pb concentrations in the former Yugoslavia.   

Early studies on this topic attempted to determine the effects of these emissions on blood-

lead (BPb) and erythrocyte protoporphyrin (EP) levels and to evaluate the health impacts of Pb 

exposure.  To that end, a small pilot study was conducted in 1978 which suggested that the 

incidence of elevated blood-lead in children was substantial (Popovac et al., 1982).   Between 90 

and 95 percent of children ages 0-15 years old had BPb levels ranging from 30-70 µg/dL or 

greater (In the 1970’s, the “normal or safe levels” for BPb were considered to be at 60 µg/ dL; 

this level was reduced by the US Centers for Disease Control (CDC) to 30 µg/ dL in 1980, to 25 

µg/ dL in 1985, to 10 µg/ dL in 1991, and to 5 µg/ dL in 2012).  In addition, a follow-up survey 

was conducted to obtain a more representative sample of BPb in Mitrovica in 1980 (Popovac et 

al., 1982).  Table 2-1 below shows the increasing trend of erythrocyte protoporphyrin (EP) 

between 1978 and 1980.  This trend was believed to be associated with the increase in the mean 

air Pb concentrations measured at five different locations in the city (Popovac et al., 1982).  

Non-exposed Controls, 1978               Exposed Area Residents, 1978          Exposed Area Residents, 

1980 

                 EP        B-Pb     N                 EP    N      B-Pb*     N                  EP      B-Pb              N 

Age        (µg/g     µg/dL                        (µg/g                µg/dL                           (µg/g       µg/dL     

(Yr)         Hgb)                                     Hgb)                                                   Hgb) 

0-3           3.9        6.8      37      8.0      104      37.4       57                 9.6           46.3              92      

3-5           2.1        7.5      10      6.3        25      45.1       11                 8.6           44.4              56      

3-10         1.5        8.7      19      6.1        56      50.9       20                 8.6           45.9              37       

10-15       1.4        8.7        6      4.7        38       44.6      10                 8.7           46.8              56       

>15          0.9        10.0      1      3.6        97       27.6        9                 5.3           35.3             138  
                                              73                                104                                                                                       379 

 

Table 2-1: NOTE: The mean EPs for the cases where BPb was determined were 12.0, 10.9, 11.6, 8.6, and 8.1 respectively, 

youngest to oldest. Table 1: Erythrocyte Protoporphyrin (EP) Concentrations and Blood Lead (B-Pb) Concentrations of 

Residents of Two Cities in Kosova; Source: Popovac et al., Archives of Environmental Health, 1982, Volume 37, 19-23). 
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Subsequent to the findings of the these two surveys, a prospective cohort was established 

in order to adequately evaluate the health effects of these levels of exposure, first during 

pregnancy, and later,  during the growth and development in early childhood.  In order to include 

participants with a wide range of Pb exposure, residents in the non-exposed city of Prishtina 

were also recruited.  Initially, 1,502 pregnant women were recruited at two government clinics 

for a study of the relationship between environmental Pb exposure and birth outcomes between 

May, 1985 and December 1986 (Graziano et al., 1990).  As indicated in Figure 2-1 below, the 

mean mid-pregnancy BPb levels in women recruited in Mitrovica were much higher than in 

women recruited in Prishtina (Graziano et al., 1990).  

 

Figure 2-1: Mean mid-pregnancy BPb (µg /dl) for women recruited into the study during the months of May 1985 through 

January1987.   Each point represents a different group of women, i.e., those recruited during that month; Source: Graziano et 

al., Environmental Health Perspectives, 1990, Volume 89, 95-100. 

 

 

Elevated EP concentrations are considered to be indicative of Pb toxicity and/or iron 

deficiency (Graziano et al., 1990).  Hematologic findings in children in both towns revealed that 

serum ferritin concentration (Figure 2-2), a measure of the adequacy of tissue iron stores, was 
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slightly higher in Mitrovica than in Prishtina (Wasserman et al., 1992).  Despite the higher iron 

stores, the mean EP was elevated in Mitrovica after the 6
th

 month of age.  Since the hemoglobin 

levels were also similar, with no apparent difference in iron stores, these findings reflected some 

degree of metabolic inhibition of red cell heme synthesis due to lead (Graziano et al., 1990).  It is 

important to note that EP concentrations have an exponential relationship with BPb levels only 

after reaching a BPb threshold of 15-18 µg/dL, at which point they start to rise, giving the dose-

response relationship the shape of a “hockey stick” (Piomelli et al., 1982). 

 

Figure 2-2: Hematologic finding for children in K. Mitrovica (clear circles) and Prishtina (dark circles) who were assessed at 24 

months of age. A, Geometric mean BPb concentrations. B. Geometric mean ferritin concentrations. C. Geometric mean EP 

concentrations. D. Geometric mean hemoglobin concentrations. SF Serum Ferritin; Hgb, hemoglobin. Source: Wassermann et 

al., The Journal of Pediatrics, Volume 121, Part 1, 1992 
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As a result of regional wars of the last 15-20 years, there has been a significant reduction 

of the “Trepca Lead Mines and Smelter” capacity and output.  Consequently, environmental Pb 

exposure in the town of Mitrovica decreased beginning around 1998, though air Pb 

measurements are not available. 

 

2.2 Lead Exposure and Metabolism 

Harmful effects of exposure to Pb have been recognized and documented for centuries.  

Known as one of the metals of antiquity, Pb has been mined and used by many generations in a 

wide array of applications.  Its wide use peaked during the industrialization of the developed 

world and it continues to be ubiquitous environmental contaminant in the developing world.    

Although naturally occurring in the environment, human activities are the main reason for high levels 

found throughout the environment.  Whether in the home environment or occupational setting, 

there are many ways in which exposure to Pb occurs: through air, drinking water, food, 

contaminated soil, deteriorating paint, and dust.  As a result of a significant body of scientific 

work, there has been a concerted effort to reduce exposure to this harmful pollutant.  

Unfortunately, that has not been the case in much of the developing world.   Pb can be absorbed 

in a number of ways, i.e., through the gastrointestinal tract as well as through lungs and skin 

(Figure 2-3) (Rabinowitz et al., 1976 in EPA, 2001).  Pb absorption from the gastrointestinal 

tract depends on several factors, including particle size, gastrointestinal transit time, nutritional 

status and age (Greenberg et al, 1986).  The smaller the particle size, the greater the absorption.  

Thus, exposure to Pb dust results in higher absorption than exposure to the equivalent amount of 

lead from chips of Pb paint (Greenberg et al., 1986).   

Nutritional status also affects the absorption of Pb. Iron and calcium deficiencies, low-

energy (calorie) intake, and high-fat intake have been associated with enhanced Pb absorption. 
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While 10-15 percent of ingested Pb is absorbed into the bloodstream, as much as 90 percent is 

absorbed after inhalation (Greenburg et al., 1986). In addition to being largely bound to 

erythrocytes in the blood, Pb accumulates in soft tissues and bones (Rabinowitz 1976 in EPA, 

2001).  Pb has a half-life of between 20-40 days in blood, and 30-40 days in soft tissue (Barry et 

al., 1981).  However, a longer half-life of Pb in the blood stream of Pb workers has been reported 

with the Pb body burden being a determining factor (Barry et al., 1981, Kang et al., 1983).    

Bone contains about 90 percent of the total body Pb content. Children absorb Pb more readily 

than adults (Greenberg et al., 1986; Alexander, et al., 1974; Ziegler et al., 1978).   While adults 

absorb 10 to 15 percent of the ingested quantity, this amount can increase to 50 percent in 

infants, young children and pregnant women (Rabinowitz et al., 1980; Watson et al., 1986; 

Markowitz et al., 2000,). Absorption through the gut is the predominant route for children and Pb 

bioavailability increases when dietary intakes of iron, calcium, phosphorus, or zinc are low 

(Rabinowitz, et al., 1980; Markowitz et al., 2000,).   

Pb that diffuses into bone is stored there for a period that corresponds to a half-life of 

several decades (Rabinowitz et al., 1976 in EPA, 2001, Rosen et al., 1993).   Bone calcification 

is most active in trabecular bone (e.g., patella) during infancy and childhood.  However, during 

adulthood, calcification occurs mostly in cortical (e.g., tibia) and trabecular bone (Aufderheide 

and Wittmers, 1992).  As a result of high bone formation rate in early childhood, a rapid uptake 

of circulating Pb into mineralizing bone occurs.  However, since during this stage bone Pb is also 

recycled to other tissue compartments or excreted in accordance with a high bone resorbtion rate 

(O'Flaherty et al., 1995), much of the Pb acquired early in life is not permanently fixed in the 

bone.  Bone Pb tends to increase with age and is mostly stored in dense bones such as tibia, with 

a half-life of 10-30 years (Rabinowitz et al., 1976; Barry et al, 1981; O’Flaherty et al., 1995).  
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Increased bone turnover during pregnancy, menopause, lactation, or immobilization can increase 

BPb levels.  Most of the Pb that is excreted is eliminated via renal glomerular filtration and 

tubular secretion (approximately 75 percent).  Other routes of excretion include bile, 

gastrointestinal secretions, hair, nails and sweat. Generally, Pb excretion is low, with the most 

significant route being via the urinary tract.  Although minute amounts of Pb are excreted 

through the sweat and the nails, these routes do not have any practical significance.  

 

 

 
 
 

Figure 2-3: Rabinowitz et al. Metabolism Model for Lead, 1976;  Review of Adult Lead Models Evaluation of Models for 

Assessing Human Health Risks Associated with Lead Exposures at Non-Residential Areas of Superfund and Other Hazardous 

Waste Sites Final Draft: August 2001. Source: EPA, Adult Lead Risk Assessment Committee of the Technical Review Workgroup 

for Lead (TRW). 

 

 

 

 



 

 

11 

 

2.3 Description of Lead Toxicokinetics and Toxicity  

BPb concentrations vary considerably with age, physiological state (e.g., pregnancy, 

lactation, menopause), and numerous factors that affect exposure.  As mentioned above, Pb in 

blood is found primarily (~99 percent) in the red blood cells (Bergdahl et al., 1997b, 1998; 

Hernandez-Avila et al., 1998; Schutz et al., 1987). Most of the Pb found in red blood cells is 

bound to proteins within the cell rather than the erythrocyte membrane (Bergdahl et al., 1997b, 

1998).   In their thorough review of Pb biokinetics, the US Environmental Protection Agency 

(EPA) described a number of models that simulate the changes in Pb concentrations in various 

compartments.  EPA details the work of Rabinowitz and his colleagues who in 1976 introduced a 

model that simulates changes in BPb concentrations in adult males in response to Pb uptake. 

Their model was based on data collected from five healthy subjects who received oral doses of 

stable Pb-isotopes for various periods of time.  The model includes three compartments 

representing kinetically distinct Pb pools in the body (Figure 4) (Rabinowitz, 1976 in EPA, 

2001). “Pool 1” represents the central compartment, i.e., blood and other extra-cellular fluids that 

rapidly equilibrate with whole blood. It contains approximately 1 percent of total Pb body burden 

at a given time and it has the shortest half-life (30±5 days) of the three pools.  “Pool 2” includes 

primarily those soft tissues, which equilibrate more slowly with whole blood and possibly parts 

of the skeleton where more active (and relatively rapid) exchanges occur with the central 

compartment (i.e., rapid relative to exchanges with “Pool 3”).  As Pb is added to the system, BPb 

rises and it becomes an early indicator of Pb absorption in the body.   “Pool 2” represents less 

than 0.3 percent of the Pb-body burden, and relatively little of the Pb in this pool is returned to 

blood. “Pool 3” represents approximately 94–99 percent of the Pb-body burden and is assumed 

to include bone and other slowly exchanging tissues. Approximately 94 percent of the total body 
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burden of Pb is found in the bones of human adults. However, in children, bone Pb accounts for 

about 73 percent of the body burden (Barry et al., 1970). Concentrations of bone Pb-burden 

(mass) tend to increase with age, indicative of a relatively slow turnover of Pb in adult bone 

(Barry et al., 1970; Gross et al., 1975; Schroeder et al., 1968).  The large pool of Pb in adults can 

be the source of BPb levels even long after external Pb exposure may have ended (Fleming et al., 

1997; 1996; Smith et al., 1996).   

 From calcified tissue stores in the bones, Pb can be slowly released back into the 

soft tissues. This release depends mostly on bone turnover rates that are largely a function of the 

bone type.  The compact bones have a slow turnover and the trabecular have a more rapid 

turnover (O´Flaherty et al., 1995). The release rate of Pb from bones varies with age and 

intensity of exposure (Brito et al., 2002).   Continuous growth and constant bone remodeling for 

skeletal development (O´Flaherty et al., 1995) can be a source of Pb exposure. This change 

contributes to a state in which Pb that is stored in bone is released back into the blood stream 

described as “endogenous contamination” (Gulson et al. 1996A). Bone remodeling in pregnant 

women can also serve as a significant continuous source of BPb that is passed to the fetus during 

the formation of the fetal bone structures in the womb during gestation (Gulson et al, 1996b).  

Approximately 54–78 percent of the Pb which leaves the body each day in urine is assumed to 

come from the central compartment, while other excretion pathways (e.g., bile, hair, sweat, and 

nails) are assumed to originate from “Pool 2” (Rabinowitz, 1976 in EPA, 2001).  Though this has 

been the most widely accepted model, it has been criticized on the grounds of differences of rates 

of Pb exchange in the different bones.  Specifically, the development of a five-compartment Pb 

model (Bernard et al., 1977) was a result of an observation that the Pb exchange rate in 

trabecular (spongy) bones has a more rapid exchange Pb rate that cortical bone, and a wide 
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variation in concentration of Pb in various parts of the skeleton (Landrigan et al., 1985).  This 

model, in addition to the Rabinowitz’s model of blood and soft tissue, adds three separate 

compartments that include cortical bone, trabecular bone and remaining soft tissue.  

Although the Rabinowitz model seems to be the least complicated of the Pb 

compartmental kinetics models, it is a basis for the more complex models that followed (e.g., 

Leggett, 1993; O’Flaherty 1991).  Differing from Rabinowitz’s model, the Leggett (1993) model 

includes a larger number of tissue compartments (Figure # 2-4).  Pb movement and deposition of 

in the body as exchanges between a various tissue compartments (and sub-compartments) and a 

central diffusible plasma compartment are simulated in this model.  Pb bound in plasma proteins, 

brain, extra-vascular fluid, gastrointestinal tract, kidney, liver, lung, other soft tissues, red blood 

cells, and skeletal tissues (cortical and trabecular bone) are the main tissues represented in this 

model. In addition the model includes a number of excretory routes: feces, sweat, urine, and 

other routes (e.g., hair, nails, and skin).  According to EPA, the strength of the Leggett model is 

that it is an all-ages model that can simulate Pb accumulation in a variety of tissues over any 

selected age range for a wide range of Pb intake patterns, including intakes that vary in intensity 

over time. Furthermore, EPA states that the Leggett model works well over a wide variety of 

conditions as assessed by comparison between predicted and observed BPb concentrations and 

urinary or fecal excretion in adults and comparisons of predicted and observed post-mortem 

tissue Pb concentrations. The flexibility of the model makes it relatively easily to simulate 

complex Pb scenarios, including those that might represent baseline exposures (US EPA, 2001).    

Another widely used model is the O’Flaherty model (Figure 2-5) which can simulate BPb 

concentrations for ages from birth through adulthood, for both short and long-term exposures.  

This model also simulates difference in Pb biokinetics in females and males.  In addition, 
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according to EPA,  the model can calculate tissue Pb accumulation in any compartment for any 

age range; simulate nonlinear kinetics of lead in blood; can be calibrated to achieve a reasonable 

fit to epidemiologic and experimental data and; and can generate output that includes graphics 

(US EPA, 2001).  However, this model includes a number of significant limitations: relatively 

weak empirical support for some of the model components; not designed to simulate maternal 

biokinetics during pregnancy; the exposure module for adults is limited to age-specific intakes 

(US EPA, 2001).  In their evaluation, EPA did not find any model to be a significant 

improvement over their Technical Review Workgroup for Lead (TRW) - Adult Lead 

Methodology (ALM) which is used to assess lead risks from the soil at nonresidential Superfund 

sites.  The baseline blood lead concentration input parameter of the ALM represents the 

geometric mean blood lead concentration in women of child-bearing age and the geometric 

standard deviation (GSD) input parameter is a measure of the inter-individual variability in these 

concentrations (US EPA, 2001). 

However they conclude that ALM, various components from the different models were 

determined to be refinements in adult lead modeling (US EPA, 2001).  Furthermore, they state 

that some components could be integrated into a hybrid model, however, EPA’s ALM should be 

retained as an interim methodology (US EPA, 2001) 
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Figure2-4: Schematic of the biokinetic model of lead metabolism proposed by Leggett (1993); Review of Adult Lead Models 

Evaluation of Models for Assessing Human Health Risks Associated with Lead Exposures at Non-Residential Areas of Superfund 

and Other Hazardous Waste Sites Final Draft: August 2001. Source: EPA, Adult Lead Risk Assessment Committee of the 

Technical Review Workgroup for Lead (TRW). 

 

 

Figure 2-5: Compartments and pathways of lead exchange in the O’Flaherty model (1995)  Review of Adult Lead Models 

Evaluation of Models for Assessing Human Health Risks Associated with Lead Exposures at Non-Residential Areas of Superfund 

and Other Hazardous Waste Sites Final Draft: August 2001. Source: EPA, Adult Lead Risk Assessment Committee of the 

Technical Review Workgroup for Lead (TRW). 
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Pb toxicity may largely be explained by its interference with different enzyme systems: 

Pb inactivates enzymes by binding to SH-groups of its proteins or by displacing other essential 

metal ions (WHO, 2001). For this reason, many organs or organ systems are potential targets for 

Pb where a wide range of biological effects have been documented (WHO, 2001). There are two 

principal mechanisms of Pb toxicity: First, Pb complexes with important functional chemical 

groups including –COOH, –NH2 and –SH and so disrupts the function of enzymes and other 

biologically important molecules (WHO, 2001, Bradberry et al., 2007).  Secondly, Pb substitutes 

for divalent ions, particularly calcium, with the potential for widespread chemical interactions 

both at cell membranes and within intracellular organelles (Goodwin, et al., 2001). The chemical 

similarity between Pb and calcium partly explains why these elements appear to be 

interchangeable in bone, and why more than 90 percent of the total Pb-body burden is stored in 

the skeleton. Among the most important enzymes disrupted by Pb are several that are involved in 

heme synthesis as shown in Figure 2-6 below. 

 

Figure 2-6: Heme biosynthetic pathway showing enzymes inhibited by lead. Source: Sally Bradberry, Allister Vale. Poisonous 

Substances-Lead. MEDICINE, 2007; 35:12: 627-628 
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Because heme is important for the function of erythropoiesis, inhibition of heme 

synthesis has a wide impact. δ-Aminolevulineate dehydratase (ALAD), the enzyme which 

catalyzes the formation of the heme precursor porphobilinogen, is highly sensitive to inhibition 

by Pb, leading to increased δ-aminolevulinic acid in the blood and urine (Warren et al., 1998).  

As described by Bradberry and Vale (Bradberry, et al., 2007), δ-aminolevulinic acid resembles γ-

aminobutyric acid (GABA) and can stimulate GABA receptors in the nervous system; this is 

thought to be one of many mechanisms of Pb-induced neurotoxicity.  In addition, increased 

concentrations of red cell zinc protoporphyrin (ZPP) occur due to inhibition of ferro-chelatase 

which normally incorporates iron into the heme precursor, protoporphyrin IX. When this process 

is blocked protoporphyrin chelates zinc in place of iron and ZPP accumulates (Bradberry, et al., 

2007).  Red cells containing ZPP are intensely fluorescent, and this has been used to diagnose Pb 

toxicity. Pb also inhibits erythrocyte pyrimidine-5′-nucleotidase resulting in the accumulation of 

pyrimidine nucleotides as “basophilic stippling” of immature erythrocytes, thereby contributing 

to increased red cell membrane instability and hence a shortened red cell lifespan.  Pb poisoning 

thus results in anemia secondary to impaired heme synthesis and cell death-hemolysis (Bradberry 

et al., 2007).  The US EPA concludes that scientific evidence presented to date clearly 

demonstrates deleterious Pb effects on erythrocyte cell morphology and function, as well as Pb 

uptake and alterations in certain enzymes involved in heme synthetic pathways (US EPA 

(2006b).   
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2.4 Measurement of Lead in the Body  

 BPb levels reflect an individual’s current body burden, which is a function of recent 

and/or past exposure.  Therefore, selection and measurement of appropriate biomarkers of Pb 

exposure is of critical importance. Whole BPb is the most widely and easily attained method of 

measurement of Pb in the body.  This marker represents a recent Pb exposure because its half-

life in the blood is approximately 30 days.   However, this may also reflect the cumulative Pb 

exposure since the Pb in different compartments (bone, soft tissue, and blood) tends to be at 

equilibrium.  As such, BPb has been the primary method used in order to determine the exposure 

to Pb and its risk assessment for any particular study population (i.e., environmental or the 

occupational setting).  BPb concentration has remained the most widely used Pb exposure index 

in epidemiologic studies from 1990 to the present (US EPA, 2012).  Obtaining a BPb sample is 

relatively noninvasive and quick. The laboratory techniques are well standardized and relatively 

inexpensive with wide access to quality controls, and existing regulation and medical decision-

making are based on BPb levels (US EPA, 2012).  It is generally accepted that if exogenous Pb 

exposure were the only determinant for BPb concentration, then a single BPb measurement 

would reflect very recent exposure (i.e., 30-90 day period prior to the analytical measurement).  

However, analytical measurements of BPb concentration represent a combination of recent 

exposure to external sources as well as the influence of internal sources, mainly Pb that has been 

stored in the bones. Analytically, BPb can be measured using one of the following methods: 

graphite furnace atomic absorption spectrometry (GFAAS), anodic stripping voltammeter 

(ASV), flame atomic absorption spectrometry (AAS), inductively coupled plasma atomic 

emission spectroscopy (ICP-AES), and inductively coupled plasma mass spectrometry (ICP-
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MS). The first two methods are generally considered to be the methods of choice for most 

laboratories (Flegal and Smith, 1995; EPA, 2006). 

 Exposure to Pb can also be measured indirectly through its effects on the hemopoietic 

system, mainly by interfering with a number of steps in heme synthesis (Piomelli et al., 1973).   

The excess accumulation of ZPP as a result of the inhibition of the enzyme ferrochelatase is most 

readily measured (Piomelli et al., 1973).  The ZPP test, once widely used for primary screening, 

provides early indication of Pb poisoning and increase exponentially with Pb levels and is 

practical for quick screening of BPb levels (Piomelli et al., 1973).  Ferrochelatase catalyzes the 

last step of heme synthesis, a process that occurs in the mitochondria of red blood cells; since 

circulating (mature) red blood cells do not contain mitochondria, ZPP reflects Pb exposure to 

immature red blood cells still in the bone marrow.  Because the average life span of red blood 

cells is approximately 120 days, ZPP concentrations reflect average exposure to Pb over the last 

four months (Piomelli et al., 1973).   Exposure to Pb also can be evaluated by measuring ZPP in 

blood samples where its been known to increase when the amount of lead in the blood is high, 

with a delay of a few weeks (Patrick et al., 2006; Kosnet et al., 2006). Thus, ZPP levels in 

conjunction with BPb levels can suggest the exposure period.  In a case where the BPb levels are 

high but ZPP is still normal, this suggests a recent exposure (Kosnet et al., 2005 /2006) 

 The limitations for using ZPP as a biomarker include the facts that ZPP rises 

physiologically in the presence of iron deficiency and EP does not rise significantly in children 

until the BPb reaches 15-20 µg/dL (Piomelli et al., 1982). As a result of such a high threshold for 

detection, and the fact that EP levels also increase in iron deficiency, use of this method for 

detecting lead exposure has decreased (Grant et al., 2009). 
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 Bone, where Pb is stored by replacing calcium of the hydroxy-apatite crystals of the bone 

mineral, is the main repository for chronic Pb stores in the body (Hu et al. 1998).   Pb is released 

into the blood stream and circulates throughout the body through a continual process of bone 

remodeling, synthesis, and reabsorption. A noninvasive in vivo X-ray fluorescence (XRF) 

method can be used in order to determine the Pb levels stored in the bones.  However, as a result 

of a number of issues (such as operational cost, radiation exposure, and low specificity and 

sensitivity) this technique has remained a research tool rather that a screening method. Over the 

last decades, XRF bone-Pb measurements have become increasingly utilized in research.   K-

shell X-ray fluorescence (K-XRF), a proxy for current whole-body Pb content, is used in 

measuring current or chronic Pb concentration in bone (Hu et al. 1991; Todd and Chettle 1994).  

