2007 Chapters (Layout Features)
A Flexible Bayesian Generalized Linear Model for Dichotomous Response Data with an Application to Text Categorization
We present a class of sparse generalized linear models that include probit and logistic regression as special cases and offer some extra flexibility. We provide an EM algorithm for learning the parameters of these models from data. We apply our method in text classification and in simulated data and show that our method outperforms the logistic and probit models and also the elastic net, in general by a substantial margin.
Subjects
Files
- euclid.lnms.1196794944.pdf application/pdf 1 MB Download File
Also Published In
- Title
- Complex Datasets and Inverse Problems: Tomography, Networks and Beyond
- Publisher
- Institute of Mathematical Statistics
- DOI
- https://doi.org/10.1214/074921707000000067
- URL
- http://projecteuclid.org/euclid.lnms/1196794944
More About This Work
- Academic Units
- Statistics
- Series
- IMS Lecture Notes–Monograph Series, 54
- Published Here
- May 13, 2014