Pb also accumulates in teeth.  Tooth (dentine) Pb measures have also been used to assess the Pb-

body burden.   One of the drawbacks of dentine measure is the fact that as deciduous teeth start 

shedding it is only possible to evaluate children over 6 years of age.  The influence of age and/or 

sex have to be considered when assessing tooth Pb concentrations (Brown et al., 2002). 

Furthermore, variation of Pb concentrations from tooth to tooth, where it was observed that the 

concentrations of Pb in pairs of central and lateral incisors from children revealed a large 

difference for many individuals (Delves et al., 1982)    

 Many years ago, Pb measurement via a proxy biomarker in urine was favored for long-

term biomonitoring of occupational Pb exposures.  δ-aminolevulineate (ALA) is a substrate of an 

enzyme aminolevulinic acid dehydratase (ALAD) involved in heme synthesis is excreted and can 

be measured in urine.  However, because of a number of limitations, this method is no longer 

widely used to assess the Pb body burden.  For example the test requires a careful 24 hour urine 

collection (Wedeen et al., 1979; Osterloh et al., 1989).  



 

 

21 

 

2.5 Adverse Health Effects of Lead 

  Pb is a toxic metal that can affect virtually every system in the body.  In general, children 

are more vulnerable to Pb exposure than adults.  One of the reasons for this is the frequency of 

children’s hand-to-mouth activity, as well as a higher rate of intestinal absorption and retention 

of Pb. At very high blood levels (> 80 µg/dL of blood) Pb can cause convulsions, coma, and 

even death (EPA, 2012). Adverse health effects on the central nervous system, kidney, and blood 

cells are also possible at what once were considered as low levels. BPb levels as low as 5 ug/dL 

can impair mental and physical development. This represents the levels of the 97.5
th

 percentile of 

NHANES distribution of BPb in children.  Health effects of Pb include effects on heme 

biosynthesis, the nervous system, the kidneys, cardiovascular, hepatic, endocrinal and 

gastrointestinal systems (EPA, 2012; ATSDR, 2007; WHO, 2001).  The most deleterious effects 

of Pb are on erythropoiesis, kidney function, and the central nervous system (ATSDR, 1993; 

Bellinger et al., 1995).  In the last few decades, the effects of environmental Pb exposure have 

been examined in relation to human health.  These evaluations involved populations with 

extremely high exposure levels (occupational studies), as well as those with relatively low level 

exposures (population studies discussed in the next chapter).   

Numerous studies confirm that even slightly elevated BPb levels can be associated with 

learning and behavioral disorders-including delinquent conduct (Needleman et al., 1979; Dudeck 

et al., 1997).  In 1979, Needleman et al. studied the effect of low-level Pb exposure on the 

psychological development and classroom performance of children and found that verbal and 

auditory processing, attention, and classroom behavior are most sensitive to Pb effects, even after 

controlling for confounding factors (Needleman et al., 1979).  They found that the first and 

second grade children who had no symptoms of Pb poisoning, but who had elevated dentine Pb 
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levels, had lower scores in intelligence testing, speech and language processing, attention span, 

and overall classroom performance (Needleman et al., 1979).   Though this cross-sectional study 

had a number of limitations, many consider this study to be the one that opened the “flood gates” 

on this topic. Initially, an EPA panel reported a number of study limitations which included 

questionable design methods where school children were asked to submit their own shed teeth 

(Palca, 1991).  Questions about whether they submitted their own teeth were also raised.   In 

addition, the study did not control for the confounding factor of the children’s ages. When 

factoring in the age of children, other researchers noticed significantly different results. Also, the 

children who were “Pb poisoned” but without impaired intelligence, were excluded from 

analysis, and other results that did not support Needleman’s conclusion were omitted (Palca 

1991; Lewis, 1995).  The EPA panel had initially decided that the study did “neither support nor 

refute the hypothesis that the low to moderate levels were associated with cognitive or behavioral 

impairment in children” (Palca, 1991).  However, the same panel later reversed their conclusion 

and all of the charges of “scientific misconduct” were later refuted (Thomas, 1995).  

Additionally, in a follow-up to this study-11 years later, Needleman et al., found that the 

associations reported earlier between Pb and children’s academic progress and cognitive 

functioning persisted into young adulthood.  The persistent toxicity of Pb was seen to result in 

significant and serious diminished academic success; higher dentine Pb levels in children were 

later associated with a higher odds ratio for failure to graduate, lower class rank, increased 

absenteeism, lower scores on vocabulary and grammatical-reasoning tests, significantly slower 

finger-tapping speed, longer reaction times, poor hand-eye coordination and lower reading scores 

(Needleman, 1990).     
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 The studies  of the 1970’s discussed above provided additional momentum for a number 

of long-term prospective studies that were designed to monitor Pb exposure and outcomes over 

time in the US and abroad.  More specifically, the Port Pirie, Australia (McMichael et al., 1988), 

Dunedin, New Zealand (Silva et al., 1988), Cleveland, Ohio (Ernhart et al., 1989), Boston, 

Massachusetts (Bellinger et al., 1991), Cincinnati, Ohio (Dietrich et al., 1991), and Kosovo, 

Yugoslavia (Graziano et al., 1994) studies sought to elucidate long-term effects of Pb on 

children.  Studies in Kosovo showed that prenatal and early childhood lead exposure was 

associated with poorer intellectual functioning at ages 2, 4, and 7 years (Factor-Litvak et al., 

1999).  In addition, a longitudinal study of this cohort reported a slight association between BPb 

and blood pressure (Factor-Litvak et al., 1996) and effects on the erythropoietin production 

(Factor-Litvak et al., 1998, Graziano et al., 2004).   

As a result of these and other studies conducted in the last several decades, the Center for 

Disease Control and Prevention (US CDC) has been issuing guidance that identified levels of 

concern for BPb of young children.  In the early 1970s, the acceptable value for Pb in blood was 

40 µg/dL.  It was lowered to 30 µg/dL in 1975; to 25 µg/dL in 1985; to 10 µg/dL in 1991 (CDC, 

1991) and to 5 µg/dL in 2012.  Data collected as part of the 2011 U.S. National Health and 

Examination Surveys (NHANES) showed the 97.5th percentile for BPb as 5.0 µg/dL for children 

1−5 years of age, and as 5.20 µg/dL for adults 20 years of age and older [U.S. Centers for 

Disease Control and Prevention (CDC) 2011].   

Although the BPb levels of U.S. populations have dropped markedly compared to 30 

years ago, new concerns have been raised regarding possible adverse health effects in children at 

BPb levels < 10 µg/dL;  perhaps there is no safe threshold, but rather a continuum of toxic 

effects (Canfield et al. 2003).  In light of these concerns, the CDC Advisory Committee on 
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Childhood Lead Poisoning Prevention formed a working group to review the evidence for 

adverse health effects at BPb levels < 10 µg/dL in children.  However, in a statement on the topic 

in 2005, the CDC noted that adverse effects of Pb on cognitive development, a key health 

endpoint of concern, extend to BPb concentrations of less than 10 µg/dL, and that there is no 

value that constitutes a threshold or no-effect level (CDC 2005b).  Recently, the BPb levels have 

been reduced to 5 µg/dL (CDC, 2012) to reflect the lower 95
th

 percentile of NHANES BPb 

levels in children from 1-5 years of age.  Figure 2-7 and 2-8 below show the trend in BPb 

concentrations in U.S. children (1-5 years of age), and children 1-5 years of age and adults, 

respectively with geometric means and 95% confidence intervals as reported from the NHANES 

II, III and IV. 

 

 

Figure 2-7: Blood lead concentrations in U.S. children, 1-5 years of age. Shown are geometric means and 95% confidence 

intervals as reported from the NHANES II (1976-1980) and NHANES III Phase 1 (1988-1991; Pirkle et al., 1994); NHANES III 

Phase 2 (1991-1994; Pirkle et al., 1998); and NHANES IV (1999-2000, 2001-2002; Centers for Disease Control and Prevention, 

2005). Source: US EPA, 2006b 
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Figure 2-8: Shown are geometric means and 95% CIs based on data from NHANES III Phase 1 (Brody et al., 1994; Pirkle et al., 

1994); NHANES III Phase 2 (Pirkle et al., 1998); and NHANES IV (CDC, 2011). Data for adults during the period 1988-1994 

are for ages 20-49 years, and ≥ 20 years for the period 1999-2008. Source: US EPA, 2012 

 

  With regard to occupational exposure to Pb, the US Occupational Safety & Health 

Administration (OSHA) lead standard [29 Code of Federal Regulations 1926.62 and 1910.1025] 

established general industry standards for Pb in the late 1970s to prevent Pb exposure to adults in 

the workplace. Under the OSHA general industry Pb standard, which remains in effect to the 

current time, a worker requires removal from Pb exposure if a single BPb level exceeds 50 

µg/dL, or if the average of the three most recent BPb measurements exceeds 50 µg/dL (provided 

the last is greater than 40 µg/dL). Nevertheless, studies conducted in recent decades, some of 

which are discussed in the next section, demonstrate that current Pb standards, be it in the 

occupational setting or environmental exposure, may offer inadequate protection against the 

adverse effects of Pb even at lower doses.  A recent report by the National Research Council 

(2012) concluded that the OSHA Pb standards are not sufficiently protective. 

 

 



 

 

26 

 

2.6 Effects of Lead on Cardiovascular Disease  

Exposure to Pb has been associated with an increased incidence of coronary heart 

disease, increased blood pressure, peripheral arterial disease, and stroke (Harlan et al., 1988; 

Pirckle et al., 1985; Navas-Ancien et al., 2007).   The association between BPb and blood 

pressure has been studied extensively, and there is a general consensus that supports an 

association between increasing BPb and blood pressure (Nawrot et al., 2002; Navas-Acien et al., 

2007).  A significant number of reviews and meta-analyses that included analyses of more than 

30 studies and more than 50,000 participants have examined this relationship (Hertz-Picciotto 

and Croft 1993; Nawrot et al. 2002; Schwartz 1995; Sharp et al. 1987; Staessen et al. 1994, 

1995; U.S. Environmental Protection Agency (U.S. EPA, 2006).  An increase in systolic blood 

pressure that is associated with a doubling of BPb levels (e.g., from 5 to 10 µg/dL) was estimated 

to range from 0.6 to1.25 mmHg (Staessen et al. 1994).  Another meta-analysis reported an 

average of 1.2 mmHg of sBP increase for every doubling of BPb concentration (Schwartz, et al., 

1995).  Even with significant reductions in environmental Pb exposure in the last 20-30 years, Pb 

exposure continues to pose a public health hazard.   

The biological plausibility of this relationship has been documented in a number of 

animal studies.  In rats, exposure to Pb for 4-5 months (leading to BPb concentration of 30-40 

µg/dL) was reported to induce hypertension (Vander et al. 1988; Nowak, et al. 1993). Other more 

recent animal studies continued to provide evidence that long-term Pb exposure results in 

sustained arterial hypertension after a latency period. Systolic BP increased in rats after exposure 

to 90-10,000 ppm Pb (as Pb-acetate in drinking water) for various time periods that resulted in 

blood Pb levels between 19.3-240 µg/dL (Mohammad et al., 2010; Zhang et al., 2009; Grizzo 

and Cordellini, 2008).  Although the effects of Pb appear to be mediated through multiple modes 
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of action, alteration of cellular ion status (including disruption of calcium homeostasis, altered 

ion transport mechanisms, and perturbed protein function through displacement of metal 

cofactors) seems to be the major unifying mode of action underlying all subsequent modes of 

action (EPA-2012).  The disruption of the biological functions that can interfere with tightly 

regulated processes such as cell signaling, intracellular ion homeostasis, ion transport, energy 

metabolism, and enzymatic function are the some of possible ways of Pb-induced cardiovascular 

toxicity.  

There are a number of ways Pb can affect the blood pressure including, hormonal and 

blood pressure regulatory system dysfunction, vasomodulation, cellular alterations, and oxidative 

stress.  One plausible way is through adverse effects on the kidney renin-angiotensin system 

(Vander et al. 1988).  Alteration of the adrenergic system by Pb exposure, which can increase 

peripheral vascular resistance and arterial pressure, may be one cause of Pb-induced 

hypertension.   Also, lead induced nephrotoxicity is believed to be a possible precursor to 

increased blood pressure in humans (Cowley et al. 1996, Corrick et al. 1999).  In addition, Pb 

may also act on many sites of the cardiovascular system that include the excitability and 

contractility of the heart, altering the smooth vascular tissue, or impact on the part of the central 

nervous system that regulates the blood pressure (Kopp et al. 1988).   However, it is possible that 

other interrelated factors may contribute to the raised blood pressure.  Hypertension is a disease 

with a multi-factorial etiology, and therefore it is likely that risk factors will differ among races 

and between genders.  Their relative roles may differ between individuals, because of the 

biological inter-action of nutritional and behavioral lifestyle, genetic makeup, and environmental 

exposure to various other agents.   
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In addition, Pb has been associated with other cardiovascular function abnormalities that 

can be tied to elevated blood pressure such as left ventricular hypertrophy and alterations in 

cardiac rhythm (Navas-Ancien et al., 2007).  Also, elevated Pb exposure induces oxidative stress 

and inflammatory/biochemical markers which may be used to detect impairment in the body 

function in Pb-exposed workers (Khan et al., 2008).  Indeed, Pb-induced oxidative stress via 

generation of reactive oxygen species (ROS) has been thought to be a primary contributory 

factor in the pathogenesis of its adverse health effects (Vaziri & Khan et al., 2007).  In turn, ROS 

cause damage at the cellular level, i.e., on cellular function and damage to DNA, proteins, and 

lipids (Ahamed et al., 2002).  A number of studies have demonstrated a role for oxidative stress 

in the pathogenesis of Pb-induced hypertension, mediated by the inactivation of nitric oxide 

(•NO) and down-regulation of soluble guanylate cyclase (sGC) (Dursun et al., 2005; Vaziri et al., 

1997).   The reduction of the vasodilator •NO can lead to increased vasoconstriction and in turn 

increased blood pressure.  In Pb-exposed rats, Pb accumulates in the vasculature even after the 

exposure has ended (Malvezzi et al., 2001).   It is believed that this is a contributing factor to the 

stiffness of the arteries and therefore believed to be responsible for increased systolic blood 

pressure and widening pulse pressure (Pearlstein et al., 2007).  However, the same stiffness of 

the large arteries may be responsible for decreased diastolic blood pressure and widening of the 

pulse pressure (Mitchell et al., 2004; Lakatta, et al., 2003).  The difference between the sBP and 

the dBP, known as pulse pressure, is an indicator of, as well as a risk factor for, cardiovascular 

disease (Safar et al., 2003). This implicates vascular accumulation of Pb in the pathogenesis of 

vascular stiffening and arterial aging.  Furthermore, these mechanisms are consistent with the 

findings of aortic Pb deposition in humans and increased vascular oxidative stress in the Pb-
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exposed animals’, perhaps providing mechanistic insight into the observed association of low-

level Pb exposure with cardiovascular mortality (Pearlstein et al., 2007). 

It has also been reported that Pb may be an important factor in stimulation and 

proliferation of vascular smooth muscle cells (Fujivara et al., 1995).  Recent studies indicate that 

the concentrations of the circulating endothelial soluble intercellular adhesion molecule (sICAM-

1) and soluble vascular cell adhesion molecule (sVCAM-1) appear to have predictive value for 

the identification of early atherosclerotic lesions and future cardiovascular disease (CVD) 

(Krauss et al., 2002; Blankenberg et al., 2001; Ridker et al., 2000; Hwang et al., 1997).  These 

adhesion molecules play a crucial role in the immune system response by promoting cell–cell 

and cell–stroma interactions and leukocyte migration (Carlos & Harlan, 1994).  The process of 

adhesion of the leukocytes to the endothelial cells and subsequent trans-endothelial migration is 

an important step in the atherosclerosis (Ross, 1993).   The trans-endothelial process allows for 

leukocytes to migrate to sites of inflammation, which in turn can play a role in the initiation of 

diseases such as cancers and arthritis (Polverini, 1997).  While studies have shown that age is the 

most powerful independent predictor of the increasing levels of sICAM-1 and sVCAM-1, the 

effects of Pb may also play a significant role in this process (Morisaki et al., 1997).  Both 

sICAM-1 and sVCAM-1 are considered proinflammatory factors and are expressed during 

vascular inflammation and endothelial dysfunction and can be detected in the circulation.  

Elevated sICAM-1 levels have been associated with CVD risk factors such as hypertension, 

smoking and frequent alcohol consumption (Blann et al., 1997; Rohde et al., 1999).  As a 

possible proinflammatory factor, sICAM-1 were found to be related to increasing systolic blood 

pressure (Chae et al., 2001).    Angiotensin II, which is a potent vasoconstrictor, stimulates the 
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sICAM-1 expression and as such, it may play a role in the increase in blood pressure (Mervaala 

et al., 1999).   

There are a number of epidemiological studies that have reported on the positive 

association of these adhesion molecules and risk of cardiovascular disease (Ridker et al., 2000; 

Hwang et al., 1997).  Studies have also shown a positive relationship between chronic arsenic 

exposure and sICAM-1 and sVCAM-1 (Chen et al., 2007).  However to our knowledge, there 

have not been any epidemiologic studies that have examined the associations between Pb 

exposure and its effect on the circulation levels of sICAM-1 and sVCAM-1.  This dissertation 

project therefore also includes measurements of circulating levels of sICAM-1 and sVCAM-1 in 

study participants. 

It is important to point out that the blood pressure measurements are inherently variable 

and can vary significantly in the same individual.  The measurements can be influenced by 

extrinsic factors such as the technique utilized for the measurement or by the instruments used.  

Since blood pressure measurements can vary significantly between readings, taking the average 

of the continuous readings may reduce the probability that error may be entered into the 

outcome.  Noticeably, the errors in measurement tend to be additive, and the total error will most 

likely be symmetrically distributed about some true and unbiased result, with larger studies 

providing a greater a chance of detecting the true effect (EPA, 2006).  In addition, because of a 

number of blood pressure determinants, confounding is a possibility that needs to be addressed.  

More specifically, a well designed study model must address potential confounders such as 

demographic (age, gender etc.), body mass index, smoking etc.) and environmental or genetic 

contributors can affect the outcome.  In summary, support for a Pb and blood pressure 
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relationship comes from clinical, epidemiological studies in workers exposed to Pb, as well as in 

general population groups exposed to environmental Pb.  

 

2.7 General Population Studies 

Association between BPb and blood pressure have been explored in a significant number 

of cross-sectional population studies during the last two-three decades (Table 2-2). Among them, 

the three large population-based studies, the British Regional Heart Study (BRHS), the National 

Health and Nutrition Examination Survey (NHANES II and III), and a smaller Welsh  Heart 

Programme comprise the main body of scientific research that observed associations between 

BPb levels and increased blood pressure.   In addition to employing well established standards 

and highly trained research staff, these studies also draw from relatively large sample sizes; 

therefore they can likely minimize errors and inherent disadvantages that can result from a lack 

of extremely precise exposure measurements/assessments.   The first two studies, BRHS and 

NHANES II and III studies showed weak correlations between BPb levels and increases in blood 

pressure or hypertension, but the Welsh study did not show a significant correlation (REIS-

1994).  
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Table 2-2: Selected Population Studies of Pb and Blood Pressure Associations 

 
Researcher/s  Study Cohort Measured 

Endpoint(s) 

Levels of Lead 

Exposure 

Reported Findings 

Pocock et al, 1984 Clinical survey of 

7,735 men (40-49 yrs 

old) BRHS 

 

Renal 

function, BP 

8.2 and 29.1 ug/dL Mean increase 1.45 mmHg sBP 

for doubling of BPb  

Pirkle et al, 1985 

Harlan et al,1988 

Landis & Flegal, 1988 

Cross-sectional 

survey, NHNES II 12 

to 74 years  

Blood 

pressure 

Mean BPb 13.1 ug/dL sBP and dBP stat. significant 

with BPb in men. Raising the 

BPb from 10-30 µg/dL, the sBP 

and dBP increased by 9.26 and 

4.34 mmHg  

Elwood et al, 1988 Cross-sectional 

study, Wales towns 

M- 49 to 65; W 18-

64 years of age 

Blood 

pressure 

Mean BPb= 

Men = 13.1 µg/dL 

Women = 9.6 µg/dL 

No effect; but if real effect, 0.7 

mmHg would increase for every 

mean of 10 µg/dL 

Schwartz et al, 1988, 

1991 

Cross-sectional 

survey of NHNES II 

for White males 40 to 

59 years 

 

Blood 

pressure 

(Diastolic 

only) 

Mean BPb 13.1 ug/dL Increase of 2.03 mm Hg 

diastolic BP (95% CI: 0.67, 

3.39) for males and a 1.14 mm 

Hg  (95% CI: 0.13, 2.08) for 

females for every doubling of 

BPb. 

Pocock et al, 1988 Compared the results 

of the British, 

NHANES II, and the 

Welsh study 

Blood 

pressure 

8.2-29.1 ug/dL ; Geo. 

mean 12.8 ug/dL; men 

= 12.4 µg/dL 

women = 9.6 g/dL 

Increase of about 1 mm Hg for 

every doubling of blood lead 

concentration. 

Hu et al, 1996 Case-control 

Normative Aging 

Study-30 year 

longitudinal study  

 

Blood 

pressure 

(bone lead) 

1-28 µg/dl 

(mean blood Pb 6.3) 

Increasing bone Pb from  low to 

highest quintile, associated with 

a 1.5 odds ratio for hypertension  

Scinicariello et al,  

2010 

 

NHANES II dataset 

from all adults 17 

years of age and up 

ALAD2 

Gene/Hypert

ension 

interaction 

Mean BPb 13.1 ug/dL Two-fold BPb conc. Increases  

sBP:1.91mmHg BM; 0.62mmHg 

WM; 0.65 mmHg WW 

0.92 mmHg Mex–Ame men 

Scinicariello et al,   

2011 

Cross-Sectional -BPb 

and BP  study of  

NHANES 1999–

2006 

sBP and 

dBP; pulse 

pressure 

hypertension 

status 

Mean blood Pb 1.75 

µg/dL 

BPb levels were significantly 

correlated with higher systolic 

BP among black men and 

women, but not white or 

Mexican–American participants 

Den Hond  et al,  2002 

  

 

 

NHANES III (1988-

1994) dataset from 

all adults 20 years of 

age and up. 

Blood 

pressure 

Mean BPb 2.76 ug/dL sBP=0.9 mm Hg males, 1.02 

mm Hg in females for every 

doubling on BPb  

Vupputuri et al., 2003 

 

 

 

NHANES III (1988-

1994) dataset from 

all adults >20 years 

 

Blood 

pressure 

< 0.8 to > 20.0 µg/dL 

(mean BPb 2.3 (M); 

4.2 µg/dL (W) 

sBP=0.25 mm Hg males, 0.47 

mm Hg in females for every 1 

µg/dL increase in BPb 

Nash et al, 2003 

 

NHANES III (1988-

1994) dataset from 

40 to 59 year olds 

Blood 

pressure 

0.5 to 31.1 µg/dL 

(mean 2.9 µg/dL) 

Only dBP=0.32 mm Hg for 

every 1 µg/dl increase in BPb 

US EPA, 2006, 2012 

 

Review of published 

data 

Blood 

pressure 

1 > 40  µg /dL 2006= ~ 1mm Hg and ~0.6 mm 

Hg  for every doubling of BPb. 

Bone Pb=Inc OR for 

Hypertension, and ~0.75 mm Hg 

for every 10 µg/g inc. in bone Pb 
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In their BRHS study, Pocock et al (1984) conducted a clinical survey of blood pressure, 

indicators of renal function, and BPb concentrations in 7,735 men (ranging from 40-49 years old) 

from 24 British towns.  They concluded that increased hypertension (systolic pressure greater 

than 160 mm Hg, diastolic pressure greater than 100 mmHg) was suggested at BPb 

concentrations > 37 µg/dL. After adjusting for relevant confounding variables, including town of 

residence and alcohol consumption, a weak but statistically significant positive association 

between BPb and both systolic and diastolic blood pressure was reported. These cross-sectional 

data indicate that an estimated mean increase of 1.45 mmHg in systolic blood pressure occurs for 

every doubling of BPb concentration (95% CI = 0.47, 2.43 mmHg) (Pocock et al., 1984).  In 

comparing the results of the BRHS, NHANES II, and the Welsh study, Pocock concluded that 

blood pressure increases roughly 1 mmHg for every doubling of BPb concentration.   

 

The NHANES II (1976–1980) study was conducted on 9,933 persons representative of 

the general non-institutionalized U.S. population at 6 months to 74 years of age; 2,372 were 6 

months to 5 years old, 1,720 were 7-17 years old, and 5,841 were 18-74 years old (Harlan et al., 

1985).  The study observed significant correlations between BPb and blood pressure for each 

race-gender group, and BPb levels were significantly higher in groups with high diastolic blood 

pressure (> 90 mmHg) (Harlan et al., 1985).  After adjusting for age, race, and body mass index, 

BPb levels were significantly related to systolic and diastolic pressures in males but not in 

females.  Pirkle et al., (1985) re-examined the relationship between blood pressure and BPb 

levels in the NHANES II for white males aged 40–59 years (Pirkle et al., 1985). After 

adjustment for age, body mass index, and nutritional factors, the relationship of systolic and 

diastolic blood pressures to BPb levels was statistically significant (p<0.01) with no evidence of 
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a threshold BPb level for this relationship. Raising the BPb from 10-30 µg/dL, the systolic and 

diastolic blood pressures increased by 9.26 and 4.34 mmHg respectively. The correlation was 

significant for BPb concentrations ranging from 7-34 µg/dL.  These findings along with those 

from other studies suggested a relationship of BPb and blood pressure at levels commonly 

observed in the general population. 

A study by Landis and Flegal (1988) tested the statistical significance of the association 

of diastolic blood pressure and BPb levels among the males ages 12-74 that were part of the 

NHANES II survey.  In addition, their study sought to address some of the possible restrictions 

in previously reported studies (Harlan et al., 1985; Pirkle et al., 1985).   Essentially, they used a 

complicated statistical procedure to evaluate the linear regression relationship between blood 

pressure and BPb levels, averaging across the sampling sites, age, and body mass subgroups. 

Thus, this method not only adjusted for the two primary covariates in characterizing the variation 

in blood pressure, but also adjusted for any measurable trends indirectly through stratification on 

the 64 sampling sites (Landis and Flegal, 1988).  After adjusting for geographical location, age, 

and body mass, which resulted in 478 stratifications, diastolic pressure remained positively 

associated with BPb levels in white males aged 12-74.    

A population-based study of two small groups of men and women in Wales evaluated the 

relationship between blood pressure and BPb.  In contrast to the studies referenced above, the 

Welsh study did not observe a relationship between BPb and blood pressure.  One of the study 

populations consisted of 1,137 men aged 49 to 65 years, the other of 865 men and 856 women 

aged 18 to 64 years.  Neither population had any known significant exposure to Pb, and the 

values at the 95
th

 percentile of BPb levels ranged from 6-26 and 5-18 µg/dL in the men and 

women respectively (Elwood et al., 1988).  While this study did not show a significant 
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correlation between BPb and blood pressure, regression coefficients suggested that if there were 

a real effect, then the mean difference in blood pressure per 10 µg/dL difference in BPb is likely 

to be 0.7 mm Hg in both systolic and diastolic pressures (Elwood et al., 1988).   

An association between BPb and systolic and diastolic blood pressure was also observed 

in  NHANES II data among white males between 40 and 59 years old (Schwartz et al., 1988).  

They reported a robust relationship between low-level Pb exposure and blood pressure, and the 

relationship was significant regardless of whether they only examined a particular age group 

(with minimal age confounding) or whether they examined all adult men (Schwartz et al., 1988).  

Furthermore, they conducted regression analyses of electrocardiograms and blood pressure to 

evaluate the association of Pb and both outcomes in male and female participants aged 20 years 

and older.  They concluded that BPb is a significant predictor of dBP and left ventricular 

hypertrophy, even after controlling for race, age, and body mass (Schwartz et al., 1991).       

A dataset form NHANES III (1988-1994) from all adults 20 years of age and up was 

examined to evaluate the association between BPb and systolic and diastolic blood pressure (Den 

Hond et al., 2002). Utilizing multiple regression analyses for each blood pressure measurement, 

they stratified four models for each blood pressure measurement according to gender and race. 

The mean BPb levels were 3.6 µg/Dl for white males (n = 4,685), 2.1 µg/dL for white females (n 

= 5,138), 4.2 µg/dL for black males (n = 1,761), and 2.3 µg/dL for black females (n = 2,197). 

BPb ranged from < 0.8 to > 20.0 µg/dL.  A significant association between BPb and systolic 

blood pressure was reported only in blacks.   For each doubling in BPb, there was an associated 

sBP increase of 0.90 mmHg (95% CI: 0.04, 1.8) and 1.20 mmHg (95% CI: 0.4, 2.0) increase in 

males and females respectively (Den Hond et al., 2003). Though the study suggested differences 

between blacks and whites in response to BPb, no statistical tests were performed of differences 
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between BPb coefficients based on race (US EPA, 2006).  In addition, the black-white effect 

differences associated with BPb may have been due to possible confounding in some or all of the 

models (US EPA, 2006). 

Another analysis of the NHANES III dataset examined the differences in the BPb effect 

in terms of race and gender (Vupputuri et al., 2003). This study included 5,360 white men (mean 

blood Pb 4.4 µg/dl); 2,104 black men (mean blood Pb 5.4 µg/dl); 5,188 white women (mean 

blood Pb 3.0 µg/dl), and 2,300 black women (mean blood Pb 3.4 µg/dL).   Results showed that 

only black men and women had significant linear BPb effects in adjusted sBP of 0.25 mmHg 

[95% CI: 0.06, 0.44] for black men and 0.47 mm Hg [95% CI: 0.14, 0.80] for black women with 

each 1 µg/dL increase in blood Pb).  The impact on dBP was reported at 0.19 mmHg [95% CI: 

0.02, 0.36] for black men and 0.32 mmHg [95% CI: 0.11, 0.54] for black women (Vupputuri et 

al., 2003).   

Finally, in their work on NHANES III, Nash et al (2003) reviewed data from a sample of 

40-59 year old women.  They examined the relationship between BPb and both blood pressure (n 

= 1,786) and hypertension (n = 2,165) over a blood-Pb range of 0.5 to 31.1 µg/dl (mean 2.9 

µg/dL) (Nash et al., 2003). Only sBP was significantly associated with BPb, where for each 1 

µg/dL increase in BPb, there was a 0.32 mmHg (95% CI: 0.01, 0.63) increase in blood pressure. 

The regression coefficients of studies using NHANES II data were generally higher than 

those reported by studies with current NHANES III.  Also, the BPb mean levels in NHANES II 

were reportedly higher than the BPb in subsequent NHANES III surveys.  The seemingly 

inconsistent results between the different studies are probably due to differences in covariates 

selected as risk factors and mean Pb concentrations (Scinicariello et al., 2011).  The NHANES 

studies have several important strengths.  Because the NHANES surveyed a large probability 
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sample of the general population, the findings can be generalized to U.S. adults. The large 

sample size made it possible to detect small but important associations between BPb and blood 

pressure. A limitation of these studies is that they are a cross-sectional study design, and 

therefore limit the inferences that can be made. Another limitation is that although BPb reflects 

both recent exogenous exposure and endogenous redistribution of Pb stored in bone, blood-Pb 

concentration may underestimate the internal dose of Pb.      

 

2.7.1 Bone Lead and Cardiovascular Disease 

Approximately 95 percent of the total body burden of Pb is present in the skeleton and 

measurement of bone Pb levels can provide a more valuable measure of internal dose (Hu et al., 

2007).  Bone-Pb has been shown to be a better biomarker of Pb dose than BPb in term of 

predicting hypertension in adults (Hu et al., 1996).  Table 2-3 shows a number of studies that 

compared associations of BPb and bone-Pb with blood pressure and hypertension.  

Table 2-3: Selected Population studies that compared associations of bone lead with blood 

pressure and hypertension 

 
Researcher/s Study Cohort Measured 

Endpoint(s) 

Levels of Lead 

Exposure 

Reported Findings 

Hu et al, 1996 590 participants of 

the Normative 

Aging Study 

HTN BPb 6.3 (4.1) ug/dL 

Tib-Pb 21.6 (12.1) ug/g 

 

Tibia OR = 1.019 (95% CI: 1.004, 

1.035) for HTN; BPb or patella-Pb not 

associated with hypertension. 

 

Korrik et al, 

1999 

Study of 284 

middle-aged women 

HTN BPb 13.3 (9.0) ug/dL 

Patella-Pb 17.3 (11.1) 

ug/g 

 

Patella lead odds ratio for 

HTN = 1.03 (95% CI: 

1.00, 1.05) 

Schwartz et 

al, 2000 

 

Cross-sectional 

analysis of 504 

current/former 

chem. 

manufacturing in 

the eastern US 

Blood 

pressure 

Mean BPb 4.6 ug/dL 

Mean Tibial lead 14.7 

µg/g  

1 ug/dl increase in BPb-a 0.50 mmHg 

increase in sBP and  0.31 mmHg 

increase in dBP; BPb associated with 

HTN among workers <58 y/old; Tib-Pb 

not associated w/ sBP, dBP HYP 

Cheng et al, 

2001 

590 participants of 

the Normative 

Aging Study 

Blood 

pressure and 

hypertension 

BPb 6.3 (4.1) µg /dL 

Tib-Pb 21.6 (12.1) µg/g 

1 SD (12.7 ug/g) increase in Tib-Pb 

associated with a 1.37 mmHg increase 

in sBP;  patella-Pb not associated with 

sBP; no associations reported for dBP. 
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Researcher/s Study Cohort Measured 

Endpoint(s) 

Levels of Lead 

Exposure 

Reported Findings 

Lee et al, 

2001 

Cross-sectional 

study of 798 Korean 

lead workers and 

135 controls. 

Influence of 

Vitamin D 

receptor 

(VDR) and 

ALAD  on 

BP and HYP 

Mean BPb 31.7-34.8  

µg/dL 

Mean Tibia lead 37.5-

38.1 µg/g 

Tibia OR=1.005 (95% CI*: 1.000, 

1.001) for hypertension; BPb and Tib-

Pb not associated with 

sBP or dBP 

Rothenberg et 

al, 2002 

Study of 667 

pregnant women 

Blood 

pressure  

BPb 2.3 (4.3) ug/dL 

Tib-Pb 8.0 (11.4) 

µg/g) 

During 3rd trimester: a 10 ug/g increase 

in calcaneus-Pb associated with an odds 

ratio of 1.86 (95% CI: 1.04, 3.32) for 

HTN and a 0.7 mmHg (95% CI: 0.04, 

1.36) dBP increase and 0.5 mmHg (95% 

CI: 0.01, 1.08) dBP increase; 

postpartum: BPb not associated with 

increased sBP/dBP. 

Glen et al, 

2003 

496 current and 

former employees 

of a chemical-

manufacturing in 

the eastern US 

 

Blood 

pressure 

BPb 4.6 (2.6) µg/dL 

Tib-Pb 14.7 (9.4) µg/g 

 

SBP increased at an average annual rate 

of 0.64 mmHg and 0.73 mmHg for each 

1 SD increase in BPb and Tibia-Pb, 

respectively 

Martin et al, 

2006 

Community-based 

cohort of 964 men/ 

women:50–70 years 

old in Baltimore, 

MD 

 

Blood 

pressure and 

Hypertensio

n 

Tib-Pb in blacks: 21.5 

(12.6) µg/gr 

Tib-Pb in whites: 16.7 

(11.9) µg/gr  

1 log/dl increase in BPb was associated 

with a 0.99 mmHg increase in sBP and 

a 0.51mmHg increase in dBP. 

Tibia lead was not associated with sBP 

or dBP. 

 

In a case-control study of participants in the Veterans Administration (now Department 

of Veterans Affairs) Normative Aging Study, a 30-year longitudinal study of men, Hu et al 

(1996) tested their hypothesis that long-term Pb accumulation of Pb in bone was associated with 

increased odds of developing hypertension, defined as a repeatedly elevated blood pressure 

exceeding 140 over 90 mmHg (Hu et al., 1996).  Their study included relatively low BPb levels, 

ranging from < 1 to 28 µg/dL, with a mean (SD) 6.3 µg/dL.  In comparison to non-hypertensives, 

mean levels of BPb and both tibia and patella bone Pb levels were significantly higher in 

hypertensive participants.  Their findings suggest that long-term Pb accumulation, as reflected by 

levels of Pb in bone, may be an independent risk factor for developing hypertension in men in 

the general population.  Furthermore, their study revealed that recent circulating dose, as 

estimated by BPb, was associated with systolic and diastolic blood pressure, while cumulative Pb 
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dose, as estimated by tibia Pb, was associated with clinically evaluated hypertension status. The 

contrasting associations seem to suggest a short latency, acute effect of BPb on blood pressure as 

well as a longer latency, chronic effect resulting in an increased risk of hypertension (Hu et al., 

1996).  

Others have also studied the associations between BPb, tibia Pb and cardiovascular 

outcomes. In several studies, BPb, but not tibia Pb, was associated with systolic and diastolic 

blood pressure, and this association was independent of tibia Pb; associations were larger with 

systolic, rather than diastolic blood pressure (Martin et al., 2006; Navrot et al., 2002; Hertz-

Picotto et al., 1993). In contrast, tibia Pb was associated with an increased odds ratio for 

hypertension, but BPb was not, and its inclusion in the models did not alter tibia Pb associations 

(Martin et al., 2006).  Similarly, in a cross-sectional analysis of 2001–2002 data from a 

community-based cohort of 964 men and women aged 50–70 years in Baltimore, Maryland, 

Martin et al, (2006) evaluated associations of BPb and tibia lead with systolic and diastolic blood 

pressure and hypertension while adjusting for a large set of potential confounding variables. 

They found that BPb was a strong and consistent predictor of both systolic and diastolic blood 

pressure in models adjusted and not adjusted for race/ethnicity and socioeconomic status (Martin 

et al., 2006).  The magnitude of the associations was similar to that reported in other comparable 

studies.   

Among published studies that looked at associations between bone PB and blood 

pressure, trabecular bone Pb has been most consistently associated with blood pressure outcomes 

(Korrik et al., 1999; Cheng et al., 2001; Rothenberg et al., 2002). In addition, trabecular bone Pb 

was associated with hypertension in a study of older men (Cheng et al., 2001) and women in the 

Nurses’ Health Study (Korrik et al., 1999).  This association has been also seen in younger 
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pregnant women (Rothenberg et al., 2002) in whom the association of calcaneus Pb was present 

only in the third trimester.  However, BPb, tibia, and calcaneus Pb were not associated with 

hypertension after the end of pregnancy (Rothenberg et al., 2002).  In the US EPA’s review of 32 

studies, over a range of bone Pb concentrations (<1.0 to 96 µg/g), every 10 µg/g increase in bone 

Pb was associated with an increased odds ratios (OR) for hypertension, with OR ranging 

from1.28 and 1.86. Overall, the studies observed an average increase in systolic BP of ~0.75 

mmHg for every 10 µg/g increase in bone Pb concentration over a range of <1 to 52 µg/g (US 

EPA, 2012). 

 

Genetic differences in the enzyme ALAD appear to influence Pb toxicity, however, there 

are a limited number of studies that evaluated this association.  Interactions between blood Pb 

and ALAD, which varied by race/ethnicity (non-Hispanic white, non-Hispanic black, and 

Mexican American) were reported in one study (Scinicariello et al., 2010).  In that study, BPb 

was associated with systolic blood pressure in non-Hispanic whites and with hypertension and 

systolic and diastolic blood pressure in non-Hispanic blacks. Non-Hispanic white ALAD2 

carriers in the highest BPb quartile (3.8–52.9 µg/dL) had a significantly higher adjusted 

prevalence odds ratio for hypertension compared with ALAD1 homozygous individuals. The 

study concluded that BPb may be an important risk factor for hypertension and increased systolic 

and diastolic BP and that these associations may be modified by ALAD genotype (Scinicariello 

et al., 2010).  A few other studies that evaluated the genetic differences in the enzyme ALAD and 

potential influence on Pb toxicity are related to occupational studies, and are discussed in chapter 

1.7.3 on page 41.  
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2.7.2 Blood Lead and Blood Pressure in Children 

There are only a limited number of published studies examined associations between Pb 

exposure and blood pressure in children.  In one of the early studies, (Selbst et al., 1993) no 

association was observed between increased BPb levels and BP in a cohort of 149 children in 

Philadelphia (ages 1-10 years old).  Another study of 121 children (mean age of 9.5 years old) 

enrolled in the Oswego Children’s Study in NY (Gump et., 2005) found that an increasing cord 

BPb level was associated with significantly higher baseline sBP and marginally higher baseline 

dBP at birth.  However, the same study did not find an association between blood pressure and 

postnatal BPb levels (measures at 2.5 years of age).  In a large clinical study of 780 children at 

12-33 months of age in several Northeastern US states, (BPb concentrations ranging from 20-44 

ug/dL) researchers found no association between BPb and blood pressure (Chen et al., 2006).    

More recently, Zhang et al., (2012) examined children in Mexico City born from 1994 to 2003. 

The geometric mean cord and concurrent blood Pb levels of the children in the Mexico City 

cohort were 4.67 and 2.56 µg/dL.  They found that maternal bone-Pb (tibia-Pb) was associated 

with increase in sBP and dBP only in girls.  No associations were found between cord and 

postnatal (early childhood) BPb levels and blood pressure.   

A study conducted by Factor-Litvak et al., (1996), examined associations between BPb 

concentration (BPb) and blood pressure in 282 children age 5.5 years, residing in exposed and 

unexposed towns in Kosovo.  Mean BPb in the exposed town was 37.3 µg/dl (SD=12.0 µg/dL) 

and in the unexposed town was 8.7 µg/dl (SD=2.8 µg/dL). After adjustment, a 10 µg/dl increase 

in concurrent BPb was associated with a 0.5 (95% CL=-0.2, 1.3) mmHg increase in systolic and 

a 0.4 (95%, CL=-0.1, 0.9) mmHg increase in diastolic blood pressure.  These associations are 
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most consistent with a very small association between BPb and blood pressure in children 

(Factor-Litvak et al., 1996).   

Summarizing research on this topic, we can conclude that there is a small but consistent 

relationship between BPb and systolic/diastolic blood pressure across a wide group of 

populations.  The data presented in these studies were comprised of populations that ranged 

significantly in age and exposure assessments, possibly confounding the early signs of the blood 

pressure at much younger age.  We intend to deal with these specific inconsistencies by 

exploring the relationship between BPb and young men/women (25-26 years of age), with 

extremely well documented BPb histories during the first 12 years of their lives.  

 

2.7.3 Occupational Studies of Blood Lead and Blood Pressure 

Studies of occupationally Pb-exposed workers have also analyzed the relationship 

between BPb and BP parameters as it relates to their exposure measurements (Table 2-4).  

Occupational studies, which tend to rely on retrospective information and exposure assessment, 

can introduce a significant degree of bias.  The bias in these studies can be introduced by 

misclassification of various components of the data collection and interpretation.   However, 

whether it is the smaller size of the studies, poor statistical power, lack of adjusting for important 

covariates, “healthy worker effect” or some other factors, these studies can potentially hide the 

real effects.   
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Table 2-4: Selected Occupational Studies of Pb and Blood Pressure Associations 

Researcher/s  Study Cohort Measured 

Endpoint(s) 

Levels of Lead 

Exposure 

Reported Findings 

Kirby and 

Gyntelberg, et 

al, 1985 

Case-control study of 

exposes and non-exposed 

lead smelter workers  

Blood 

pressure 

51 µg/dL  

exposed; 11 

µg/dL for 

controls 

Higher dBP values in both the 

supine and sitting positions, 4 (p 

< 0.04) and 5 (p < 0.05) mmHg, 

respectively in Pb workers. 

 

deKort et al, 

1986 

Survey of 53 exposed and 

52 non exposed – in 

Netherlands 

Blood 

pressure 

47.4 µg/dL  

compared with 

8.1 µg/dL for 

controls 

1.8 mmHg for sBP and 1.0 mmHg 

for dBP increase per 10 µg /dl 

increase in BPb level when a 

linear relation is assumed. 

 

Weiss et al, 

1988 

Longitudinal study of 89 

Boston policemen 

 

Blood 

pressure 

> 30 µg/dL   Association between high BPb 

and high sBP with value of 5.8 

(C. I. 90%, 1.5-11.5 mm Hg) was 

reported. 

Maheswaran et 

al, 1993 

Cross-sectional study in 

1981 on 809 male workers 

in lead and batteries factory, 

Birmingham, UK 

Blood 

pressure 

Mean BPb 31.6 

µg/dL   

sBP (F= 3.3, p < 0.05) with 

increasing blood lead levels, from 

129 mmHg (95 percent CI 123.5-

130.5) in to 132 mmHg in the 

higher BPb categories 

Wu, et al, 

1996 

Cross-sectional  study of 

112 male and 110 female 

workers at two lead battery 

factories e  

1992 study In Taiwan 

Blood 

pressure 

Average blood 

lead level was 

56.9 ± 25.5 

µg/dL   

Short-term lead exposure or BPb 

level, was not related to blood 

pressure change among workers 

who had been exposed at work to 

occupational lead 

Schwartz et al, 

2001 

Cross-sectional analysis of 

504 current and former 

employees of a chemical-

manufacturing facility in the 

eastern US 

Blood 

pressure 

Mean BPb 4.6  

Mean Tibial 

lead 14.7 µg/dL   

1 ug/dl increase in BPb-a 0.50 

mmHg increase in sBP and  0.31 

mmHg increase in dBP; BPb 

associated with HTN among 

workers <58 y/old; Tib-Pb not 

associated w/ sBP, dBP HYP 

Lee et al, 2001 

 

 

Cross-sectional study of 798 

Korean lead workers 

Vitamin D 

receptor 

VDR/ALAD 

&  BP/ HYP  

Mean BPb 31.7-

34.8  µg/dL   

Mean Tibia lead 

37.5-38.1 µg/dL   

Tibia OR=1.005 (95% CI*: 1.000, 

1.001) for hypertension; BPb and 

Tib-Pb not associated with sBP or 

dBP. 

Glenn et al, 

2003 

 

 

Cross-sectional analysis of 

496 current and former 

employees of a chemical-

manufacturing facility in the 

eastern US 

Blood 

pressure 

Mean BPb 4.6  

Tibial lead 14.7 

µg/dL   

sBP increased by  0.64 , 0.73 and 

0.61 mmHg for any SD increase 

BPb baseline, Tib Pb at year 

three, or peak past Tib Pb lead, 

respectively 

Weaver et al, 

2008 

 

 

Cross-sectional analysis of 

652 current and former Pb 

workers Korean in a 

longitudinal study of the 

adverse health effects of 

inorganic Pb exposure 

Blood 

pressure 

Mean BPb 30.9 

(µg/dL) 

Mean Patella Pb 

75.1 µg Pb/g 

bone mineral  

Positive association between BPb 

and sBP with β-coefficient, SEβ, 

and  P-value respectively ( 

0.1007,  0.0404,  0.01) 

Patella Pb does not appear to be a 

significant risk factor  

 

In their investigation of the coronary risk profile of 96 exposed Pb smelter workers (BPb 

median of 51 µg/dL vs. 11 ug/dL for controls), Kirby and Gyntelberg (1985) reported that 

diastolic pressure was significantly associated with BPb concentrations among Pb smelter 
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workers, giving support to the hypothesis of a positive association between Pb exposure and high 

blood pressure (Kirby and Gyntelberg, 1985).   In a study by deKort et al., (1986) they evaluated 

the association of Pb and blood pressure in a group of 53 occupationally exposed workers (from 

a plant processing Pb and Cd compounds) that was compared with a control group of 52 workers 

not occupationally exposed (from a plant where insulation materials were produced) (deKort et 

al., 1988).  For the results to be included in the analysis, the worker had to have been employed 

for more than 1 year and not be under treatment for hypertension.  They reported that among 

workers processing Pb and cadmium compounds, BP was significantly associated with BPb 

levels (average BPb = 47.4 µg/dL for cases vs. 8.1 µg/dL for controls) and urinary cadmium 

levels (deKort et al., 1986).    Weiss et al (1988) examined the relationship of BPb to systolic and 

diastolic blood pressure in a longitudinal study of 89 Boston policemen (Weiss et al., 1988).  

Their multivariate analysis model revealed that after adjusting for previous systolic blood 

pressure, body mass index, age, and cigarette smoking, an elevated BPb level was a significant 

predictor of subsequent systolic blood pressure.  Although, there are some inherent problems 

with the study design (BPb measured at baseline only, observations on small number of subjects, 

and pooling of data) their findings provided supporting evidence for the observed association, 

suggesting that BPb level can influence systolic blood pressure even within the “normal” range 

(Weiss et al., 1988).   

 In a cross-sectional study, Maheswaran et al (1993) examined an association between 

BPb and blood pressure on 809 men occupationally exposed to Pb.  Pb exposure was assessed by 

BPb levels, ZPP levels, and years of industrial exposure to Pb. The geometric mean BPb level 

was 31.6 µg/dL with a range of 0 µg/dL and 98 µg/dL.  They reported that unadjusted sBP 

increased significantly with increasing BPb levels, from 127 mmHg (95 percent CI 123.5-130.5) 
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in men with BPb levels < 21 µg/dL to 133 mmHg (95 percent CI 128.7-137.3) in men with BPb 

levels > 50 µg/dL. However, they also noted that when sBP was adjusted for age, body mass 

index, and alcohol intake, the effect of Pb was diminished to 129 mmHg and 132 mmHg in the 

respective BPb categories, and it was no longer significant. There was no significant relation 

between dBP and BPb with mean unadjusted diastolic pressure at 83 mmHg in both the highest 

and lowest BPb categories (Maheswaran et al., 1993).   

Associations of bone and BPb with blood pressure and/or hypertension have not been 

consistent in prior studies. In a cross-sectional analysis by Schwartz et al., (2000), their objective 

was to determine the influence of BPb, and tibial Pb on sBP and dBP and on hypertension in 543 

former Pb manufacturing workers (with an average of 18 years since last occupational exposure) 

(Schwartz et al., 2000).  They observed that BPb was associated with systolic and diastolic blood 

pressure and hypertension status (the latter in only those subjects <58 years of age).  However, 

tibia Pb was not associated with any of these measures. They reported that systolic blood 

pressure was elevated by BPb levels as low as 5 µg/dL, leading them to speculate that Pb may 

have a transient influence on blood pressure that is related to target dose levels obtained once 

release of Pb from body stores has occurred (Schwartz et al., 2000).  Furthermore, in a 

longitudinal analysis in this same population, Glenn et al. (2003) observed that the BPb and tibia 

Pb were both associated with increases in sBP.  Like the Schwartz et al study (2000), they also 

did not observe an association between tibia and dBP.  In addition, they also did not find an 

association between BPb and dBP (Glenn et al., 2003).   

In a cross-sectional study of 798 Korean lead workers, Lee et al (2001) found that tibia 

lead was associated with hypertension status. They hypothesized that selected genes known to 

modify the toxicokinetics of lead such as vitamin D receptor (VDR) and ALAD  may influence 
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blood pressure and hypertension risk (Lee et al., 2001).  In linear regression models in Pb 

workers only, VDR genotype (BB and Bb vs. bb), BPb, tibia Pb, and BPb were all positive 

predictors of systolic blood pressure.  However, on average, Pb workers with VDR-BB or Bb 

genotype had diastolic blood pressures that were 1.9 mm Hg higher than did Pb workers with 

VDR bb (Lee et al., 2001).  A study of current and former workers exposed to Pb examined the 

association between BPb and blood pressure and reported no modification by ALAD genotype 

(Weaver et al., 2008).  Lastly, Weaver at al, (2008) conducted a cross-sectional data in 652 

current and former Pb workers in Korea.  The mean BPb was 30.9 µg/dL and mean patella Pb 

was 75.1 mg Pb/g bone mineral. Positive association between BPb and BP was reported.  Patella 

Pb, however did not appear to be a significant risk factor for elevated blood pressure among 

these study participants. 

 

Summarizing the published work on this topic, US EPA (2006, 2012) concluded that the 

reviewed studies support a relationship between increased Pb exposure and increased adverse 

cardiovascular outcome, including increased blood pressure, increased incidence of 

hypertension, and  cardiovascular morbidity and mortality (EPA, 2006). Their conclusion is that 

every doubling of BPb is associated with a ~1.0 mm Hg increased systolic and ~0.6 mm Hg 

increased diastolic blood pressure for blood Pb between 1 and >40 µg/dL.  In addition, EPA 

concludes that cumulative past Pb exposure, measured by bone Pb, may be more important than 

present exposure in assessing cardiovascular effects of Pb exposure. Over the range of bone Pb 

concentration of <1.0 µg/g to 96 µg/g, every 10 µg/g increase in bone Pb was associated with an 

increased odds ratio for hypertension between 1.28 and 1.86, depending upon the study. Two 

studies measured averaged increased systolic blood pressure of ~0.75 mm Hg for every 10 µg/g 

increase in bone Pb concentration over a range of <1 to 52 µg/g.   
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Lastly, EPA states that the females often show lower Pb coefficients than males, and 

blacks higher Pb coefficients than whites.  However, they emphasize that where these differences 

have been tested, they are usually are not statistically significant. The tendencies may well arise, 

EPA explains,  in the differential Pb exposures in these strata, lower in women than in men, 

higher in blacks than in whites (US EPA, 2006).  In a more recent review (2012), EPA stated that 

current epidemiologic studies supported this conclusion at lower concurrent blood Pb levels (in 

populations with mean BPb levels < 2 µg/dL) and added to the evidence base regarding 

populations potentially at increased risk (i.e., high stress, genetic variants) and regarding 

associations of bone-Pb levels with blood pressure and hypertension in populations with mean 

bone-Pb levels less than 20 µg/g (US EPA, 2012).  They further state that since studies were 

mostly cross-sectional in design and were conducted in adults whose concurrent BPb levels are 

influenced both by current Pb exposures and past Pb exposures mobilized from bone, uncertainty 

exists over the Pb exposure conditions that contributed to the associations observed between 

concurrent BPb level with increased blood pressure and hypertension (US EPA, 2012) 

 

2.8 Effects of Lead on the Renal System  

Pb toxicity has been implicated in kidney disease (nephropathy).  Acute and chronic 

nephropathy has been observed in humans.  Acute nephropathy can occur during the early stages 

of excess Pb exposure, especially in young children. The effects of acute nephropathy can be 

characterized by reversible functional and morphological changes in the kidney’s proximal 

tubular and epithelial cells. The formation of nuclear inclusion bodies (lead-protein complex), 

structural changes in mitochondria, and cytomegaly in the epithelial cells are some of the 

morphological changes of the kidneys’ response to acute Pb exposure.  The initial accumulation 
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of absorbed Pb occurs primarily in the kidneys.  This takes place mainly through glomerular 

filtration and subsequent reabsorption and, to a small extent, through direct tubular absorption 

from the blood (Nolan et al., 1992).  Pb may be taken up by the renal tubular epithelial cells from 

the basolateral side by active transport as the free ion (Nolan et al., 1992).  The uptake of Pb 

through the renal brush border does not appear to occur via any specific carriers. The process 

may involve binding of Pb to non-specific surface sites on the brush border membrane, followed 

by internalization by endocytosis (Victery et al., 1984; Nolan et al., 1992).  The functional 

changes in the kidneys consist of increased aminoaciduria, glucosuria, phosphaturia, and sodium 

excretion; decreased uric acid excretion and 1, 25-dihydroxyvitamin D synthesis; and an altered 

plasma angiotensin II/rennin-ratio (Berk et al., 1970).   

The main function of the renal system is characterized by the glomerular filtration or 

active removal of unwanted wastes and simultaneous retention molecules such as water, glucose, 

electrolytes, and amino acids that are essential for biological processes.  The measurement of 

glomerular filtration rate (GFR) is not considered a very good predictor of early stage kidney 

clinical dysfunction.  Currently, there are a number of available methodologies that can be used 

to clinically assess GFR.  Some of these methodologies include the measurement of creatinine 

clearance and/or serum cystatin C.  Cystatin C is a protein produced by nucleated cells and is 

retained in the body via a glomerular filtration and subsequent reabsorption in the kidney tubules 

(Fried, 2009).  In order to better predict early stages of kidney dysfunction, a number of new 

biomarkers have been utilized.  Although they have not yet been fully confirmed as early 

predictors of clinical renal disease, urinary β2-microglobulin, and N-acetyl- β -D-

glucosaminidase (NAG) have been used more recently (Fried et al., 2009).   
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The proximal convoluted tubules (PCT) of the kidneys are primary target of early phase 

Pb exposure (U.S. DOE-REIS, 1994).  Formation of inclusion bodies is the characteristic 

structural change at this site.  These bodies are composed of a Pb-protein complex that may also 

function as barricade for further Pb induced damage to the kidneys.  The mitochondria of the 

PCT’s epithelial cells are the site of Pb-induced structural changes.  These changes are a result of 

the impaired energy metabolism in the mitochondria.  As a result of these changes, the ability of 

these cells to transport amino acids, glucose, phosphates, sodium and uric acid, result in 

aminoaciduria, glucosuria, phosphatouria, and decreased uric acid excretion  are reported 

(suggestive of Franconi’s syndrome) (Goyer, 1985). 

Prolonged exposure to Pb may cause chronic nephropathy.  In contrast to the acute 

nephropathy, it is characterized by sparse or absence of nuclear inclusion bodies; atrophy or 

hyperplasia of tubular epithelial cells; and progressive interstitial, glomerular, arterial, and 

arteriolar sclerosis (DOE-REIS-1994).  Functional characteristics of chronic nephropathy include 

reduced glomerular filtration rate (GFR), azotemia, proportionally greater tubular dysfunction 

than indicated by the decrease in glomerular filtration rate during the early stage of chronic 

nephropathy, and the absence of detectable tubular dysfunction accompanying the decrease in 

GFR at the later stages (U.S. DOE-REIS-1994).   Chronic nephropathy does not become 

clinically apparent until about 50% to 75% of the tubules are damaged (Goyer et al., 1985; 

Landrigan et al., 1989).  Recent animal studies provide further evidence of plausible biological 

mechanisms of kidney damage, including oxidative stress, mitochondrial dysfunction, 

inflammation, and apoptosis (U.S.EPA, 2012).  Effects of Pb on renal endocrine function (EPO 

synthesis) may be more related to the “anemia” induced by lead poisoning than its overall renal 

effect.  However, since the Pb-induced effects on renal endocrine function may be a result of 
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long term effects on the kidney, the following section will briefly discuss some of the important 

literature that addresses the overall Pb effect on the kidneys.  The research on this topic includes 

studies of the effects of environmental Pb exposure on general populations, as well as the effect 

of Pb on the occupationally exposed workers.  

 

2.8.1 General Population Studies 

In a considerable number of US studies involving several National Health and Nutrition 

Estimates Surveys (NHANES) II and III, researchers have pointed to a link between the Pb 

concentrations and its impact on the kidneys (Munter et al,. 2003, 2005; Navas-Acien et al., 

2009; Kim et al., 1996; Tsaih et al., 2004; Akesson, et al., 2006; Yu et al., 2004).    Munter and 

his colleagues, examined the association between BPb and renal function in NHANES III (data 

from 1988-1994) (N = 15,211) among a representative sample of the civilian, non-

institutionalized U.S. population with and without hypertension, age 20 years old or older 

(Munter et al., 2003). They considered two indices of renal function: serum creatinine (SCr) and 

chronic kidney disease (defined as GFR < 60 ml/min per 1.73 m
3
). They reported that among 

persons with hypertension, the mean BPb was 4.2 µg/dL and the prevalence of elevated serum 

creatinine was 11.5 percent.  In those without hypertension, mean BPb was 3.30 µg/dL and the 

prevalence of elevated serum creatinine was 1.8 percent.  Among persons with hypertension, a 

graded association was present between higher quartiles of BPb and a higher odds ratio of both 

an elevated SCr, and chronic kidney disease (CKD).  In contrast, among persons without 

hypertension, no association was present.   

In their other study of NHANES III data (1999-2002), Munter and colleagues showed 

that those in the highest quartile for BPb (> 2.47 µg/dL) were 2.72 times more likely to have 
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CKD than those in the lowest quartile for BPb (<1.06 µg/dL).  Higher BPb levels were 

associated with a higher multivariable-adjusted odds ratios of hypertension among non-Hispanic 

blacks and Mexican Americans (Munter et al., 2005).  In a comparable study of nearly 15,000 

adults evaluated between 1999 and 2006, Navas-Acien et al., (2009), also reported reduced GFR 

in those with higher BPbs (> 2.4 µg/dL) as compared to those with lower BPbs (< 1.1 µg/dL) 

(adjusted OR = 1.56; 95% CI = 1.17, 2.08).  Similarly, a Swedish Women’s Health Study 

reported an association between very low BPb concentrations and reduced GFR (Akesson et al, 

2006). Notably, higher urine Pb was associated with lower estimated creatinine clearance in this 

study (Akesson et al., 2006).  Some of the greater benefits of the larger (NHANES II and III) 

studies are based mainly on a large sample size and comprehensive adjustments for possible 

confounding factors that can influence outcomes.   

 In addition to these surveys, findings from the Normative Aging Study (NAS) (Kim et 

al., 1996; Tsaih et al., 2004) have also found similar associations.  Recently, the EPA calculated 

that the magnitude of the impact on GFR of a change in BPb from 1.1 µg/dL (the SWHS 5
th

 

percentile) to 4.5 µg/dL (the 95 percentile) would be comparable to the loss of renal function 

associated with an increase in body mass index (BMI) of 7 kg/m
2
 or an increase in age of 4.7 

years (U.S. EPA 2006). EPA’s calculations put these study findings in perspective with regard to 

other factors that influence kidney function (remarkably low BPb concentrations with reduced 

GFR). Some have considered the effects of Pb on kidneys (especially at low BPb levels e.g., <10 

µg/dL) to be a result of reverse causality, which seemingly increases BPb levels as a result of 

renal insufficiency to excrete Pb.   However, the temporal relation between Pb dose and renal 

function decline is a critical factor in determining causality (U.S. EPA, 2006).  
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Two longitudinal analyses of data from the Normative Aging Study (NAS) population 

have been published where the association between low-lead exposure and renal function 

changes over time were investigated (Kim et al., 1996; Tsaih et al., 2004).  

In their longitudinal general population studies, Kim et al., (1996) followed 459 men who had 

periodic examinations conducted every 3–5 years during 1979–1994. Mean BPb and SCr levels 

for this cohort, at baseline, were 9.9 µg/dL and 1.2 µg/dL, respectively.  After adjustment for age, 

body mass index, smoking, alcohol consumption, educational level, and hypertension, they 

reported that BPb concentration was positively and significantly associated with concurrent 

concentration of SCr.  They noted that a log increase in BPb level predicted an increase of 7 

µmol/L (0.08 mg/dL) in serum creatinine concentration, which is roughly equivalent to the 

increase predicted by 20 years of aging.  Furthermore, they noted that the association was also 

significant among subjects whose BPb concentrations had never exceeded 0.48 µmol/L (10 

µg/dL) throughout the study period. The age-related increase in SCr level was earlier and faster 

in the group with the highest-quartile levels of long-term Pb exposure than in the group with the 

lowest-quartile levels (Kim et al., 1996).   In their prospective study, Tsaih and colleagues 

(2004), examined changes in renal function during 6 years of follow-up and a relation to baseline 

Pb levels, diabetes, and hypertension among 448 middle-age and elderly men (a subsample of the 

Normative Aging Study).  Their cohort included generally low Pb-exposure, with mean BPb, 

patella lead, and tibia lead values of 6.5 µg/dL, 32.4 µg/g, and 21.5 µg/g, respectively.  In 

addition, they observed significant associations of bone Pb (particularly tibia bone) with 

prospective follow-up measures and annual changes in SCr among subjects with diabetes.  

Increased tibia Pb levels from the midpoints of the lowest to the highest quartiles (9–34 µg/g) 

were associated with an increase in SCr (Tsaih et al., 2004).  However, the same study found a 
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significant positive association between blood and tibia Pb levels and changes in serum 

creatinine that were observed in susceptible populations including participants who were 

diagnosed with diabetes and hypertension. These two studies seem to also address a “reverse 

causality”, which impaired kidney function results in reduced elimination of Pb, thereby 

increasing the Pb body burden.   

  In a significantly smaller study by Yu et al., (2004) 121 patients who had chronic renal 

insufficiency, a “normal” body Pb burden, and no history of exposure to Pb were observed 

prospectively for 48 months (Yu et al., 2004).  The primary end point was an increase in the SCr 

level to double the baseline value. They found that among the 121 patients, 63 patients had a 

“high-normal” bone Pb.  Furthermore, the patients with “high normal” bone Pb also had higher 

BPb than the patients with “low-normal” bone Pb. The patients in the two groups differed on 

only on BPb and bone Pb and none of the other baseline characteristics. Their prospective study 

showed that even after adjustment of other co-factors, the age-related increase in SCr level was 

earlier and faster in the population with the highest quartile levels of long-term Pb exposure.  

They estimated the Pb-body burden by administering a dose of a Pb-chelating agent 

(CaNa2EDTA) followed by a measurement of the amount of Pb excreted via urine during the 

next 72 hours.  They observed that both CaNa2EDTA-chelatable Pb and BPb at baseline were 

associated with significant declines in GFR during the following four years (Yu et al., 2004).  

Furthermore, an improvement of GFR was reported in those who received CaNa2EDTA 

chelation therapy but not in those who received placebo.  The GFR was significantly lower in the 

chelated group as compared to the placebo group (Lin et al, 2003).  It is not certain if the 

improvement in the kidney GFR function was due to direct effects of CaNa2EDTA treatment due 

to the resulting of Pb removal (U.S.EPA, 2012).   
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 Most of the research on this topic involves older populations, with relatively little 

information on Pb exposure and renal function in young adults or children. In one study of  769 

healthy young adults between 12 and 20 years of age (NHANES III), Fadrowski and his 

colleagues sought to evaluate the association between BPb levels and GFR (Fradowski et al., 

2010). This evaluation was based on both the serum cystatin-C and SCr levels. It is important to 

note that serum cystatin-C appears to be less dependent than creatinine on age, gender, height 

and muscle mass, making a better marker of kidney function then SCr. In the fully adjusted 

model, they reported that a 2-fold increase in BPb levels was associated with lower cystatin C–

estimated GFR among males and females. In sensitivity analyses, they evaluated the effect of 

adjusting for other kidney disease risk factors. They found that less than 5% of the cohort was 

hypertensive. Inclusion of blood pressure status in the multivariate models did not affect the 

results (Fadrowski et al., 2010).  This suggests that studies that rely on creatinine-based estimates 

of kidney function might underestimate the association between GFR and BPb level. The use of 

a cross-sectional design for such studies can perhaps suggest the possibility of a reverse 

causation (i.e., kidney disease causes decreased excretion of lead) (Bellinger et al., 2011).  

However, this may not prove to be the case since, some prospective studies have shown that BPb 

levels are associated with subsequent declines in kidney function (e.g., Kim et al., 1996).  

Studies of Pb exposure and kidney function in even younger children, suggest that higher BPb 

levels are associated with increased GFR (as estimated by SCr or cystatin-C levels) (De Burbure 

et al., 2006).  Their most interesting and consistent finding was an overall inverse relationship 

between SCr beta-2-microglobulin, cystatin C, and BPb, suggesting that environmental Pb 

induces an early renal hyperfiltration (De Burbure et al., 2006).    
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The common outcome in most of these studies is that seemingly low BPbs are associated 

with renal dysfunction in children and chronic kidney disease in adults.  When compared to the 

occupational studies discussed in the next section, the Pb effects at extraordinarily low BPb 

levels in adults in the general population seem to defy credibility.  However, to some degree, 

concurrent BPb levels measured in adulthood are likely reflective of the exposure at earlier age 

as measured by the area under the curve of the lifetime relationship between BPb and time since 

early childhood.  In addition to possible current exposure, BPb measured in adulthood can also 

be derived from bones where Pb is stored for many years, making it plausible that those with the 

highest BPb levels in the NHANES studies may have had higher BPb levels earlier in life.  The 

general population studies benefit from a variety of strengths concerning the adverse renal 

effects of Pb.  The associations observed in the majority of these more recent studies provide 

strong and consistent evidence indicating that Pb is a contributor to renal dysfunction at much 

lower Pb exposure levels than previously thought (US EPA, 2006) 

 

2.8.2 Occupational Studies 

Studies involving occupational research on Pb induced health effects, in contrast to the 

above-described general population studies, have been less consistent.  The conventional wisdom 

has been that higher levels of exposure should inflict more injury.  However, this does not seem 

to be the case with many of the studies discussed on this topic. Whether it is the smaller size of 

the studies, poor statistical power, lack of adjusting for important covariates, “healthy worker 

effect” or some other factors, these studies seem to show a smaller Pb impact on the renal 

system.   Regardless, a  number of early occupational exposure studies reported elevated death 

rates from chronic kidney diseases and residual hypertensive diseases (mainly renal) among 
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cohorts of smelter and battery workers exposed to Pb in an occupational setting (Cooper et al., 

1985). One of the early studies was a 1975 retrospective analysis of mortality conducted by 

Selevan et al., for a cohort of 1,987 males employed between 1940 and 1965 at a primary Pb 

smelter in Idaho (Selevan et al., 1985).  They reported an excess in mortality from chronic renal 

disease (SMR = 192; confidence interval (CI) = 88-364).  Also, the risk of death from renal 

disease increased with increasing duration of employment (e.g., after 20 years employment) 

where the SMR reached 392 (CI = 107-1,004) (Selevan et al., 1985).  There were no BPb levels 

analyzed; however, the workers were exposed to airborne levels > 200 µg Pb/m
3
.  In addition, 

two groups of male Pb workers (4,519 battery plant workers and 2,300 Pb production workers), 

whom had been employed for at least one year during the period January 1, 1946 through 

December 31, 1970, were observed for mortality during the 34 years from January 1, 1947 

through December 31, 1980 (Cooper et al., 1985).  A greater than expected mortality rate from 

excess deaths from malignant neoplasm was found among the battery plant workers.  Also, other 

hypertensive disease (mainly renal) chronic nephritis, and a group of ill-defined conditions were 

also reported.  Among the Pb production workers the pattern was similar, with a significant 

number of excess deaths from other hypertensive disease, hypertensive heart disease, chronic 

nephritis, and ill-defined conditions.  The average BPb concentration measurements were 

available for only a number of workers (approximately 50%) and were 79.7 µg/dL in the smelter 

workers and 62.7 µg/dL in the battery workers, respectively.  However, for a significant portion 

of the cohort, BPb levels were only estimated since they were exposed prior to the initiation of 

monitoring programs (Cooper et al., 1985). 

    In the cohorts studied by both Cooper et al., and Selevan et al., (1985) the majority of 

reported deaths occurred among workers with 20 or more years of employment or those that had 
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been hired before 1946.  In one of two other studies in which renal function was evaluated 

longitudinally in Pb workers, Coratelli et al. (1988) reported a decline in urinary N-acetyl-b-D-

glucosaminidase (NAG) over a 1-month period of decreased occupational exposure in 20 Pb 

battery factory workers followed over a 1-year period. NAG increased when exposure resumed. 

However, no association was observed between NAG and BPb (mean BPb at study onset was 

47.9 mg/dL) and clinical renal function measures was observed (Coratelli et al. 1988, in Weaver 

et al., 2009).  In the other longitudinal study of Pb workers, Hsiao et al. (2001) analyzed 8 years 

of annual medical surveillance data in 30 Pb battery workers in Taiwan. Their study was 

longitudinal in design, and periodically monitored the BPb levels of 30 Pb battery workers, and 

they reported that a higher BPb level was associated with lower SCr (Hsiao et al., 2001). 

 In their 2003 research, Weaver et al. studied 803 current and former Pb workers and 135 

controls in Korea in order to compare associations of Pb biomarkers with renal function in 

current and former Pb workers.  They utilized a cross-sectional analysis of first year results from 

a longitudinal study of renal function by assessing blood urea nitrogen (BUN), SCr, and 

measured and calculated creatinine clearance. Urinary NAG and retinol-binding protein were 

also measured (Weaver et al., 2003).  Mean tibia lead, and BPb levels in Pb workers were 37.2 

µg/g (SD=40.2) and 32.0 µg/dl (SD=15.0) respectively.  Their study showed that higher Pb 

measures were associated with worse renal function in 16/42 models and when influential 

outliers were removed, higher Pb measures remained associated with worse renal function in 

nine models (Weaver et al., 2003).   

In addition, Weaver et al., (2006) assessed effect modification by polymorphisms in the 

genes encoding for ALAD, the vitamin D receptor (VDR), and endothelial nitric oxide synthesis 

on the reported associations of lead biomarkers and renal function (Weaver et al., 2006). Renal 
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function was assessed via blood urea nitrogen, serum creatinine, measured and calculated 

creatinine clearances, urinary N-acetyl-beta-D-glucosaminidase, and retinol-binding protein. 

Little evidence of effect modification by genotype on associations between patella Pb and renal 

outcomes was observed. The vitamin D receptor polymorphism did modify associations between 

the Pb biomarkers and SCr and calculated creatinine clearance.  In those with ALAD1 genotype 

and higher BPb, they also observed a higher creatinine clearance, (Weaver et al, 2006). 

 In a more recent longitudinal study of a large population of current and former workers at 

26 lead manufacturing facilities in South Korea, workers were evaluated three times, roughly one 

year apart, at which time BPb, tibia bone Pb, and markers of renal function were assessed 

(Weaver et al, 2009).  In this longitudinal analysis of data from  current and former Pb workers 

followed over a 2-year period, they utilized a generalized estimating equation (GEE) in a 

modeling approach in order  to separate the effects of recent dose (as estimated by blood lead) 

from the chronic effects of cumulative dose.  At baseline, mean age and duration of occupational 

Pb exposure were 42.0 µg/dL (SD=9.3) and 8.8 µg/dL (SD=6.3) years, respectively, in 537 

current and former lead workers. Mean blood and tibia Pb were 31.3 µg/dL (SD=14.4) and 35.0 

µg/g (SD=37.8) bone mineral, respectively.  They found that in males, SCr decreased and 

calculated creatinine clearance increased over the course of the study.  Mean BPb was not 

significantly different between evaluations 1 and 3 in either males or females.  Blood and tibia 

Pb were significantly associated with decline in renal function.  Furthermore, SCr decreases and 

calculated creatinine clearance increases were greatest in male participants whose BPb declined 

(Weaver et al., 2009).   
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2.9 Lead Induced Anemia 

i) Effects of Lead on Heme Synthesis and Erythrocyte Survival 

Lead has long been known to alter the hematological system. The anemia induced by Pb 

results primarily from both inhibition of heme synthesis and shortening of the erythrocyte 

lifespan. Pb interferes with heme synthesis by altering the activities of δ-aminolevulinic acid 

dehydratase (ALAD), ferrochelatase and other enzymes in the heme synthetic pathway.  As a 

result of these effects, Pb-exposed individuals can present an increased urinary porphyrin, 

coproporphyrin, and δ-aminolevulinic acid (ALA); increased blood and plasma ALA; and 

increased erythrocyte protoporphyrin (EP).   Studies of lead workers have shown that erythrocyte 

ALAD activity correlated inversely with BPb (Hernberg et al. 1970) their studies indicate that 

the activity of ALAD is inhibited at very low BPb, with no apparent threshold.  ALAD activity 

was inversely correlated with BPb over the entire range of 3– 34 µg/dL in urban subjects never 

exposed occupationally (Hernberg and Nikkanen 1970).  Pb also inhibits the enzyme pyrimidine-

5’-nucleotidase within the erythrocyte, which results in an accumulation of pyrimidine 

nucleotides (cytidine and uridine phosphates) in the erythrocyte or reticulocyte leading to so-

called basophilic stippling and subsequent destruction of these cells. This has been reported in 

lead workers, with the greatest inhibition and marked accumulations of pyrimidine nucleotides 

apparent in workers with overt intoxication, including anemia (Paglia et al. 1975, 1977); BPb 

levels in these workers ranged between 45 and 110 µg/dL.  Pyrimidine-5'-nucleotidase activity 

was inversely correlated with BPb even when corrected for an enhanced population of young 

cells due to hemolytic anemia in some of the workers (Buc and Kaplan 1978). Erythrocyte 

pyrimidine-5'-nucleotidase is also inhibited in children at very low BPb.  A significant negative 

linear correlation between pyrimidine-5'-nucleotidase and PbB level was seen in 21 children with 
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PbBs ranging from 7 to 80 µg/dL (Angle and McIntire 1978). Similar results were seen in 

another study with 42 children whose PbB ranged from <10 to 72 µg/dL (Angle et al. 1982).  

There are two kinds of globular proteins embedded on the erythrocyte membrane.  One is 

integral protein that penetrates into the lipid bilayer and is responsible for membrane ion 

selectivity and water transport (Singer et al, 1972).  Another type is a peripheral protein that 

exists on the inside surface of the erythrocyte membrane and maintains the fluidity of membrane 

construction (Lux et al., 1979; Steck et al., 1974).  Both proteins were reported to decrease in 

lead exposed workers (Fukomoto et al., 1983).  Their decrease may lower the ability of 

membrane transportation, resulting in difficulty in the preservation of Na+ and water and 

therefore a decrease in erythrocyte (Karai et al., 1981). 

The relationship of Pb exposure and anemia in terms of dose-response relationship and 

thresholds indexed by various exposure markers has been recorded relatively well. The older 

literature documents thresholds for onset of Pb derived anemia at lower levels in children (<40 

µg/dL) than in adults (>40-50 µg/dL).  A number of epidemiological studies evaluated the 

population response for a selected Hgb reduction at varying levels of BPb in Pb workers (Table 

2-5).  In the U.S. for example, a dose-response relationship between BPb levels and toxic effects 

have been evaluated in 160 Pb workers with BPb levles of 16-280 µg/dL (Baker et al., 1979). 

Clinical evidence of toxic exposure was found in 70 workers (44%). The study reported that 

anemia (Hgb level < 14.0 g/dL) was found in 5% of workers with BPb of 40-59 µg/dL, in14% 

with levels of 60-79 µg/dL, and in 36% with levels >80 µg/dL (Baker et al., 1979).  
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Table 2-5: Selected Studies in Lead-Induced Anemia  

 
Researcher/s  Study Cohort Measured 

Endpoint(s) 

Levels of Lead 

Exposure 

 

Reported Findings 

Waldron (1966), 

Chisolm (1971), 

U.S. CDC (1978), 

Moore (1988) 

 

Selected earlier 

studies of Lead  

workers and 

exposed children 

 

Chronic Lead 

poisoning: Hgb, 

children: <10 g/dL; 

workers: <13 g/dL 

 

>40-100 µg/dL Lead induced 

reduction in Hgb, 

from heme and 

globin reduction 

Pueschel et 

al.(1972) 

540 Lead poisoned 

children (N=540) 

 

 

 

Reduced Hgb 

levels 

Blood lead, 30-120 

µg/dL 

Negative correlation 

between 

Hgb and BP 

Grandjean (1979) 

 

Lead workers 

(N=202) 

 

 

BPb versus Hgb  

 

Wide BPb range: 

< 25 to > 60 µg/dL 

 

Hgb reduction: 

17% ,< 25 µg/dL;  

26% 26-60 µg/dL;  

45% .> 60 µg/Dl 

 

Hu et al. (1994) 

 

 

Carpentry male 

workers (N=119) 

 

 

BPb or  patella 

bone versus  Hgb 

 

 

Mean Pb= 8 µg/dL No reduction of Hgb 

versus BPb PbB, 

reduction of Hgb 

versus patella Pb 

 

 

More recent research studies have reported mixed results for the relationship of a dose-

response for Hgb reduction with increased BPb levels.  It can be said that a number of the newer 

investigations had the benefit of much better epidemiological methods employed in these studies.  

They all have a relatively larger sample size, more extensive statistical controls for various 

confounding factors, and a methodology for better determining the relative utility of various Pb 

exposure markers in documenting lead effects on the hemopoietic system.  In a group of 

carpenters whose mean BPb was 8 µg/dL, patella bone Pb levels were associated with decreased 

Hgb levels but BPb was not. This observation may reflect a subclinical effect of bone Pb stores 

on hematopoiesis and was the first epidemiological evidence that bone Pb may be an important 

biological marker of ongoing chronic toxicity (Hu et al., 1994). 
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ii) Effects of Lead on Serum Erythropoietin 

In the previous section, literature that was presented that supports the conventional belief 

that the anemia induced by Pb is primarily the result of both inhibition of heme biosynthesis and 

shortening of erythrocyte life span.  However, it has recently been realized that these adverse 

effects alone still may not completely account for the effects of Pb on hemoglobin (Hgb) levels.  

Pb can also induce an inappropriately low production of erythropoietin (EPO), evidence of renal 

endocrine dysfunction, leading to inadequate maturation of red cell progenitors, which can 

contribute to anemia (Patil et al., 2006).  Indeed a growing number of studies have suggested that 

the endocrine function of the kidneys may also be affected by Pb exposure.    Mainly, they 

suggest that Pb may inhibit the synthesis of erythropoietin (EPO), a glycoprotein hormone which 

regulates both steady-state and accelerated erythrocyte production (Caro et al., 1984; Anetor, et 

al., 2005).  More than 90 percent of EPO is produced in the proximal renal tubule (PRT) (Harlan 

et al., 1985).  Coincidentally, this is the area of the kidney where Pb tends to accumulate (Goyer 

et al., 1973).     

EPO production is a principal factor in maintaining normal erythropoiesis (Caro et al., 

1984; Erslev et al., 1986; Mushak et al., 2011). In a number of studies (Table 6), it has been 

shown that serum EPO levels were significantly affected by Pb primarily in adult women with 

elevated environmental Pb exposure (Graziano et al., 1991) and in children with elevated BPb 

levels (Liebelt et al., 1999; Graziano et al., 2004). In addition, the effects of Pb on EPO 

production were also shown in Pb workers (Osterode et al., 1999; Romeo et al., 1996), as well as 

in taxi drivers exposed to Pb in air (Sakata et al., 2007).   The results of some of the referenced 

studies are summarized in Table 2-6.  
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Table 2-6: Studies of Lead Effects on Serum Erythropoietin  
  

Researchers 

 

Study Cohort Measured 

Endpoint(s) 

Levels of Lead 

Exposure 

 

Reported Findings 

Romeo et al. 

(1996) 

 

Male lead workers 

(N=141) 

 

Level of serum 

EPO versus BPb 

Lower exposure BPb 

mean =30 µg/dl; 

higher exposure 

mean = 65 µg/dL 

EPO negatively 

associated with BPb 

 

Liebelt et al. 

(1999) 

 

Children -community 

exposures 

(N=86) aged 1-6 

years 

Level of serum 

EPO versus BPb 

BPb Median =18 

µg/dl; PbB range =2-

84 µg/dL 

 

Negative association of 

EPO versus BPb 

 

Kim et al. 

(2002) 

 

 

 

Korean lead battery 

workers (N=66) and 

26 control workers 

 

P5N activity versus 

BPb 

Mean BPb 546 µg/dl, 

39/66 >40 µg/dL 

 

Significant negative 

association of P5N 

inhibition with PbB 

Graziano 

et al. (2004) 

 

Yugoslavia 

prospective Pb study 

of children (N=311) 

aged 4..5-12 years 

Level of serum 

EPO vs. BPb 

Mean BPbs for 

control town: 6-9 

µg/dl; mean for 

exposed  children:31-

39 µg/dL 

Significant positive 

association of EPO vs. 

BPb at ages 4.5 and 6.5 

but insignificant 

linkage at older ages 

Sakata et al. 

(2007) 

 

Nepalese tricycle cab 

drivers (N=27) 

Level of serum 

EPO 

vs. BPb 

Mean BPb =6.4 

µg/dL 

 

 

Significant negative 

association of EPO and 

BPb 

 

One of the first studies of associations between lead and EPO took place in Kosovo.  

Significantly depressed serum EPO was observed among pregnant women; a negative 

association between BPb and EPO occurred, particularly in the low hemoglobin strata (Graziano 

et al., 1991).  The work of Dr. Graziano’s team was provoked by a simple experiment by 

Grandjean et al., (1989) in 25 Danish Pb workers (mean BPb = 44 ug/dL) and 25 age-matched 

controls who were asked to donate a unit (450 ml) of blood.  After monitoring hemoglobin and 

reticulocyte counts over time, the controls demonstrated a prompt reticulocytosis and return to 

the baseline hemoglobin level.  However, it took the Pb workers roughly two weeks longer to 

return to the baseline hemoglobin levels.   The authors attributed this finding to the Pb induced 

impairment of heme synthesis.  However, the reported effect was later attributed to Pb-induced 

impairment of EPO production as shown in an environmentally exposed population of pregnant 
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women (Graziano et al., 1991).  This study selected a group of pregnant women that included 

those with the highest and with the lowest BPbs within four strata of Hgb levels (9-9.9, 10-10.9, 

11-11.9, 12-12.9 g/dl).  After controlling for Hgb, a strong predictor of EPO, they found that BPb 

was inversely related to serum EPO at both mid-pregnancy and at delivery. As indicated in the 

Figure 2-9, they observed that in the women with low Hgb levels, serum EPO was inversely 

associated with BPb. 

 

Figure 2-9: Combined EPO findings of independent experiments at mid-pregnancy (Table 1) and at delivery (Table 2). Each bar 

represents the mean (+ SD) serum EPO concentrations of a group of 12 woman (6 at mid-pregnancy and 6 at delivery) whose 

concurrent hemoglobin concentrations were within indicated stratum. The mean blood lead (BPb) of each group is shown in 

parentheses. Source: Graziano et al., (1991). Archives of Environmental Health 46: 347-350. 

 

Following this finding, the same group examined the association between BPb and EPO 

in children in their cohort at ages of 4.5, 6.5, 9.5 and 12.5 years.  They found that, while the 

children with elevated BPbs maintained a normal Hgb, they required a hyperproduction of EPO 

to do so (Graziano et al., 2004).  Thus, in contrast to their findings in pregnant women, this 

follow up study among the children showed that BPb was initially positively related to serum 

EPO at ages 4.5 and 6.5 years.  However, this trend was not seen later in their lives.  At ages 9.5 

and 12.5 among the same children, they started to observe that there was no positive association 
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between serum EPO and BPb.  In fact, as the children’s age increased, the researchers observed a 

rotation of the slope of the relationship between serum EPO and BPb.  Thus, study found 

significant positive associations of serum EPO levels with BPb at ages 4.5 and 6.5 years, but no 

such association as these children got older.  The decrease in EPO concentration with increase in 

age (up to the age of 12.5), led to the conclusion that non-anemic Pb exposed young children 

required hyperproduction of  EPO to maintain normal levels of Hgb concentrations in blood 

(Graziano et al., 2004).  However, the decline in slope of the relationship between EPO and BPb 

with age, (Figures 8 and 9) suggests that children with elevated BPb have a decreased capacity to 

produce EPO over the course of time. This decline is likely the result of cell damage in the 

proximal tubule (PRT), the site of EPO production and Pb toxicity (Graziano et al., 2004).  This 

finding provided confidence in the hypothesis that in non-anemic Pb-exposed young children, 

increased erythrocyte production is required in order to maintain normal hemoglobin 

concentration (Graziano et al., 2004). 

 

Another study that examined the relationship between serum EPO and BPb levels is that 

of Liebelt et al., (1999) who found a negative association between EPO and BPb in 86 children, 

ranging from 1 to 16 years of age. The mean age of the 86 children used in the final analysis was 

34 months, with 55 boys and 31 girls making up the cohort. Twenty-two children had BPb 10 

µg/dL, 27 had BPb between 10 and 19 µg/dL), 26 had BPb between 20 and 34 µg/dL), and 14 

had BPb > 35 µg/dL).  The mean EPO concentration of children in the lowest Hgb stratum was 

compared with the mean EPO concentration in the highest Hgb stratum.  Analysis of variance 

demonstrated a significant BPb effect, as well as a significant Hgb effect. They also reported a 

significant negative association between BPb in children and EPO concentrations, independent 

of the effects of Hgb. 
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CHAPTER III:  POWER CALCULATIONS 

BPb measures were available for each subject from birth through 12.5 years of age, and 

at the follow up at ~ 25 years of age.  At age 12.5, the mean BPb concentrations were 30.6 µg/dl 

in Mitrovica, and 6.1 µg/dl in Prishtina.  When examining associations between health outcomes 

and Pb exposure, researchers have typically used alternative ways to determine the most critical 

period of exposure.  Of course, we examined the association with concurrent BPb.  However, we 

also examine the associations between health outcomes and the total area under the BPb vs age 

curve (AUC) (using the trapezoidal method) for early post-natal (birth to age 12.5) periods.  In 

this manner we attempted to determine a critical time period of exposure with regard to each 

health outcome. Outcome measures included: a) blood pressure; b) serum sICAM1 and 

sVCAM1; and c) serum erythropoietin.  For each outcome, we developed a core model including 

all potential determinants of outcome.  Linear regression was used to model associations between 

BPb and BP, sICAM-1and sVCAM-1 controlling for ethnicity, gender, body mass index (BMI), 

smoking, employment status, and education.  Potential confounders were retained in the final 

models if the estimated coefficient relating PBb to BP, sICAM-1 and sVCAM-1 changed at least 

10% with their inclusion.  

Power was calculated using PS Power and Sample Size Program as described by Dupont 

and Plummer (Dupont et al., 1990).  The study sample was made up of 101 participants from the 

former “Yugoslavia Birth Cohort” (80 experimental subjects in Mitrovica and 21control subjects 

in Prishtina).   
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3-1 Power Calculations for Specific Aim # 1  

Hypothesis #1 and #2: Higher levels of prenatal and early adulthood Pb exposure are associated 

with increase in BP and increased levels of the circulating sICAM-1 and sVCAM-1. 

All BP measurements were repeated to insure the reliability of the results.  This was 

achieved by measuring the BP three times (one minute apart).  The first measurements were 

dropped and we used the average for the remaining two measurements.  All significance testing 

was two-sided with 95% confidence intervals.   A previous study of the entire cohort detected a 

small increase in the BP at age 5.5 years old (Factor-Litvak et al., 1996). Their mean BP at that 

time was 100.5 (10.7) in Mitrovica and 98.4 (10) in Prishtina.   

 

a) Systolic Blood Pressure 

The measured results within each subject group were normally distributed with standard 

deviation 11.2.  The true difference in the experimental and control means was 4.6, and we were 

able to reject the null hypothesis that the population means of the experimental and control 

groups are equal with probability (power) 0.377.   The Type I error probability associated with 

this test of this null hypothesis is 0.05. 

 

b) Diastolic Blood Pressure 

The measured results within each subject group were normally distributed with standard 

deviation 5.8.  The true difference in the experimental and control means was 2.33, and we were 

able to reject the null hypothesis that the population means of the experimental and control 

groups are equal with probability (power) 0.363.   The Type I error probability associated with 

this test of this null hypothesis is 0.05. 
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The impact of environmental Pb on the cardiovascular system was explored utilizing a 

multiple linear regression analysis while adjusting for covariates such as body mass index, age, 

cigarette smoking.  Thus we were able to evaluate the associations of BPb levels, and levels of 

sICAM-1 and sVCAM-1 markers of vascular inflammation and endothelial dysfunction that are 

detectable in the circulation.  We expected to see increasing levels of sVCAM-1 and sICAM-1 

with increasing BPb levels. Our study sample included 80 experimental subjects and 21 control 

subjects.  

 

c) sVCAM-1 

The measured results within each subject group were normally distributed with standard 

deviation 203.  The true difference in the experimental and control means was 75, and we were 

able to reject the null hypothesis that the population means of the experimental and control 

groups are equal with probability (power) 0.315.   The Type I error probability associated with 

this test of this null hypothesis is 0.05. 

 

d) sICAM-1 

The measured results within each subject group were normally distributed with standard 

deviation 50.5.  The true difference in the experimental and control means was 18.4, and we 

were able to reject the null hypothesis that the population means of the experimental and control 

groups are equal with probability (power) 0.309.   The Type I error probability associated with 

this test of this null hypothesis is 0.05. 
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3-2 Power Calculation for Specific Aim # 2:  

Hypothesis 3:  Higher levels of prenatal and early adulthood Pb exposure are associated with a 

decline in the slope of the relationship between EPO and BPb with age (after adjusting for Hgb), 

suggesting that individuals with elevated BPb early in life have a decreased capacity to produce 

EPO over time.  

The association between BPb and EPO was examined using regression analysis. First, we 

evaluated the association between BPb and EPO at each age using linear regression analysis, 

controlling for concurrent Hgb concentration. Concurrent Hgb was controlled because it is the 

most important predictor of EPO (Factor-Litvak et al., 1998). Second, we combined data from all 

ages and use repeated measures analysis to determine whether the associations between BPb and 

EPO, controlling for Hgb, have changed over time (Factor-Litvak et al., 1998).  We used the 

cumulative life time exposure (including concurrent) BPb from birth to current age.  

 

Erythropoietin 

The measured results within each subject group were normally distributed with standard 

deviation 5.6.  The true difference in the experimental and control means was 2.5, and we were 

able to reject the null hypothesis that the population means of the experimental and control 

groups are equal with probability (power) 0.433.   The Type I error probability associated with 

this test of this null hypothesis is 0.05. 
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Abstract  

BACKGROUND: Epidemiologic studies examining the relationship between environmental lead 

(Pb) exposure and blood pressure (BP) generally report small associations between blood lead 

(BPb) and BP.  However, these studies are predominantly cross-sectional. Currently no data 

evaluate whether Pb exposure in early life is associated with BP later in life. In addition, no 

epidemiologic studies evaluate associations between either current or past Pb exposure and 

serum levels of markers of systemic inflammation and endothelial dysfunction, including soluble 

intercellular adhesion molecule (sICAM-1) and soluble vascular cell adhesion molecule 

(sVCAM-1). Systemic inflammation and endothelial dysfunction have been suggested as 

mechanisms for the Pb-BP relationship.  Here we evaluate these relationships prospectively. 

OBJECTIVE: We investigated the association between prenatal, early childhood, and concurrent 

Pb exposure and BP and serum levels of circulating sICAM-1 and sVCAM-1 later in life. 

METHODS: From our original prospective birth cohort study in Mitrovica (a mining town) and 

Prishtina, Kosovo, from 1985-1998, we located and assessed BPb and BP in 101 participants 

(mean age 24.9 years).   We first examined the association between concurrent BPb and BP.  We 

then examined associations between BP and a series of cumulative lifetime exposure measures 

from the prenatal period onward.  Lastly, we examined the association between concurrent BPb 

levels and circulation levels sICAM-1 and sVCAM-1. 

RESULTS:  BPb levels, measured every six months from birth through age 12, varied across the 

study sample especially in early life.  At age 25, the mean BPb was 4.91 µg/dl (range = 1.41-16.4 

µg/dl) in Mitrovica and 1.68 µg/dl (range = 0.69-3.51 µg/dl) in Prishtina.  We found small 
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adjusted associations between BPb measured in childhood and at age 25 on systolic BP (sBP) 

and diastolic BP (dBP).  For example, after adjustment, the estimated regression coefficient 

relating current BPb to sBP was 1.04 (95% confidence interval (CI) 0.09, 1.86) mm Hg per log 

unit increase in BPb and the  estimated regression coefficient relating current BPb to dBP was 

0.35 (95% CI -0.13, 0.83) mm Hg per log unit increase in BPb. We also found small, albeit not 

statistically significant, associations with sICAM and sVCAM. In addition, we did not see 

evidence of sICAM-1 and sVCAM-1 mediating the relationship between BPb and BP. 

 

CONCLUSION: Current study results, along with previously reported findings on this cohort, 

provide evidence for the hypothesis that exposure to Pb either prenatally or in early adulthood, 

may lead to increased BP and increased circulating levels of sICAM-1 and sVCAM-1 later in 

life. 

KEY WORDS: Blood lead, systolic/diastolic blood pressure, vascular inflammation, Kosovo, 

environmental lead exposure. 
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Background 

Public health initiatives have been successful in dramatically reducing exposure to 

environmental lead (Pb), especially in the United States (Lustberg et al., 2002; Muntner et al., 

2005).  However, even at low-levels of Pb exposure, there is support for an association between 

Pb and cardiovascular health and all-cause mortality among US population (Pirkle et al., 1994; 

Menke et al., 2006).   A significant body of research has reported associations between blood Pb 

concentrations (BPb) and blood pressure (BP) in populations with BPb at levels that had until 

recently been considered as “safe” (i.e., < 10 µg/dl) (Navas-Ancien et al., 2007, Nash et al, 2003; 

Vupputuri et al. 2003;  Glenn et al., 2003).  Support for a relationship between Pb and BP comes 

from a wide range of animal studies as well as clinical and epidemiological studies of Pb-

exposed workers and the general population.   A significant number of reviews and meta-

analyses based on more than 30 studies and more than 50,000 participants have reached the 

prevailing conclusion that there is significant association between BPb and BP [Sharp et al., 

1987; Hertz-Picciotto and Croft, 1993; Schwartz, et al., 1995; Staessen et al., 1994, 1996; 

Nawrot et al., 2002; U.S. Environmental Protection Agency (U.S. EPA) 2006], Scinicariello et 

al., 2010].   

In addition, a limited number of published studies examining associations between Pb 

exposure and BP in children have reported contrasting results.  No association was observed 

between BPb and BP in children (Selbst et al., 1993).  Increasing cord BPb level was associated 

with significantly higher baseline sBP and marginally higher baseline dBP at 9.5 years of age 

(Gump et al., 2005).  Maternal bone-Pb (tibia-Pb) was associated with increase in sBP and dBP 

only in girls (Zhang et al., 2012).  Analyses of the BPb and BP relationship at age 5.5 in the 

Yugoslavia study of lead exposure, pregnancy outcomes and child development,  found small, 
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non-statistically significant, associations between BPb and both sBP and dBP (Factor-Litvak, et 

al 1996). Although modest, there is some evidence that prenatal Pb exposure may be associated 

with BP later in life. Here, we extend these findings by evaluating the associations between 

prenatal and childhood lead exposure and BP in early adulthood.  

We also examine associations between BPb and two markers of inflammation and 

endothelial dysfunction, sICAM-1 and sVAM-1, both of which are proposed as mechanisms for 

the Pb-BP associations.  Both markers are associated with CVD risk factors such as 

hypertension, smoking and frequent alcohol consumption (Blann et al., 1997; Rohde et al., 1999) 

and are related to increasing sBP (Chae et al., 2001).  Although Pb and arsenic (As) are not very 

similar (one is a heavy metal and the other a metalloid), As is usually grouped with metals in 

terms of its toxicology.  Both are associated with outcomes in multiple systems and both and 

have similar molecular mechanisms, as they interact with proteins (including those with 

sulfhydryl, amine, phosphate, and carboxyl groups).  Also, like Pb, As crosses the placental 

barrier, can affect the hematopoietic system, cardiovascular system, and there is accumulating 

evidence of damage to central nervous system (ATSDR, 2004).  Previous studies found a 

positive relationship between chronic As exposure and sICAM-1 and sVCAM-1 (Chen et al., 

2007).    

  

Methods 

a) Study Design  

The original cohort has been previously described (Factor-Litvak et al., 1999). Briefly, 

pregnant women were recruited between 1984 and 1985 in two towns, Mitrovica, the site of the 

Trepça mines, smelter and battery plant and Prishtina, the capitol which was relatively 
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unexposed. Offspring were followed frequently for BPb measures, neurocognitive development 

and physical examinations until age 12.5.   

We located and identified 101 members of the original cohort from the Yugoslavia study 

of environmental lead, pregnancy outcomes and child development and requested their 

participation in a follow-up study, in which each participant would be evaluated once to assess 

their current BPb, BP and serum sICAM-1 and sVCAM-1.  Subjects were recruited through 

television, radio and newspaper advertising and through “word of mouth”. Following a 

procedure to insure that they were from the original cohort, we set up appointments for all 

participants to report to a central location in each town in order conduct interviews, fill-out 

questionnaires, and collect biological samples. All questionnaires were administered in the 

participant’s primary language, Albanian or Serbian.  While we contacted and recruited study 

participants in both towns, we encountered more challenges finding and recruiting the 

participants from Prishtina. This may be due to the fact that the city expanded greatly in the past 

8-10 years with a number of changes especially in the ethnic makeup of the population.  In 

addition, once contacted, those in Prishtina were less interested, and more of them refused to take 

part in the study.  This may be due to the fact that they did not view the study as beneficial to 

them as did those in Mitrovica.  Another factor that may have influenced the recruitment may 

have been that the overwhelming majority of the pre-war Serbian population in Prishtina had 

been uprooted from Kosovo at the beginning of NATO campaign in 1999.  However, the Serbian 

population in Mitrovica (Northern part of the city) for the most part has remained in place.  

There may have been some temporary migration during the few months at the height of the war, 

but it has been reported that most had returned to their homes shortly after.  Similarly, the 

Albanian population in Mitrovica has remained very much intact with similar pattern of 
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temporary migration during the few months (1-3 months) of the height of the hostilities.  Their 

temporary migration was mostly to camps in neighboring Albania and Montenegro.  However, as 

the hostilities diminished, the overwhelming majority returned to their homes.   

 

b) Data Collection and Laboratory Analysis 

Demographic information and other lifestyle characteristics such as smoking, were 

collected via questionnaire.  We accessed existing data from the mid-pregnancy, delivery, and 

childhood questionnaires to ascertain the life-style characteristics of the mothers of cohort 

members as needed. Data on the outcomes were collected as follows: 

i) BP was measured using an automated monitor three times (at 1-minute intervals) at the 

completion of the interview and questionnaire but before the blood draw (Omron BP Monitor, 

Model # 785, Lake Forest, Illinois).  For the statistical analysis, we used the standard research 

method of averaging the two last measures. As anticipated, the first BP measure was higher than 

subsequent measures; the mean difference between the first and third BP measures was 2.53 

mmHg (p< 0.001) and 2.33 (p< 0.001) for sBP and dBP respectively.  This is likely due to the 

“white coat” effect (Mancia et al., 1983; Pickering et al., 1988).  

ii)  Blood samples were collected in EDTA vacutainers by venipuncture from each 

participant.   BPb levels were analyzed using a Graphite Furnace Atomic Absorption 

Spectrophotometer (GFAAS), model AAnalyst 600 (Perkin-Elmer, Shelton, CT) using a method 

modified after Fernandez and Hilligoss (1982). Q Columbia University’s laboratory participates 
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in the Center for Disease Control and Prevention quality control program for BPb; in the past 

three years, the interclass correlation between the expected and observed BPb was 0.99.   

iii) Human sICAM-1 and sVCAM-1:     Serum levels sICAM-1 and sVCAM-1 were 

analyzed utilizing the Quantikine Human sICAM-1/CD54 and sVCAM-1 kits that included pre-

coated microplates, standard, calibrator diluent, wash buffer, color reagents, and “stop” solution 

(R&D Systems, Minneapolis, MN).      "Inter-precision coefficients of variation for sVCAM-1 

were 4.6% for quality control samples, and 5.7% for study samples.  The corresponding values 

for sICAM-1 were 2.8% and 2.5%."   

 

c) Statistical Analysis 

 We first conducted descriptive analyses to compare the distributions of variables of 

interest, by utilizing t-test or chi-square tests, and unadjusted bivariate linear regression models 

relating exposure to outcomes.  Linear regression was used to model associations between BPb 

and BP, sICAM-1and sVCAM-1 controlling for ethnicity, gender, body mass index (BMI), 

smoking, employment status, and education.  Potential confounders were retained in the final 

models if the estimated coefficient relating PBb to BP, sICAM-1 and sVCAM-1 changed at least 

10% with their inclusion. In addition, we also assessed for possible mediating effects of sICAM-

1 and sVCAM-1; a reduction in the estimated regression coefficient relating BPb to BP with 

sICAM-1 and/or sVCAM-1 in the model was regarded as evidence of mediation.   

BPb measures were available for each subject from birth through 12.5 years of age, and 

at the follow up.  We first examined the associations with BPb measured at the time of follow up.  

Second, we calculated cumulative lead exposure, using the trapezoidal area under the curve for 
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various age periods.  We calculated the area under the curve for exposure between ages 0 and 2, 

ages 2 and 4, ages 4 and 7 and ages 7 to 12.  Third, we also examined the associations between 

BP and the total area under the BPb vs. age curve (AUC).  All analyses were performed using 

SAS version 9.3 (SAS Institute, Carey, NC). 

 

Results 

As shown in Table 4-7, the study participants were more likely to reside in Mitrovica and 

were more likely to be Albanian. Compared to the original study cohort, the current cohort is 

predominantly Albanian, especially in Prishtina.   Over 80% of the follow up sample were from 

Mitrovica compared to 55% in the original birth cohort.  Of the 101 participants in this study, 

those residing in Prishtina were better educated and more likely to be employed. Smoking was 

more prevalent in Prishtina (66% vs 29% in Mitrovica).  The follow up sample gender 

distribution reflected that of the original cohort. Biomarkers and anthropometric characteristics 

are also listed in Table 4-7.  Mean BPb concentrations remained significantly higher in 

Mitrovica residents than in those from Prishtina, even though the lead smelting plant drastically 

diminished its operations in late 1990’s and closed at the onset of the war in 1999.  The smelting 

operations have remained closed and only ore mining operations at reduced capacities have 

resumed in the last few years.  Average BPb concentrations between birth and age 12.5 and at 

age 25 are illustrated in Figure 4-8.  At age 12.5, the mean BPb concentrations were 30.6 µg/dl 

(SD=8.8 µg/dl) in Mitrovica, and 6.1 µg/dl (SD=1.6 µg/dl) in Prishtina. Current BPb levels 

ranged from 1.41-16.4 µg/dl and 0.69-3.51 µg/dl in Mitrovica and Prishtina respectively.   

Mean sBP were 129.90 (SD=14.87) mmHg and 125.64 (SD=9.45) mmHg in Mitrovica 

and Prishtina, respectively (Table 4-8).  Mean dBP were 81.31 (SD=7.51) and 79.00 (SD=5.09) 
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in Mitrovica and Prishtina, respectively. Higher sBP and dBP was found among Serbians, males, 

those with higher body mass index (BMI), those with lower education, and non-smokers. 

 Results from the regression models relating BPb to sBP and dBP are shown in Table 4-

9.  Only smoking and BMI met the criteria for potential confounding.   The unadjusted 

regression coefficient relating BPb to sBP was 1.47 (95 % CI 0.64, 2.29), corresponding to a 

1.47 mmHg increase in sBP for each log unit increase in BPb.  After adjusting for potentially 

confounding variables, the magnitude of the regression coefficient diminished to 1.04 mmHg (95 

% CL 0.09, 1.86) increase in sBP per log unit increase in BPb.  This relationship is illustrated in 

Figure 9.   The unadjusted regression coefficient relating BPb to dBP was 0.57 mmHg (95 % CI 

0.14-1.00) for each log unit increase in BPb.  After adjustment, the magnitude of the regression 

coefficient decreased to 0.33 mmHg (95 % CI -0.13, 0.83).   

We also examined the associations between sBP and the total area under the BPb vs. age 

curve (AUC) for post-natal periods of birth to age 2, 2-4, 4-7, and 7-12 years (data not shown).  

These measures of BPb were not associated with either sBP or dBP.  However, they were in the 

anticipated direction. 

We found small, although not statistically significant, associations between BPb and both 

sICAM-1 and sVCAM-1.  This association is illustrated in Figure 4-10.   The unadjusted 

regression coefficient sICAM-1 was 4.76 ng/ml (95 % CI 1.14, 8.38) for each unit increase in 

BPb (p< 0.01).  After adjusting for BMI, ethnicity, and smoking, the magnitude of the regression 

coefficient diminished to 3.37 ng/ml (95 % CL -0.42, 7.19) for each unit increase in BPb. The 

unadjusted regression coefficient for sVCAM-1 was 12.92 ng/ml (95 % CL -1.32, 27.17) for 

each log unit increase in BPb).  After adjustment, the regression coefficient declined to 11.56 
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ng/ml (95 % CL -4.49, 27.33) for each log unit increase in BPb (Table 4-10). This relationship is 

also illustrated in Figure 4-11. 

We also examined the associations between sICAM-1 and sVCAM-1 and the total area 

under the BPb vs. age curve (AUC) for post-natal periods of birth to age 2, 2-4, 4-7, and 7-12 

years (data not shown).  These measures of BPb were not associated with either sICAM-1 or 

sVCAM-1.  

 

Discussion 

We tested the hypothesis that higher levels of prenatal and early life Pb exposure are 

associated with an increase in BP later in life.  Lead exposure was estimated using available past 

measurements of BPb from birth through age of 12, as well as concurrent BPb at 25 years of age.  

Between ages 12 and 25 years, the mean BPb fell from 29.7 to 4.91 µg/dl in Mitrovica, and from 

5.73 to 1.67 µg/dl in Prishtina, most probably due to the demise of the lead industry in the area.  

The declines in BPb correspond to an apparent half-life of elimination of 4.9 and 7.4 years in 

Mitrovica and Prishtina, respectively (Appendix Table 14).  We examined the associations 

between BP and the total area under the BPb vs. age curve (AUC) as well as the AUC for early 

post-natal periods (birth to age 2y, 2-4y, 4-7y, and 7-12y).  While we found positive association 

between concurrent BPb and sBP and dBP, earlier measures of BPb were not associated with 

either BP measure.  In addition, the association between BPb and circulating levels of two 

markers of endothelial cell dysfunction, sICAM-1 and sVCAM-1, suggested an adverse 

association; however sample size limitations resulted in confidence limits for the estimated 

association straddling the null.  
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Accumulating scientific evidence suggests that exposure to Pb may result in increased BP 

across a wide range of populations.  In its review of many epidemiological and occupational 

studies, the U.S. Environmental Protection Agency concluded that every doubling of BPb levels 

is associated with a ~1.0 mmHg increase in sBP and ~0.6 mmHg increase in dBP (EPA, 2006), 

magnitudes close to those found in the present study.  Early studies, including three large 

population-based studies [the British Regional Heart Study (BRHS) (Pockock et al., 1988), the 

National Health and Nutrition Examination Survey (NHANES II and III) (Harlan et al., 1988; 

Den Hond et al., 2002, Nash et al., 2003) and Welsh Heart Programme study (Elwood et al., 

1988)] observed associations between BPb levels and increased BP. Several meta-analyses 

reported similar relationships between BPb and BP [Sharp et al. 1987; Hertz-Picciotto and Croft, 

1993; Nawrot et al. 2002; Schwartz, et al., 1995; Staessen et al., 1994, 1995; U.S. EPA 2006].  In 

a meta-analysis of 23 studies, a doubling of BPb from 5 to 10 µg/dl was associated with 

increases in systolic blood pressure (sBP) and diastolic blood pressure (dBP) of  1.0  and 0.6 

mmHg respectively) (Staessen et al., 1994).  Another meta-analysis comprised of 15 publications 

reported an average of 1.25 mmHg of sBP increase for every doubling of BPb concentration 

(Schwartz, et al., 1995).  Our findings add to a number of earlier cross-sectional analyses that  

reported increases in sBP and dBP in relation to BPb  across various populations (Pocock et al., 

1988; Pirkle et al., 1985; Harlan et al., 1988; Landis et al., 1988;)  including pregnant women 

(Factor-Litvak et al., 1993).   

An association between bone Pb and BP has also been reported.  Bone Pb levels had a 

stronger association to BP and hypertension (defined as repeated measurements of > 140/90 

mmHg) than to BPb level in adult men (Cheng et al., 2001; Hu et al., 1996). These studies, 



 

 

98 

 

although larger had a number of limitations, notably that both Pb exposure and BP were 

measured at only one point in time.  

Studies examining associations between Pb exposure and BP in children have reported 

differing results.  Among members of this study’s cohort at 5.5 years of age a 10 µg/dl increase 

in BPb was associated with a small increase of 0.5 (95% CL=-0.2, 1.3) mmHg) for sBP, and a 

0.4 (95%, CL=-0.1, 0.9) mmHg increase in dBP (Factor-Litvak et al., 1996).    No association 

was observed between increased BPb levels and BP in a cohort of 149 children in Philadelphia 

(1-10 years old) (Selbst et al., 1993).  Another study reported that increasing cord BPb levels 

were associated with significantly higher baseline sBP and marginally higher baseline dBP in 

children at 9.5 years of age, while no association between BP and postnatal BPb levels were 

found (Gump et al., 2005).  A clinical study of 780 children also found no association between 

BPb and BP (Chen et al., 2006).  More recently, Zhang et al (2012) found that maternal bone-Pb 

(tibia-Pb) was associated with increase in sBP and dBP only in girls and no associations were 

found between cord and postnatal (early childhood) BPb levels and BP.   

The biological plausibility of the BPb and BP relationship has been documented in a 

number of animal studies.  In rats, exposure to Pb for 4-5 months (leading to BPb concentration 

of 30-40 µg/dL) was reported to induce hypertension (Vander et al. 1988; Novak, et al. 1993). 

More recently, sBP increased in rats after exposure to 90-10,000 ppm Pb (as Pb-acetate in 

drinking water) for various time periods that resulted in BPb levels between 19.3-240 µg/dL 

(Mohammad et al., 2010).  The disruption of the biological functions that can interfere with 

tightly regulated processes such as cell signaling, intracellular ion homeostasis, ion transport, 

energy metabolism, and enzyme functions are some of possible ways of Pb-induced 

cardiovascular toxicity. One plausible mechanism concerns the adverse effects of Pb on the 
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kidney renin-angiotensin system (Vander et al. 1988).  In addition, Pb may affect sites of the 

cardiovascular system that control heart excitability and contractility, or may impact 

compartments of the central nervous system that regulate BP and other cardiovascular functions 

(Kopp et al., 1988; Navas-Ancien et al., 2007).  Pb-induced oxidative stress via generation of 

reactive oxygen species (ROS) has been thought to be a primary contributory factor in the 

pathogenesis of its adverse health effects (Vaziri & Khan et al., 2007).  A number of studies have 

demonstrated a role for oxidative stress in the pathogenesis of Pb-induced hypertension, 

mediated by the inactivation of nitric oxide (•NO) and down-regulation of soluble guanylate 

cyclase (sGC) (Dursun et al., 2005; Vaziri et al., 1999).   The reduction of the vasodilator •NO 

can lead to increased vasoconstriction and subsequently BP.  

It has also been reported that Pb may be an important factor of stimulation and 

proliferation of vascular smooth muscle cells (Fujivara et al., 1995).  Recent studies indicate that 

the concentrations of the circulating sICAM-1 and sVCAM-1 appear to have predictive value for 

the identification of early atherosclerotic lesions and future cardiovascular disease (CVD) 

(Krauss et al., 2002; Blankenberg et al., 2001; Ridker et al., 2000; Hwang et al., 1997).  These 

adhesion molecules play a crucial role in the immune system response by promoting cell–cell 

and cell–stroma interactions and leukocyte migration (Carlos & Harlan, 1994).  The process of 

adhesion of the leukocytes to the endothelial cells and subsequent trans-endothelial migration is 

an important step in the atherosclerosis, arthritis, and cancers (Ross, 1993; Polverini, 1997).   

While studies have shown that age is the most powerful independent predictor of the increasing 

levels of sICAM-1 and sVCAM-1, the effects of Pb may also play a significant role in this 

process (Morisaki et al., 1997).  Elevated sICAM-1 levels have been associated with CVD risk 

factors such as hypertension, smoking and frequent alcohol consumption (Blann et al., 1997; 
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Rohde et al., 1999) and were found to be related to increasing sBP (Chae et al., 2001). 

Angiotensin II, which is a potent vasoconstrictor, stimulates the sICAM-1 expression and as 

such, it may play a role in the increase in BP (Mervaala et al., 1999). Our study found a modest 

association between BPb levels sICAM-1 and sVCAM-1.  This finding along with the reported 

slight increases in the sBP, may be early signs indicating negative effects of Pb on cardiovascular 

system.  However, we did not find sICAM-1 or sVCAM-1 to be a mediator in the relationship 

between BPb and sBP (data not shown). 

In the previous study of this cohort at age 5.5 years old (Factor-Litvak et al., 1996), a slight 

increase in sBP pressure was reported in those with high BPb levels.  Although, the current 

cohort is smaller (N=101) than the previous one (N=282), the data analysis showed that the study 

sample of the Pb-exposed town was representative of the larger 1996 study sample (data not 

shown).  

We were able to control for potential confounding variables and examined BMI, gender, 

ethnicity, education, and smoking.  However, only BMI and smoking met the criteria for 

potential confounding.  Interestingly, some findings (Berglund et al., 1975; Hughes et al., 1991; 

Charlton et al., 1995) suggest that casual smoking may reduce BP, although most studies link 

smoking to increased BP (Tuomilehto et al., 1982; Mann et al., 1991). There have been 

suggestions that smokers may refrain from smoking before medical examinations, which could 

possibly cause a sharp short-lived drop in BP (Havlick et al. 1980). Also, validation and 

standardization of the self-reported smoking habits which can vary significantly from person to 

person need to be taken into account (Charlton, 1995).  

This study has a number of strengths.  First, there was a wide range of BPbs measured early 

in life, albeit less of a range at age 25, making possible the analysis of early life exposure and 
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later outcomes.  Second, the sample has few adult risk factors for high BP, i.e. over 70% had 

BMIs between 20 and 24.9 and most were “light” smokers   (smoking a few to < 20 cigarettes a 

day).  The study is limited in that we only followed a select 20% of the sample; however, there is 

no reason to assume that the biological relationships would differ between those followed and 

those not followed.  A second limitation pertains to the single measure of CVD risk markers.  

Another limitation is the 12 ½ year gap in the BPb measurements.  Finally, our analysis is based 

on a select population residing in Kosovo and the results may not be generalizable to other 

populations  

In summary, we found a statistically significant association between BPb measured 

concurrently and sBP, and a marginally significant association between BPb and dBP, which is 

consistent with previous studies. Furthermore, our data suggest an association between 

concurrent BPb and levels of circulating sICAM-1 and sVCAM-1, possibly a mechanism by 

which Pb may lead to increased BP.  The findings support the hypothesis that the exposure to Pb 

poses a risk for elevated BP.   
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Table 4-7: Sample Characteristics [(%) or mean + SD] 
    

 

Prishtina (n=21) Mitrovica (n=80) 

  

Variable                           n (%)              n (%)                P-Value  

            
   

Mean Age     24.96 + 0.49  24.88 + 0.48  0.49  
  

Ethnicity 

% Albanian     95.24    68.75   0.01  

% Serbian + other    4.76   31.25     
 

Gender 

% Male     47.62   46.25   0.91 

% Female      52.38   53.75 
 

Education  

% High school or less    19.05   51.25   0.01 

% College or more    80.95   48.75 
 

Employment Status 

% Employed     76.19   47.44   0.02  

% Unemployed/searching   23.81   52.56     
  

Smoking Status 

% Current     66.67   29.33   0.01 

% No      33.33   70.67 
 

Maternal Education  

% High school or less    85.71   93.75   0.22 

% College or more    14.29   6.25 
 

Mean BMI*     23.02 + 2.34  24.08 + 4.48      0.15  

Mean Weight (kg)    68.58 + 10.56  70.89 + 16.64   0.44  

Mean Birth weight (g)    3342.5 + 516.5 3363.3 + 387.5 0.17  

Mean Height (m)    1.72 + 0.09  1.71 + 0.09  0.55  

Mean Concurrent BPb** (µg/dl)  1.67 + 0.67  4.91 + 3.26        <0.0001  

Mean Concurrent Hgb*** (g/dl)  14.05 + 1.68  13.66 + 1.71  0.36 

Mean Concurrent sVCAM-1# (ng/ml) 659.13+ 170.6             734.39 + 241.2 0.20 

Mean Concurrent sICAM-1^ (ng/ml)  202.40 + 79.6  220.90 + 53.75 0.35   
_____________________________________________________________________________________________________________________ 

 

*Body Mass Index 

 **Blood Lead 

 ***Hemoglobin 

 #Soluble Vascular Adhesion Molecules 

 ^ Soluble Intercellular Adhesion Molecules 
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Figure 4-8: Average BPb levels in Mitrovica (top) and Prishtina (bottom) for the first  

12.5 years of their lives and at 25 years of age (N = 101) 
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Table 4-8: Demographic and Other Selected Characteristics by Blood Pressure and Blood 

Lead Levels 
    

  Systolic Blood Pressure         Diastolic Blood Pressure  Blood Lead Levels 
 

  Mean  SD          P-value   Mean   SD        P-value              Mean  SD         P-value 
Ethnicity 

Albanian (N=75)   128.51   (9.82)        0.56    80.50 (5.75)     0.43  3.69   (2.8)              0.0028 

Serbian and 5  

‘other’ (N=26)       130.36   (22.15)     81.78 (10.12)        5.80   (3.6) 
 

Gender 

Male (N=47)   131.98   (14.79)        0.04    82.35 (7.49)     0.04  4.56   (3.6)        0.33 

Female (N=54)   126.37   (12.74)     79.51(6.52)   3.95   (2.7) 
  
Education  

High school or  

less (N=45)   131.68   (17.62)        0.08    81.36 (8.43)     0.56  5.42   (3.6)    0.0006 

College  (N=56)    126.82   (9.73)     80.41 (5.86)        3.28   (2.4) 
 

Smoking 

Current (N=36)   125.83   (11.19)       0.071    79.43 (6.31)     0.13  3.64   (3.1)      0.23 

No (N=60)   131.20   (15.38)     81.54 (7.14)         4.44   (3.2) 
   

BMI  

20-24.9 (N=65)   123.90   (9.67)       0.0001   78.38 (5.36)     0.0001 3.64   (2.7)                0.009 

25-29.9 (N=36)   138.59   (15.97)     85.31 (7.86)       5.55   (3.8)  
 

Location 

Mitrovica (N=81)   129.86   (14.83)        0.20    81.31 (7.49)     0.18  4.91   (3.2)              0.0001 

Prishtina (N=21)   125.40   (9.45)     79.00 (5.08)        1.67   (0.6)  

 

 

 

Table 4-9:  Linear Regression Models for Current BPb on Systolic and Diastolic Blood 

Pressure  
 

Systolic Blood Pressure       Diastolic Blood Pressure  
 

β 95% CL         β 95% CL 

_______________________________________________________________________ 
 

Unadjusted    1.47 0.64, 2.29  0.57  0.14, 1.00 

Adjusted*    1.04 0.25, 1.82  0.33 -0.09, 0.74 

Adjusted with smoking  1.41 0.57, 2.25  0.52  0.08, 0.97 

Adjusted with BMI   1.05 0.29, 1.81  0.37 -0.03, 0.77 

Adjusted with gender   1.39 0.58, 2.21  0.54  0.11, 0.96 

Adjusted with ethnicity  1.52 0.66, 2.38  0.57  0.12, 1.02 

Adjusted with education  1.37 0.49, 2.24  0.59  0.13, 1.05 

Adjusted with all variables**  0.98 0.09, 1.86  0.35 -0.11, 0.81 
_________________________________________________________________________________________________________ 

 

* adjusted for smoking and BMI. 

**adjusted for smoking, BMI, gender, ethnicity, and education 
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Figure 4-9:  Linear relationship of concurrent BPb Quartiles and sBP for: a smoker with high 

BMI (Upper line-Red) and a non-smoker with low BMI (Lower line-Blue) 

 *Adjusted for smoking, BMI, gender, ethnicity, and education 

 

 

 

 

Table 4-10: Linear Regression Models for Current BPb and sVCAM-1 and s-ICAM-1 

                  

 sVCAM-1     sICAM-1  

 

          β       95 % CL       N      R
2
          β      95% CL       N         R

2 

 

Unadjusted     12.92   -1.32, 27.17   99   0.022       Unadjusted   4.76    1.14, 8.38     99     0.056 

Adjusted *      10.37   -4.44, 25.19   99   0.026       Adjusted *    3.37   -0.42, 7.19     98    0.098  

Adjusted #      11.15   -4.03, 26.34   94   0.038       Adjusted #    3.22   -0.61, 7.05     93    0.120  

Adjusted ^      11.56   -4.21, 27.33   94   0.027 

______________________________________________________________________________ 
 

* adjusted for ethnicity            * adjusted for ethnicity and BMI 

# adjusted for ethnicity and smoking        # adjusted for ethnicity, BMI, and smoking 

^ adjusted with ethnicity, smoking, and BMI    
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Figure 4-10: Relationship between mean BPb increments by BPb quartiles and  

sVCAM-1 (top) and sICAM-1 (bottom). 
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Figure 4-11: Linear relationship between BPb Quartiles and sVCAM-1 (top) and  

sICAM-1 (bottom).   

**The red (upper) lines depict a Serbian, smoker, and high BMI.   

***The blue (lower) lines depict an Albanian, smoker, and high BMI.  

****Adjusted for smoking, BMI, gender, ethnicity, and education. 
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Abstract  

ABSTRACT:  Epidemiologic studies examining the relationship between environmental lead 

(Pb) exposure and erythropoietin (EPO) production have reported contrasting findings.  Most 

epidemiological studies evaluating this relationship are predominantly cross-sectional and report 

different findings.  It is unknown however, if exposure to Pb earlier in life has an effect on EPO 

production later in life.  Here we evaluate this relationship prospectively. 

OBJECTIVE:  We investigated the association between prenatal, early childhood, and 

concurrent Pb exposure and EPO production later in life. 

METHODS:  From our original prospective birth cohort study that was performed in Mitrovica 

(a mining town) and Pristina, Kosovo, from 1985-1998, we located and assessed BPb and serum 

EPO in 101 participants (mean age 24.9 years old).   We examined the association between 

concurrent blood lead (BPb) and EPO.  Pb exposure was operationalized as concurrent BPb 

levels, and then as a series of cumulative lifetime exposure periods measured from the prenatal 

period onward through 12.5 years of age. 

RESULTS:  BPb levels, measured every six months from birth through age 12, varied widely 

across the study sample and had a wide range of levels early in life.  At age 25, the mean BPb 

was 4.91 µg/dl, with a range of 1.41-16.4 µg/dl in Mitrovica and mean BPb of 1.68 µg/dl with a 

range of and 0.69-3.51 µg/dl in Prishtina. The crude model [unadjusted for hemoglobin (Hgb) 

status] shows no relationship between concurrent BPb and EPO among all study participants. 

However, once adjusted for Hgb levels, a statistically significant association (β=0.19) between 

log BPb and log EPO is observed (95% CI 0.06, 0.31). Also, a subsequent introduction of an 
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interaction term between BPb and Hgb strengthens the relationship between log BPb and EPO (β 

= 0.41; 95% CI 0.13, 0.70).   The results presented here are different from the findings in this 

cohort when the study participants were 12.5 years of age.  

CONCLUSION:  Current study results, along with previously reported findings on this cohort, 

suggest that a dramatic reduction of Pb exposure may allow for a reversal of the impact that 

prolonged Pb exposure may have on EPO production. 

KEY WORDS:  Blood lead, erythropoietin, Kosovo, environmental lead exposure. 
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Background 

Environmental lead (Pb) exposure has long been known to be associated with anemia 

(Aub et al., 1925; Baker et al., 1979; Schwartz et al., 1990), likely due to a range of mechanisms 

including shortened erythrocyte survival (Leikin et al. 1963; Hernberg et al., 1967), ineffective 

erythropoiesis (Berk et al., 1970), and inhibition of enzymes of the heme synthetic pathway 

(Lichtman et al., 1963; Piomelli et al., 1975; Piomelli et al., 1982).  Even in Pb-exposed 

individuals with normal hemoglobin (Hgb) levels, there is evidence of sub-clinical effects on 

hematopoiesis.  For example, Grandjean et al (1989) reported that following the donation of a 

unit of blood, Pb-workers demonstrated “delayed blood regeneration” in comparison to non-

worker controls.  That report led us to hypothesize that the production of erythropoietin (EPO), 

the renal hormone that regulates red cell production, may be inhibited by Pb exposure; EPO is 

primarily produced in the proximal renal tubules (Caro et al., 1984; Erslev et al., 1986) where Pb 

is known to accumulate.  We subsequently demonstrated that, as compared to controls, serum 

EPO levels declined as BPb increased in a population of chronically exposed pregnant women 

with a wide range of blood Pb (BPb) and Hgb levels (Graziano et al., 1991).  The latter study 

took place in two towns in Kosovo (then Yugoslavia):  Mitrovica, the site of Pb mining and 

smelting operations; and Prishtina, a relatively unexposed city 25 miles away. 

We subsequently described pregnancy outcome among 1,502 women in those two towns 

(Murphy et al., 1990; Factor-Litvak et al., 1991) and went on to study childhood development 

through age 12 years in a subset of their offspring (Wasserman et al., 1992, 1994, 1997).  In 

addition, we went on to examine the relationship between BPb and serum EPO in the children at 

ages 4.5, 6.5 and 9.5 years.  We reported that at age 4.5, children required a hyperproduction of 

EPO to maintain normal Hgb levels, but with increasing age (and exposure from the smelter 
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operations) this compensatory mechanism gradually failed, perhaps indicative of cumulative 

effects of Pb on renal endocrine function (Factor-Litvak et al, 1998). 

In the current report we had the opportunity to re-examine a subset of this pediatric 

cohort, now 25 years of age, to test the hypothesis that – as in their mothers - chronic 

environmental Pb exposure would lead to an inability to mount an increase in EPO when Hgb is 

relatively low.  During the interim, however, Pb exposure (and BPb levels) declined dramatically 

as a result of the shutdown of the Mitrovica Pb industries. 

 

Methods 

Ethical Approvals: This study was approved by the Columbia University Medical Center IRB 

and by the “Komiteti Etik”, an NIH-registered IRB at the University of Prishtina, Kosovo. 

Study Design:  By various means we located and identified 101 members of the original cohort 

in Kosovo and requested their participation in a follow-up study, in which each participant would 

be evaluated once to assess their current BPb, serum EPO, and Hgb levels.  Appointments were 

arranged for participants to report to a central location in each town of the two towns.  

Questionnaires were administered in the participant’s primary language, Albanian or Serbian.  A 

trained laboratory technologist and a physician carried out the field work.  All blood samples 

were refrigerated immediately at 4º Celsius then frozen at -20
o
C prior to shipment to Columbia 

University for analysis. 

 

 

 

 



 

 

118 

 

Data Collection and Laboratory Analyses 

Demographic information and other cohort characteristics were collected via 

questionnaire.  In addition, we utilized the information from their mothers’ mid-pregnancy and 

delivery questionnaires, and their own childhood questionnaires to ascertain the life-style 

characteristics of the cohort members as needed. While we contacted and recruited study 

participants in both towns, we encountered more challenges finding and recruiting the 

participants from Prishtina. This may be due to the fact that the city expanded greatly in the past 

8-10 years with a number of changes especially in the ethnic makeup of the population.  In 

addition, once contacted, those in Prishtina were less interested, and more of them refused to take 

part in the study.  This may be due to the fact that they did not view the study as beneficial to 

them as did those in Mitrovica.  Another factor that may have influenced the recruitment may 

have been that the overwhelming majority of the pre-war Serbian population in Prishtina had 

been uprooted from Kosovo at the beginning of NATO campaign in 1999.  However, the Serbian 

population in Mitrovica (Northern part of the city) for the most part has remained in place.  

There may have been some temporary migration during the few months at the height of the war, 

but it has been reported that most had returned to their homes shortly after.  Similarly, the 

Albanian population in Mitrovica has remained very much intact with similar pattern of 

temporary migration during the few months (1-3 months) of the height of the hostilities.  Their 

temporary migration was mostly to camps in neighboring Albania and Montenegro.  However, as 

the hostilities diminished, the overwhelming majority returned to their homes.   

 Blood samples were collected by venipuncture in EDTA vacutainers.   Hgb 

concentrations were measured using by the standard cyanmethemoglobin method.  An enzyme 

linked immunosorbent assay kit (ELISA) was used for the quantitative determination of serum-
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EPO concentrations (Quantikine IVD Human Erythropoietin), according to the manufacturer’s 

instructions.   BPb levels were analyzed using a Graphite Furnace Atomic Absorption 

Spectrophotometer (GFAAS), model AAnalyst 600 (Perkin-Elmer, Shelton, CT) using a method 

modified after Fernandez and Hilligoss (1982). Quality Control (QC) samples were run daily, at 

the beginning of the run, after every 10
th

 sample, and at the end of the run.   Columbia 

University’s laboratory participates in a Center for Disease Control quality control program for 

BPb; in the past three years, the agreement statistic (interclass correlation) between the expected 

and observed BPb was 0.99.  BPb measurements from childhood were already available from the 

parent cohort study, measured every six months from birth through age 12 years; those 

measurements were conducted in the same laboratory using the same method. 

 

Statistical Analyses 

We first conducted descriptive analyses to compare the distributions of variables of 

interest by utilizing t-test or chi-square tests, and simple bivariate linear and logistic models.  

Prior to fitting multivariable models, simple linear models estimated the crude associations 

between current BPb levels with EPO.  We used linear regression models to examine the 

association between concurrent BPb and EPO controlling for concurrent Hgb concentration, the 

most important predictor of EPO (Factor-Litvak et al., 1998). BPb measures were available for 

each subject from birth through 12.5 years of age, and at the follow up.  We first examined the 

associations with BPb measured at the time of follow up.  Second, we calculated cumulative lead 

exposure, using the trapezoidal area under the curve for various age periods:   from birth through 

age 2, ages 2- 4, 4-7, and ages 7-12.  Third, we also examined the associations between EPO and 

the total area under the BPb vs. age curve. The distribution of BPb was not normally distributed 
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so we utilized a base 10 logarithmic transformation.  In addition, we controlled for the potential 

confounders including, ethnicity, gender, body mass index (BMI), smoking, employment status, 

and education.  Potential confounders were retained in the final models if the estimated 

coefficient relating BPb to EPO changed at least 10% with their inclusion. All analyses were 

performed using SAS version 9.3 (SAS Institute, Carey, NC). 

 

Results 

We first compared the characteristics of the current study sample of 101 participants to 

those of the original birth cohort of 576 participants.  In comparison to those seen at birth, the 

current sample was more likely to be Albanian and reside in Mitrovica (data not shown).  The 

characteristics of the current Prishtina and Mitrovica participants are presented in Table 5-11.  

On average, those from Prishtina were more likely to be Albanian, have a college education, be 

employed and smoke cigarettes.  Mean Hgb was 0.39 g/dl lower in Mitrovica than Prishtina, but 

this difference was not significant.  However, the mean serum EPO concentration of 10.99 

mIU/ml in Mitrovica was significantly higher than that of 8.49 mIU/ml in Prishtina (P < 0.04).  

Overall, 17% of participants had Hgb <11.0 g/dL and ~32 % had Hgb < 13 g/dL. 

In Table 5-12 we present the mean values of BPb, Hgb and EPO of the current sample as 

compared to those of all children in the cohort at birth and at ages 2, 7 and 12 years.  With one 

exception, the mean values of BPb, Hgb and EPO of the current sub-sample did not differ from 

the original study sample; the exception is that at age 2, the current study sample had lower Hgb 

levels than the overall sample (10.64 vs 11.13 g/dl, respectively; p = 0.017) 

 Not surprisingly, the mean concurrent BPb of 4.91 µg/dl in Mitrovica was significantly 

higher than that of 1.67 µg/dl in Prishtina (P < 0.0001).  Figure 5-12 illustrates the lifetime BPb 
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histories of these 101 participants.  Peak BPbs occurred at 36 months of age in both towns, with 

peak values of 42.3µg/dl in Mitrovica and 10.3 µg/dl in Prishtina.   Obviously, a dramatic fall in 

BPb has occurred since the participants were last seen at age 12.5 years.   

Hgb concentration is the strongest predictor of serum EPO levels.  We therefore first 

examined the relationship between BPb and serum EPO by stratifying the sample into quartiles 

of Hgb (Figure 5-13) and also stratifying by those above and those below the median BPb 

concentration of 3.27 µg/dl.  As shown in the figure, within each Hgb quartile, those with higher 

BPb values tended to have higher serum EPO concentrations, most notably in the lowest quartile 

of Hgb, where the physiologic demand for compensatory EPO synthesis is most pronounced. A 

simple linear regression model relating log BPb to log serum EPO did not find a significant 

relationship between the two variables (β = 0.05; 95% CI -0.09, 0.20) (Table 5-13).  However, 

when adjusted for Hgb as a continuous variable, the relationship became significant (β = 0.19; 

95% CI 0.06, 0.31). This finding is illustrated graphically in Figure 5-14.  The association 

between BPb and EPO varied by anemia status.  For those with Hgb levels < 12.5, the estimated 

increase in EPO is 0.41 mIU/ml (95% CI 0.13, 0.70) per log-unit of BPb.  However, for those 

with Hgb levels > 12.5, the estimate is 0.05 mIU/ml (95% CI -0.10, 0.20) per log-unit of BPb.  

These findings are illustrated graphically in Figure 5-15, which illustrates the relationship 

between log BPb and log EPO dichotomized by Hgb (less than or greater than or equal to 12.5 

g/dl). In the multivariable analysis, significant positive associations were found between 

concurrent EPO and estimates of cumulative Pb exposure (i.e., AUC) between  birth and age 2, 

ages 2- 4, ages 4-7.  The estimated regression coefficients declined in magnitude as the children 

aged.  At age 7-12 no significant associations between cumulative lead exposure and EPO were 

found, however, the sign of the estimated beta changed to negative (data not shown). 
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Discussion  

The participants in the current study visit had last been evaluated in 1998 at age 12.5 

years.  By 2011, at age 25, their mean BPbs had fallen from 29.7 to 4.91 µg/dL in Mitrovica, and 

from 5.73 to 1.67 µg/dL in Prishtina.  By that time the operations at “Trepca Mines and 

Smelters” in Mitrovica had been completely shut down for more than a decade, undoubtedly 

leading to a reduction of airborne Pb and ongoing exposure.  Nevertheless, the legacy of early 

childhood Pb exposure was still apparent at the age of 25, as evidenced by the mean BPb of 4.91 

µg/dL, and range of 1.41-16.4  µg/dL, in that town. 

 In this study we examined the relationship between environmental Pb exposure and 

serum EPO in a group of young adults in whom this relationship has been followed 

longitudinally over time.  We tested the hypothesis that higher levels of prenatal and early life Pb 

exposure are associated with decreased EPO production later in life.  Lead exposure was 

estimated using past measurements of BPb from birth through age of 12, which were already 

available, as well as concurrent BPb at 25 years of age.  The results show a positive association 

between concurrent BPb and serum-EPO levels with a significantly more pronounced slope in 

the regression line for the low-Hgb level participants. These results resemble the findings in the 

original full cohort at 4.5 and 6.5 years of age, at which time we reported that the maintenance of 

a normal Hgb required hyperproduction of EPO to do so, presumably a physiologic adaptation to 

shortened red cell survival in the face of high BPbs in the Mitrovica participants.   In contrast, 

when the original cohort was 9.5 and 12 years of age, they were no longer capable of doing so, 

suggestive of cumulative toxicity to the peritubular cells of the kidney that are responsible for 

EPO synthesis (Graziano et al., 2004).  In addition,  the current EPO findings also contrast those 

reported in the anemic mothers of this study cohort (Graziano et al., 1991) during pregnancy, 
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where serum EPO levels were lower in those with higher BPb levels; those women, however, 

had high concurrent BPb levels, ranging from 23.1 to 36.2 ug/dL 

The current findings indicate that there is a positive association between concurrent BPb 

and serum EPO, a finding that is particularly apparent in those with relatively lower Hgb 

concentrations (Figures 5-13 and 5-14).  We interpret these findings to suggest that the dramatic 

decline in BPb concentrations that occurred during the many years since this cohort was last 

evaluated has allowed renal peritubulal cell function to recover.  Despite the relatively low 

concurrent BPbs at age 25, the observed positive association between BPb and serum EPO 

suggest that perhaps Pb-induced effects on circulating red cells lead to shortened red cell 

survival, thereby creating a demand for endogenous EPO synthesis as a compensatory 

mechanism.  Alternatively, it is conceivable that Pb has a lasting adverse effect on erythroid 

progenitor cells that leads to an inappropriate demand for EPO (Osterode et al, 1999). 

Increases in BPb have been reported to be associated with decreased serum EPO levels in 

Pb workers with BPbs ranging from 30-92 ug/dL (Romeo et al, 1996), as compared to controls 

with a mean BPb of 10 ug/dL.  A similar negative association has been reported in children by 

Liebelt and co-workers (1999), who performed regression analyses examining the relationship 

between BPb and EPO (controlling for Hgb) in 86 children with a range of BPbs of 2-84 ug/dL.  

However, the positive association between BPb and EPO in the current study suggests that the 

relatively low concurrent BPbs are not sufficient to impair EPO synthesis.  

 Some of the strengths of this study include the wide range of BPb levels measured at 

multiple time-points early in life and the range of Hgb levels.  Limitations include the fact that 

the results might not be generalizable to other populations with different profiles or risk factors, 
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and that we were only able to reassess a limited number of participants from the original cohort. 

In addition, another limitation is the 12 ½ year gap in the BPb measurements.      

In summary, we report that in this group of young adults who were chronically exposed 

to Pb in early childhood, serum EPO concentrations responded appropriately as a function of 

Hgb concentration, but also increased inappropriately as concurrent BPb increased.  Thus, a 

perturbation of this renal/hematopoietic balance is still evident many years after the cessation of 

exogenous Pb exposure.  
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Table 5-11.  Sample Characteristics [(%) or mean + SD] 

  

Prishtina (n=21) Mitrovica (n=80)  
   

Variable                n (%)                n (%)               P-Value       
                

Mean Age    24.96 + 0.49  24.88 + 0.48  0.49  
  

Ethnicity 

% Albanian    95.24    68.75   0.01   

% Serbian + other   4.76   31.25     
 

Gender 

% Male    47.62   46.25   0.91 

% Female     52.38   53.75 
 

Education  

% High school or less   19.05   51.25   0.01 

% College or more   80.95   48.75 
 

Employment Status 

% Employed    76.19   47.44   0.02  

% Unemployed/searching  23.81   52.56     
  

Smoking Status 

% Current    66.67   29.33   0.01 

% No     33.33   70.67 
 

Maternal Education  

% High school or less   85.71   93.75   0.22 

% College or more   14.29   6.25 
    

Mean BMI*    23.02 + 2.34  24.08 + 4.48      0.15  

Mean Weight (kg)   68.58 + 10.56  70.89 + 16.64   0.44  

Mean Birthweight (g)    3342.5 + 516.5 3363.3 + 387.5 0.17   

Mean Height (m)   1.72 + 0.09  1.71 + 0.09  0.55  

Mean Concurrent BPb**(µg/dl) 1.67 + 0.67  4.91 + 3.26       <0.0001  

Mean Concurrent Hgb***(g/dl) 14.05 + 1.68  13.66 + 1.71  0.36  

Mean Concurrent EPO^ (mIU/ml) 8.49 + 3.74  10.99 + 7.12  0.04 
 

*Body Mass Index 

**Blood Lead 

***Hemoglobin 

^Erythropoietin 

 

 

 

 

 



 

 

128 

 

Table 5-12:  Sample biomarker characteristics (N=576) compared to current follow-up cohort of 

young adults (N=101) 

                

                          

                          Prishtina                              Mitrovica        

Biomarkers  
     

Mean BPb (µg/dl)         Original Cohort     Current sample (N=21)   Original Cohort    Current sample (N=80) 

 

BPb-Umb. Cord            5.66 (3.5)* [255]**   6.14 (3.5)        p-0.54       21.95 (7.9) [308]       22.8 (7.9)           p-0.39 

BPb-Age 2 years            9.31 (4.8) [170]         8.74 (5.3)        p-0.61 37.52 (12.3) [190]     39.6 (12.4)         p-0.20         

BPb-Age 7 years            7.56 (3.7) [100]         9.61 (7.5)        p-0.07 31.15 (10.5) [102]     31.4 (10.0)         p-0.87 

BPb-Age 12 years           6.31 (2.0) [61]          6.61 (3.0)        p-0.60        29.89 (9.7)   [49]      29.8 (8.7)            p-0.58   

      

Mean Hgb (µg/dl)          Original Cohort      Current sample  Original Cohort      Current sample 

Hgb - Cord            16.32 (2.4) [255]       15.90 (2.3)       p-0.44  15.89 (2.2) [308]      15.48 (2.3)         p-0.14 

Hgb - Age 2 years           10.76 (1.3) [170]      10.64 (1.6)       p-0.69  11.13 (1.5) [190]      10.64 (1.6)         p-0.01 

Hgb - Age 7 years           12.72 (0.8) [100]      12.84 (1.0)       p-0.55  12.83 (0.9) [102]      12.84 (1.0)         p-0.94 

Hgb - Age 12 years         13.05 (0.9) [60]        12.88 (1.0)       p-0.47  12.77 (0.8) [49]       12.88 (1.0)         p-0.51 

 

Mean EPO (mlU/ml)     Original Cohort      Current sample   Original Cohort     Current sample 

EPO - Age 4.5 years        5.6 (3.1) [97]   7.15 (6.3) [9]     p-0.20       7.8 (7.3) [114]         8.6 (7.6) [23]     p-0.63 

EPO - Age 6.5 years        8.2 (4.1) [83]   6.99 (2.4) [13]   p-0.30       9.7 (4.1) [95]       9.2 (3.8) [42]     p-0.50 

EPO - Age 9.5 years        8.8 (6.4) [113]          7.68 (3.7) [12]   p-0.55       8.8 (6.2) [121]         8.5 (3.5) [53]     p-0.74 

EPO - Age 12 years         9.2 (3.4) [98]   10.61 (6.0) [14]  p-018       9.6 (3.9) [111]         9.81 (6.1) [62]   p-0.78 

 _____________________________________________________________________________________________ 
 

*( ) Standard Deviation 

** [ ] No. of the cohort participants 
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Figure 5-12:  Average BPb levels in Mitrovica (top) and Prishtina (bottom) for the first  

12.5 years of their lives and at 25 years of age (N = 101) 
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Figure 5-13:  Mean EPO concentrations stratified by Hgb concentrations.  Numbers  

above bars indicate the number of participants each bar represents. 

 

 

 

 

 

Table 5-13: Linear Regression Models Relating (log) BPb to (log) Serum Erythropoietin 

Concentrations (N=101) 

  

                                                 β                95% CL    

Unadjusted     0.05   -0.09, 0.20    

Adjusted *     0.19    0.06, 0.31    

Adjusted ^      

 ^Anemic (Hgb < 12.5 g/dl)       0.41    0.13, 0.70 

^Non-Anemic (Hgb > 12.5 g/dl) 0.05   -0.10, 0.20     

______________________________________________________________________________ 

* adjusted for hemoglobin (continuous). 

^ adjusted for hemoglobin (dichotomous) with interaction term of lead (continuous) and 

hemoglobin (dichotomous).  

 



 

 

131 

 

 

 

Figure 5-14: Relationship between log(BPb) and log(EPO) adjusted for hemoglobin  

 

 
 

Figure 5-15: Relationship between log(BPb) and log(EPO) in anemic and non-anemic subjects 
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CHAPTER VI:  CONCLUSIONS and FUTURE DIRECTIONS 

 

6.1 Summary of Results  

The studies comprising this dissertation have evaluated the association between prenatal, 

early childhood, and concurrent Pb exposure and BP, serum levels of circulating sICAM-1 and 

sVCAM-1, and EPO production later in life.  For these studies we recruited a subset of 

participants (N=101) from a larger birth cohort that was followed from 1985-1998.  In that study, 

a group of 1,502 pregnant women were recruited for a prospective evaluation of the relationship 

between environmental Pb exposure and birth outcomes (Graziano et al, 1990; Murphy et al., 

1990; Factor-Litvak et al, 1991); the study took place in two towns in Kosovo (then part of the 

former Yugoslavia): Mitrovica (a mining town) and Prishtina (a non-mining town).  

Subsequently, a representative group of 541 of their newborns were selected for long-term 

prospective follow up.  The children were followed longitudinally at six-month intervals for 12 

years to examine the effects of environmental Pb exposure on a variety of health outcomes 

including cognitive and motor function, anemia, endocrine function and growth.   Follow up 

rates over time were excellent in that 70% of the total cohort was evaluated at 6 years of age, and 

65% were evaluated at 12 years of age, at which point the study was - until now - concluded. 

From that original prospective birth cohort study, we located and assessed BPb, BP, circulating 

levels of sICAM-1 and sVCAM-1, and serum EPO in 101 participants (mean age 24.9 years old).    

The outcomes studied for this dissertation that are discussed below included effects of Pb 

on BP, circulating levels of sICAM-1 and sVCAM-1, and EPO production. 
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6.1.1 Blood Pressure and Circulating Levels of sICAM-1/sVCAM-1 

The results of this dissertation provide further evidence that exposure to Pb, either 

prenatally or in early childhood, may have lasting effects on BP later in life.  Exposure to Pb was 

characterized first by evaluating BPb levels, which had been measured every six months from 

birth through 12.5 years of age.   BPb levels varied widely across the study early in life.  We then 

measured concurrent PBb at age 25, by which time a significant reduction in BPb levels had 

occurred.   Between ages 12 and 25 years, the mean BPb fell from 29.7 to 4.91 µg/dl in 

Mitrovica, and from 5.73 to 1.67 µg/dl in Prishtina.   A major strength of this study is its 

exceptionally well-documented history of exposure prenatally and through early childhood.   

The unadjusted regression coefficient for systolic blood pressure (sBP) was 1.47 mmHg 

(95 % CL 0.64-2.29) for each log unit increase in BPb. After adjusting for potentially 

confounding variables (BMI, smoking, education, gender, ethnicity), the regression coefficient 

for sBP remained statistically significant at 1.04 mmHg (95 % CL 0.09, 1.85 per log unit 

increase in BPb).  The findings differed for diastolic blood pressure (dBP), where the unadjusted 

regression coefficient for sBP was 0.57 mmHg (95 % CL 0.14-1.00) for each log unit increase in 

BPb.  After adjusting for potentially confounding variables, the regression coefficient was no 

longer statistically significant at 0.35 mmHg (95 % CL -0.13, 0.83 per log unit increase in BPb).  

The findings in this study are in agreement with a large number of studies of wide range of 

populations that report an increase in BP between 1-3 mmHg per log unit increase in BPb   

[Sharp et al. 1987; Pocock et al., 1988; Hertz-Picciotto and Croft, 1993; Nawrot et al. 2002; 

Schwartz, et al., 1995; Staessen et al., 1994, 1996; U.S. EPA 2006].  In addition, our study is also 

in agreement with findings that included members of this study’s cohort at 5.5 years of age 
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(Factor-Litvak et al., 1996) and with findings in a few studies in children (Gump et al., 2005; 

Zhang et al., 2012). 

We also examined the associations between sBP and the total area under the BPb vs. age 

curve (AUC) for post-natal periods of birth to age 2, 2-4, 4-7, and 7-12 years old.  In this manner 

we attempted to determine if there is a critical time period of Pb exposure with regard to its 

impact on current sBP.  The results did not reveal differences in the associations between BPb on 

sBP across these age windows.  

Associations between BPb and circulating levels of sICAM-1 and sVCAM-1 were also 

examined.   The unadjusted regression coefficient for sICAM-1 was 4.76 ng/ml (95 % CL 1.14, 

8.38) for each  µg/dL increase in BPb.  After adjusting for potentially confounding variables, the 

regression coefficient was also not statistically significant at 3.37 ng/ml (95 % CL -0.42, 7.19).  

The unadjusted regression coefficient for sVCAM-1 was 12.92 ng/ml (95 % CL -1.32, 27.17).  

After adjustment, the regression coefficient was not significant at 10.37 ng/ml (95 % CL -4.49, 

25.19) for each µg/dL increase in BPb.  

Lastly, we also examined the associations between sICAM-1/sVCAM-1 and the total area 

under the BPb vs. age curve (AUC) for post-natal periods from birth to age 2, 2-4, 4-7, and 7-12 

years old.  In this manner we attempted to determine if there is a critical time period of Pb 

exposure with regard to its impact on current levels of sICAM-1/sVCAM-1.  The results did not 

reveal differences in the associations between BPb on sICAM-1/sVCAM-1 across these age 

windows. 

In summary, we found a statistically significant association between BPb and sBP, and a 

marginally significant association between BPb and dBP, which is consistent with a multitude of 

previously referenced studies and meta-analyses.  These results provide further evidence that 
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recent circulating dose, as estimated by BPb, or as estimated by lifetime cumulative exposure, is 

associated with slight increase in sBP.  Furthermore, we detected a suggestive relationship 

between BPb and levels of circulating sICAM-1 and sVCAM-1.  The findings support the 

hypothesis that the exposure to Pb either prenatally or in early childhood poses a risk for elevated 

BP later in life.   

 

6.1.2. EPO Production 

 Our results show a positive association between BPb and serum-EPO levels with a 

significantly more pronounced slope in the regression line for those participants with relatively 

low Hgb levels. A simple linear regression model relating log BPb to log serum EPO did not find 

a significant relationship between the two variables (β = 0.05; 95% CI -0.09, 0.20). However, 

when adjusted for Hgb as a continuous variable, the relationship became significant (β = 0.19; 

95% CI 0.06, 0.31).  The subsequent introduction of an interaction term between BPb and Hgb 

strengthened the relationship between log BPb and log serum EPO (β = 0.77; 95% CI 0.19, 

1.36). In addition, significant positive associations were found for cumulative Pb exposure 

between birth and age 2, ages 2- 4, ages 4-7 and EPO.  The estimated regression coefficients 

declined in magnitude as the children aged.  However, no significant associations between 

cumulative lead exposure and EPO were found at age 7-12, but the sign of the estimated beta 

changed to negative.  Overall, these results resemble the findings reported in this cohort earlier in 

life.   
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6.2 Study Challenges and Limitations 

This thesis study relied on collection of the biological sample (blood) for laboratory 

analysis, blood pressure measurements, and primary data, all requiring extensive human subject 

approvals. The process included not only the approvals by Columbia University’s institutional 

review board (IRB-AAAD8787), but also setting-up a similar structure in Kosovo and requesting 

their review and approval.  In addition, we established an ongoing collaboration with this 

institution as well as specific departments within the Kosovo government (Ministry of Health) 

and the clinical center in Prishtina.  After the IRB’s approvals were secured, the major challenge 

was to locate and contact members of the original study cohort in order to request their 

participation.  We utilized various methods to initiate the contact with the study participants, 

including use of social media (“Facebook”).  The challenges also included: organizing and 

securing space and laboratory facilities for the sample collection, conduction interviews of the 

study participants as well as, funding for participant travel and meal expenses.  Notably, there 

were funding limitations, as we did not have NIH support for this work.   

 

6.3 Response Rate     

While we would have preferred a larger number of study participants with better 

representation of the former cohort, we were able to get about 36.5% of the study population that 

was last evaluated in 1998 (at an average age of 12.5).  It is important to note that the study 

participants were more likely to reside in Mitrovica and were more likely to be Albanian. In 

Mitrovica, 68% were Albanian, which is close to the make-up of the original cohort, where 61 % 

were from the Albanian population and the remainder was either Serbian or “other” populations.  

However, in Prishtina, 95% of the current study participants were Albanian.  The current study 
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sample included 47.5 % males; this is slightly lower than the cohort at 5.5 years of age, when 

54% were males.   In Prishtina, 80% of participants had a college degree and 76% were 

employed; in Mitrovica these proportions were 49% and 47%, respectively. Overall, although the 

current cohort is smaller (N-101) than during the last evaluation (N=280), the data analysis 

showed that Pb-exposed town’s biomarkers were representative of the larger 1998 study sample.  

 

6.4 Study Design: Strengths and Limitations  

One of the main strengths of this study is that it followed a longitudinal design which 

allowed us to utilize several observations of the study participant over a period of time.  The 

benefit of a longitudinal study is that it makes it possible to detect developments or changes in 

the characteristics of the target population at both the group and the individual level. 

Longitudinal studies extend beyond a single moment in time, and as a result, they can establish 

sequences of events.   Our study involved a wide range of BPbs measured early in life, albeit less 

of a range at age 25, and made possible the analysis of early life exposure on outcomes later in 

life.  In addition, we had a range of Hgb levels measured in early life and BP measurements at an 

early age (5.5 years old).  Lastly,   the sample used in this study  has few adult risk factors for 

high BP, i.e. over 70% had BMIs between 20 and 24.9 and most were non - or “light” smokers 

(smoking a few to < 20 cigarettes a day).  Overall, we can say that the significant correlations 

between measured points of exposure and outcomes reported in this study provide reasonably 

reliable tools that can predict the impact of Pb later in life.    

Some of the study limitations include the fact that we only followed a select ~20% of the 

original full sample; however, there is no reason to assume that the biological relationships 
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would differ between those followed and those not followed. Another limitation is the 12 ½ year 

gap in the BPb measurements.  Also, limitation pertains to the single measure of CVD risk 

markers. Finally, our analysis is based on a select population residing in Kosovo and the results 

may not be generalizable to other populations. 

 

6.5 Public Health Implications and Future Directions  

 Although exposure to environmental Pb has been reduced precipitously in most of the 

developed world, exposure to Pb remains a significant threat to health in much of the developing 

world.   BPb levels as low as 5 µg/dL can impair mental and physical development, especially in 

young children.  Exposure to Pb can negatively impact heme biosynthesis, the nervous system, 

the kidneys, cardiovascular, hepatic, endocrinal and gastrointestinal systems (EPA, 2012; 

ATSDR, 2007; WHO, 2001).  The most deleterious effects of Pb are on kidney function, and the 

central nervous system (ATSDR, 2007; Bellinger et al., 1995).  In the last few decades, the 

effects of environmental Pb exposure have been examined in relation to human health.  These 

evaluations involved populations with extremely high exposure levels (occupational or “smelter 

town” studies), as well as those with relatively low level exposures (population studies) 

discussed in the previous chapters.  Studies have reported that BPb levels once deemed as “safe 

levels” (< 10 ug/dL), Pb can pose a significant threat to the human health.   

 

With regard to the effect of Pb on the endocrine function of the kidneys, the study results, 

along with previously reported findings on this cohort, suggest that a dramatic reduction of Pb 

exposure may allow for a reversal of the impact that the prolonged Pb exposure may have on 

EPO production.  However, even though the serum EPO concentrations responded appropriately 
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as a function of Hgb concentration, we report that they also increased inappropriately as 

concurrent BPb increased.   This study has provided additional evidence or a reminder that first, 

a prolonged exposure to Pb may play a significant role in disrupting the endocrine system 

function; and second, a significant continuous reduction of exposure to Pb may allow for a 

reversal of the impact Pb may have on EPO synthesis. 
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Appendix Figure 16 – Relationship between sBP and mean BPb increments by BPb quartiles  

 

 

 

 

 

 

Appendix Table 14: Apparent Half-life of Elimination of Pb in Mitrovica and Prishtina (in 

years) 

  Prishtina  Mitrovica  P-Value  95% CI 

______________________________________________________________________________ 
Mean  7.4   4.9    0.0001   -3.303, -1.069 

SD  2.3   1.4 

SEM  0.5   0.15 

Max  13   9   

Min  3   3.2 

Range  10   6 

____________________________________________________________________________________ 

Appendix Table 15: Historical and Current Blood Lead Levels 
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Prishtina (N=21)        Mitrovica (N=80)  

    

Age at Pb Measure    Mean   SD    P-Value            Mean      SD            P-value  

Mid Pregnancy  5.73 3.36  21.01  7.63      <0.0001 

Cord   6.14 3.51  22.83  7.92   <0.0001  

6 months   5.87 3.31  24.63  8.49  <0.0001 

12 months  7.38 3.31  30.25  10.00  <0.0001  

18 months  7.55 2.55  35.58  10.92  <0.0001 

24 months  8.74 5.36  39.63  12.42  <0.0001 

30 months  9.36 2.57  39.34  12.91   <0.0001 

36 months  10.25 3.12  42.33  14.00  <0.0001  

42 months  9.76 2.62  41.11  12.17  <0.0001 

48 months  9.69 3.33  41.84  11.50  <0.0001 

54 months  8.64 3.20  40.00  11.06    <0.0001 

60 months  8.51 2.49  37.78  9.37  <0.0001 

66 months  9.11 2.98  38.06  10.08  <0.0001 

72 months  8.30 2.41  36.02  9.93  <0.0001 

78 months  8.61 2.73  35.47  10.23  <0.0001 

84 months  9.62 7.58  31.48  10.07  <0.0001 

90 months  9.60  ---  31.37  10.21      ----* 

9.5 years  7.39 3.89  29.29  9.20  <0.0001 

10 years  7.07 3.44  29.07  8.79  <0.0001 

10.5 years  7.31 2.76  31.60  10.77  <0.0001 

11 years  6.64 2.40  30.00  9.22  <0.0001 

11.5 years  5.50 1.79  31.17  9.42  <0.0001 

12 years  6.61 3.02  29.81  8.73  <0.0001 

12.5 years  5.73 1.42  29.70  7.10  <0.0001 

25 years  1.67 0.67  4.91  3.26  <0.0001 
 

Notes: *No estimate provided due to low sample size. 

 

 

 

Appendix Table 16:  Regression Coefficients Relating Selected Characteristics to Systolic 

Blood Pressure  

 

 

Systolic Blood Pressure                 Diastolic Blood Pressure  

 

        β        95% CL          N       R
2
             β        95% CL          N       R

2
 

 

Intercept         105.7   95.74, 115.67   95   0.2824            69.97     95.74-115.67   95  0.2265 

BPb          1.04     0.25, 1.82     0.33      -0.09, 0.74 

Current Smoking       1.03    -4.24, 6.31     0.12      -4.24, 6.31 

BMI          12.82   7.38, 18.26             6.79       7.38, 18.26  
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Appendix Table 17:  Linear Regression Models for Lead Exposure at Various Periods of 

Development and Mean Systolic Blood Pressure at Age 25  

          

β 95% CL R-Square P-Value 

________________________________________________________________________ 

 

Univariate 

 

Period of Exposure 

0-2 years  0.007 -0.00, 0.02 0.02  0.14  

2-4 years  0.007 -0.00, 0.01 0.03  0.07  

4-7 years  0.006  0.00, 0.01 0.04  0.04                      

7-12.5 years  0.006  0.00, 0.01 0.06  0.02 
 

Multivariable* 
 

Period of Exposure 

0-2 years  0.007 -0.003, 0.018 0.03  0.16 

2-4 years  0.006 -0.001, 0.014 0.04  0.11 

4-7 years  0.005 -0.00, 0.01 0.05  0.05 

7-12.5 years  0.005  0.001, 0.01 0.05  0.03 

________________________________________________________________________ 

*adjusted for ethnicity and education 

 

Appendix Table 18: Linear Regression Models for Lead Exposure at Various Periods of 

Development and sVCAM-1 and s-ICAM-1 at Age 25  
 

sVCAM-1      sICAM-1 
 

β         95% CL      R
2
     P-Value   β         95% CL        R

2
         P-Value 

_____________________________________________________________________________________________________________________ 

Univariate        Univariate 
 

Period of Exposure   
  

0-2 years 0.09   -0.08, 0.25   0.011   0.31   0.03   -0.02, 0.07       0.016   0.21 

2-4 years 0.06   -0.06, 0.18   0.009   0.34   0.03   -0.01, 0.06       0.035   0.11 

4-7 years 0.04   -0.06, 0.13   0.006   0.43   0.02   -0.006, 0.04     0.022   0.15          

7-12.5 years 0.02   -0.06, 0.10   0.003   0.61   0.02   -0.005, 0.04     0.025   0.14 
 

Multivariable*       Multivariable* 
 

Period of Exposure 

0-2 years 0.05 -0.13, 0.22      0.0001   0.60    0.03    -0.02, 0.07     0.016   0.21 

2-4 years 0.04 -0.09, 0.16      0.0009  0.56    0.02    -0.01, 0.05  0.04   0.26 

4-7 years 0.027  -0.07, 0.12     0.0006  0.57    0.014   -0.01, 0.04  0.04   0.25           

7-12.5 years 0.013  -0.068, 0.09   0.0033  0.76    0.012   -0.009, 0.03  0.04   0.25 

_____________________________________________________________________________ 

*adjusted for ethnicity and education 
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Appendix Table 19: Linear Regression Models for Lead Exposure at Various Periods of 

Development and EPO at Age 25  

 

β             95% CL  P-Value         R-Square 
_____________________________________________________________________________________________________________________ 

Univariate  
 

Period of Exposure 
 

0-2 years  0.00024 -0.000094, 0.00057 0.16  0.021  

2-4 years  0.00028   0.000022, 0.00054 0.03  0.046  

4-7 years  0.000129 -0.000068, 0.00032 0.2  0.017                      

7-12 years            -0.000062 -0.00023, 0.000107 0.47  0.006 
 

Multivariable* 
 

Period of Exposure   
 

0-2 years  0.00043   0.000081, 0.00077 0.02  0.08  

2-4 years  0.00036   0.00010, 0.0062 0.006  0.086  

4-7 years  0.00016 -0.000035, 0.00035 0.11  0.04                      

7-12 years            -0.00003 -0.00020, 0.00013 0.66  0.025_____________ 
 

*adjusted for ethnicity and gender 


