
Disconnected Operation in a

Multi�User Software Development Environment

Peter D� Skopp �

Gail E� Kaiser y

Columbia University

Department of Computer Science

New York� NY �����

CUCS���	�
�
August �

�

Abstract

Software Development Environments have traditionally relied upon a central project database and �le

repository� accessible to a programmer�s workstation via a local area network connection� The introduction

of powerful mobile computers has demonstrated the need for a new model� which allows for machines with

transient network connectivity to assist programmers in product development� We propose a process�based

checkout model by which process and product �les that may be needed during a planned period of dis�

connectivity are pre�fetched with minimal user e�ort� Rather than selecting each �le by hand� which is

tedious and error�prone� the user only informs the environment of the portion of the software development

process intended to be executed while disconnected� The environment is then responsible for pre�fetching the

necessary �les� We hope that this approach will enable programmers to continue working on a project without

network access�

To appear in the IEEE Workshop on Advances in Parallel and Distributed Systems� Princeton NJ� October

�		
�

c����� Peter D� Skopp and Gail E� Kaiser

Keywords� Disconnected Operation� software development
pre�fetching� mobile computing�

�Skopp is supported in part by the National Science Foundation�
yKaiser is supported by grants from the National Science Foundation� Andersen Consulting� Bull HN Information Systems and

IBM Canada Ltd� and by the New York State Center for Advanced Technology in Computers and Information Systems�



� Introduction

A multi�user software development environment
�SDE	 supports collaboration among multiple partici�
pants in large�scale software engineering projects� It
provides a repository in which source code� object
code� documentation� test cases� etc� reside� with some
form of concurrency control to coordinate access to
shared 
les� It integrates a collection of tools� rang�
ing from editors and compilers to con
guration man�
agers and modi
cation request systems� and generally
tracks the progress of the project� A subclass of SDEs�
called process�centered environments �PCEs	� in addi�
tion provide some formalism through which a process

may be speci
ed � basically a partial ordering among
software engineering tasks� constraints and obligations
of those tasks� and the 
les and tools used in the
tasks ��� The generic PCE kernel is parameterized by
the desired process� and the same PCE can support a
wide range of di�erent processes�

Software engineers are well�known for their long
working hours� some of which can be conducted at
home using dumb terminals and modems� This mode
of operation is relatively easy for an SDE to support
� if one does not mind giving up many of the advan�
tages of modern workstations� notably the large graph�
ics displays� In theory� a full�scale workstation could
be installed at home� but conventional modem speeds
make it infeasible to treat this workstation as just any
other node on the network� Low bandwidth serial
line protocols such as SLIP and PPP are inadequate
for maintaining a sophisticated display or transferring
large 
les for local tool manipulation� X�� based pro�
tocols such as XRemote �� and LBX �� will maintain
higher throughput via a serial line� but may still be
too slow for interactive usage� To date� the SDE com�
munity has nearly ignored the possibility of o��site ac�
cess� and the best that can be expected is a TTY user
interface simulating the capabilities of the standard
�graphics�based	 user interface accessible only to users
communicating over a local area network�

The advent of mobile computing thus introduces a
new challenge for SDEs� and an exciting opportunity�
Laptop or notebook computers provide essentially the
same power as desktop workstations� but with low�
perhaps varying bandwidth � and often operating
in a completely disconnected state for arbitrary peri�
ods of time� The challenge is how to incorporate this
emerging technology into multi�user environments that
normally rely on �at least	 a shared network 
le sys�
tem� The opportunity is to completely rethink SDE
architectures to consider the full spectrum of network�
ing possibilities� multi�site as well as o��site� gigabit
down to zero bandwidth� during normal operation�

� Laputa Overview

In the Laputa project� we are primarily investigat�
ing the problems of disconnected operation� when a
software engineer removes a notebook computer from
the network for a period in order to conduct work o��
site� �In the related Oz project� we are studying ge�
ographically distributed operation over a high�speed
network connecting multiple sites ���	 We assume the
user restores the connection eventually� to merge the
�partially	 completed work with the ongoing e�orts of
other personnel collaborating on the same large�scale
project� We have chosen the PCE subclass of SDEs�
where we can exploit a prede
ned process to partially
automate the selection of 
les to download prior to
disconnection and to structure the o��line work as a
well�understood fragment of the overall process�

Laputa is being implemented by modifying the
Marvel ��� environment� in which the process is de�

ned by a set of condition�activity�e�ects rules ���
An instance of Marvel represents its process internally
by a rule network� whose links indicate possible for�
ward and backward chains between rules related by a
common predicate ��� When a user requests to ex�
ecute a particular software engineering task� Marvel
employs the network to enforce and automate the sub�
process involving the rule corresponding to that task�
If the rule�s condition � a complex logical clause �
is not already satis
ed� backward chaining attempts to
execute other rules� one of whose e�ects might satisfy
the original rule�s condition� Its activity� usually in�
vocation of an external tool� cannot be initiated until
the condition is true� After an activity completes� one
of the rule�s e�ects � each a sequence of predicates
� is asserted� and forward chaining triggers any other
rules whose conditions have now been met� There are
multiple disjoint e�ects to re�ect the multiple possible
results of a tool invocation �i�e�� various success and
failure cases	�

Each participant in a process interfaces to the sys�
tem through a separate client� which supplies the user
interface and forks individual tools� The clients are
coordinated by a server that incorporates the process
engine and the shared 
le repository ��� The standard
client�server protocol is for the client to display the
repository in graphical format� the user selects from
the task menu and clicks on the desired arguments�
and then the client transmits this information to the
server for any needed backward chaining� To execute
an activity� the server submits the tool invocation in�
formation back to the client� and goes on to accept the
next message from its input queue� After terminat�
ing the tool execution� the client returns the results to
the server� which eventually carries out any consequent



forward chaining�
In the Laputa extension of Marvel� we are devel�

oping an expanded client that takes over the behavior
of the server during the time when the computer ex�
ecuting that client is disconnected from the network�
This client maintains a local� single�user process engine
and 
le manager that duplicate portions of the rule
network and repository from the main server� These
are populated in anticipation of explicit disconnection�
and any changed 
les will be reintegrated during later
reconnection�

� Pre�Fetching
Disconnected operation is achieved through intelli�

gent 
le pre�fetching� In order for pre�fetching to be
e�ective in Laputa� we have formulated a list of re�
quirements that the system must adhere to�

�� Be able to pre�fetch a working subset of 
les such
that the user may continue development locally�

�� The fact that 
les have been copied to a discon�
nected Laputa client should not hinder the work
of other users�

�� Inconsistencies between local copies of 
les and
those in the central repository must be trackable�

Disconnected operation supported through 
le pre�
fetching is not a new area of research� however pre�
vious systems ��� �� �� were unable to draw upon
the detailed application semantics inherently available
from PCEs such as Marvel� We see three possible ap�
proaches to the choice of 
les to pre�fetch� the last of
which is a novel contribution of this research�

�� Manual� A user supplies an explicit list of 
les to
be pre�fetched�

�� Heuristic� The system maintains statistics about
each user�s past e�orts� and assumes the same 
les
are needed for future work�

�� Process�based� A user supplies an explicit list of
tasks to be carried out while disconnected� and
the system analyzes the process de
nition to de�
termine the 
les required for those tasks� their pre�
requisites and their consequences�

All three methods of selection will be implemented
in Laputa� although manual and heuristic selection
have major limitations�

An entirely manual approach puts the full burden
of 
le selection on the user� If a critical item is dis�
covered to be missing after a portable computer has

broken its network connection� the local development
e�ort may come to a halt� While we assume a user
will be able to identify at a high level what type of
work is desired to be accomplished during a planned
period of dis�connectivity� a user may not always cor�
rectly identify all support 
les� An example would be
a software engineer who pre�fetched some �C� source

les to edit� but neglected to pre�fetch all of the header

les required to recompile the source 
les� In a large
project� it would be easy for some needed 
les to be
forgotten� hence stalling development�

Pure heuristic selection assumes inertia on the part
of the user� That is to say� the system generally pre�
pares for a user to continue doing essentially the same
work while disconnected that was recently being per�
formed while connected� There is a tradeo� here be�
tween biasing the heuristics towards pre�fetching too
little versus too much� If the user does not plan to
repeat exactly the same task �which may have already
been 
nished	� the materials available may not be suf�

cient for the new work� Yet on a portable machine
with limited disk space� we would like to prune out all
unnecessary 
les from the local disk in order to pre�
serve the precious commodity�

Process�based selection addresses the problems en�
countered with manual and heuristic selection� How�
ever� the process�based approach is not as simple as it
sounds� Practical industrial�scale processes are com�
plex� with numerous opportunities for choice or it�
eration ���� The transitive closure of consequences
emanating from a process step can be immense� and
instantiating each enclosed task with the appropri�
ate 
les could mark most of the repository for pre�
fetching� Combining process knowledge with heuristics
from previous access patterns is thus useful to prune
the branching paths� producing the subset of 
les most
likely to be needed� We always pre�fetch 
les required
to ful
ll any constraints for a given task before those
required for the obligations following that task� The
ordering is meant to assure that a user has all 
les
required to perform a desired task� at the possible ex�
pense of tasks to be initiated after the original task
had completed�

For example� in the Marvel context it seems appro�
priate to maintain statistics on which of the multiple
e�ects of a rule has been selected most frequently� with
respect to this speci
c user and�or the arguments de�
sired for the originating task� to restrict the expected
forward chaining to a manageable level� When the sys�
tem guesses incorrectly� the forward chaining must be
delayed until reconnection� The degree to which 
le se�
lection is pruned can also be adjusted to accommodate



the varying size of a local disk� e�g�� by not completing
even the most likely forward chaining path if the disk
is too small and considering multiple paths if there is
more free space�

� Concurrency Control

The obvious approach to concurrency control in
this context would be the �checkout� model found in
most version control tools and some modern database
systems �e�g�� ���� ��	� Each pre�fetched 
le would
be locked in shared or exclusive mode� depending
on whether it is only to be read or possibly may be
updated during the disconnected process fragment�
These locks would be maintained persistently until
later reconnection and �checkin��

But a more �exible approach is desirable for some
software engineering applications ���� Fortunately� in
addition to being parameterized by the desired process�
Marvel includes a sophisticated approach to concur�
rency control whereby new lock modes� compatibility
among lock modes� and resolution of locking con�icts
can also be de
ned on a project�speci
c basis ��� ���
We exploit these facilities to support the Laputa dis�
connected client�

Read�only 
les can be locked in a new dirty read

mode and replicated on the Laputa client� unlike
shared mode� dirty read is de
ned to be compati�
ble with the exclusive mode so that other users can
continue to work on the 
le� An obvious example of

les that could be locked in dirty readmode are �C�
header 
les that the user does not intend to edit� but
which are needed to compile a modi
ed �C� source

le� The use of the dirty read lock would allow other
users to make modi
cations� and the disconnected user
would continue to use the outdated version of the 
le
until reintegration occurred�

Write�able 
les can be locked in one of two modes�
creative exclusive or generated exclusive� The
Laputa extension of Marvel allows a process archi�
tect �the person charged with writing the process
de
nition	 to describe a task as either creative or
generated� A creative task is one that involves
an interactive tool that produces a valuable product�
such as an editor or a drawing program� These tasks
are di�erentiated from generated tasks whose output
can easily be reproduced without direct user input�
generated tasks will typically read in one or more
input 
les� process the input� and produce one or more
output 
les without modifying the inputs� Examples of
generated tasks are assembling� compiling� and link�
ing because the tools used in these tasks can easily
be invoked to re�create their output� When a 
le is

yes

yes

yes

yes

yesyesyesyes

no

no

no no

no

no no

no

SDRGXCX

S

DR

GX

CX

S
DR
GX
CX = Creative Exclusive

= Generated Exclusive
= Dirty Read
= Shared

Figure �� Laputa lock matrix

pre�fetched in a write�able mode� if the task that re�
quires the 
le is creative� then the 
le is locked in
the creative exclusive mode� Otherwise the 
le is
locked in generated exclusive mode�

The two exclusive modes are useful during rein�
tegration� Files locked in creative exclusive mode
are always �dominant�� i�e�� they will always be con�
sidered the most recent copy of a 
le and so can al�
ways safely replace older versions in the shared 
le
repository upon reintegration� Because generated

tasks invoke tools that read input 
les locked in dirty

read mode� some caution must be exercised when re�
integrating these 
les� to assure that all generated

les are consistent with their respective input 
les as
found in the repository� The lock matrix shown in 
g�
ure � summarizes the compatibility between the vari�
ous lock modes relevant for pre�fetched 
les�

� Reintegration
A network connection can be re�established by

the disconnected user at any time desired� at which
point reintegration begins� Reintegration 
rst detects
any changes between the shared 
le repository and
the local copies locked in dirty read or generated

exclusive mode� If no di�erences are found� the 
les
locked in both creative exclusive and generated

exclusive modes can be presumed valid � and are
copied into the repository� overwriting the previous
versions�

But if some shared 
les had indeed changed� then
the reintegration occurs in four stages�

�� All 
les locked in creative exclusive mode are
copied into the shared repository� replacing previ�
ous versions�



�� All 
les locked in generated exclusive mode
that are dependent upon 
les locked in dirty

read mode� which in turn are di�erent from
the versions stored in the shared repository� are
deleted� We say that a dependency exists between
two 
les� when one 
le is read in as input to a tool
that produces the other 
le as output�

�� All 
les locked in generated exclusive mode�
which are dependent upon 
les locked in
generated exclusive mode but which were
deleted in step �� are deleted� This step iterates
through the complete transitive closure�

�� All remaining 
les locked in generated

exclusive mode are presumed to be valid and
are copied into the shared repository�

Once all of the 
les updated in the Laputa client
have been copied into the main repository� all 
les
which were locked in generated exclusivemode and
deleted in steps � and � are regenerated by the pro�
cess� This step is possible because only 
les generated
by tools �without direct user intervention	 have been
deleted� The process engine is thus capable of trig�
gering the appropriate tasks to regenerate all of the
missing 
les� 
nishing reintegration�

� Example
The example in this section� although necessarily

abbreviated� is intended to be typical of Laputa us�
age� We start by presenting a piece of a sample soft�
ware development process� The process de
nition is
written in a language similar to the one supported by
Marvel� but the syntax here is intended to be more
readable� We have also added a few features speci
�
cally for Laputa� as noted below�

The compile rule in 
gure � operates on �C� source

les� called cfiles� The condition on 
ring the rule
is that the 
le has not already been compiled� and
that the 
le is �referenced�� Referencing in this con�
text refers to analyzing a cfile to determine the set
of header 
les that it will include upon compilation�
There are two possible e�ects of this rule� correspond�
ing to either success or failure by the compiler�

The edit rule in 
gure � is used to edit �C� source

les� The condition on 
ring this rule speci
es that
the 
le must be �reserved� and that the person who
is trying to edit the 
le must be the same person who
reserved the 
le� The binding section of the rule 
nds
all executable 
les derived from the cfile� Aside
from the obvious e�ects such as changing the 
le�s
timestamp� all executable 
les that were bound to
the exefiles variable are marked as Not Built� It

rule COMPILE� cfile

conditions�

cfile�compile�status � ��Not�Compiled���

cfile�reference�status � ��Referenced���

action� generated�

return�value � compile cfile�

effects�

if return�value � Error

cfile�compile�status � ��Error���

else cfile�compile�status � ��Compiled���

Figure �� Compile Rule

is important to note that this rule�s action �activity	 is
creative as opposed to the other rules shown� which
are generated�

The reserve rule in 
gure � is used to reserve a 
le
from a version control system such as RCS ���� �Note
that the use of such a tool is orthogonal to the con�
currency control system and lock compatibility matrix
supported by the Marvel kernel� and its use in check�
ing 
les in and out of a Laputa client� In particular�
an entire RCS delta 
le could potentially be copied
by Laputa during pre�fetching and reintegration� just
like the input and output arguments of any other tool�	
The condition to 
ring this rule is that the 
le being
reserved is currently �available�� and the e�ects change
the reservation status and holder attributes of the 
le�

The reference rule in 
gure � 
nds all header 
les
that a given cfile includes� The list of header 
les
is then stored in the headers attribute for use by the
compiler�

The build rule in 
gure � 
rst checks to make sure
that an executable 
le does not already exist� to avoid
redundant work� and that all of the object code needed
to build the executable is available� The test rule in

gure � simply veri
es that an executable 
les exists�
and then runs it through a test sequence�

A software engineer following a process like the
one described above may wish to disconnect from
the network� This user would give Laputa a list of
rules instantiated with their arguments� indicating the
planned task� and then the system would determine
the other rules that might need to be 
red to satisfy
the conditions as well as the other rules that might be
triggered by the e�ects�

To satisfy the edit rule� the 
le must be reserved by
the current user� If this condition is not already met�



rule EDIT� cfile

conditions�

cfile�reservation�status � ��Reserved���

cfile�reservation�holder � Current�user�

action� creative�

edit cfile�

bindings� exefiles � all EXEFILE such that

linkto	cfile
 EXEFILE��

effects�

cfile�compile�status � ��Not�Compiled���

cfile�time�stamp � Current�time�

cfile�referenced � ��Unreferenced���

for all exefile in exefiles

exefile�build�status � ��Not�Built���

Figure �� Edit Rule

rule RESERVE� cfile

conditions�

cfile�reservation�status � ��Available���

action� generated�

checkout cfile�

effects�

cfile�reservation�status � ��Reserved���

cfile�reservation�holder � Current�user�

Figure �� Reserve Rule

rule REFERENCE� cfile

conditions�

cfile�reference�status � �Unreferenced���

action� generated�

headers � find�dependencies cfile�

effects�

cfile�headers � headers�

cfile�reference�status � ��Referenced���

Figure �� Reference Rule

rule BUILD� exefile

bindings� cfiles � all CFILE such that

linkto	exefile
 CFILE�

conditions�

exefile�build�status � ��Not�Built���

for all cfile in cfiles

cfile�compile�status���Compiled���

action� generated�

� the object code file is treated as

an attribute of the source file �

return�value � link exefile cfiles�obj�

effects�

if return�value � Error

exefile�build�status � ��Error���

else exefile�build�status � ��Built���

Figure �� Build Rule

rule TEST� exefile

conditions�

exefile�build�status���Built���

action� generated�

test exefile�

Figure �� Test Rule



the system attempts to 
nd other rules whose execu�
tion may satisfy the initial rule� An inspection of the
rule network indicates that the reserve rule is able to
satisfy the reservation constraint of the edit rule� La�
puta has two options� it may 
re the rule now� or it
may pre�fetch all of the 
les that are needed to 
re the
rule after the client has been disconnected� Laputa

checks the type of action that is taken with the task�
and if the action is generated� then it is performed
prior to disconnection� Long duration tasks such as
editing are typically creative� forcing the system to
pre�fetch additional 
les to support the activity during
disconnected operation� In this case� the reserve ac�
tion is generated so Laputa reserves the 
le while
there is still a connection to the central repository�
reducing the number of overall 
les that need to be
pre�fetched�

With the edit rule�s condition satis
ed� the system
moves on to determines the activity type of the edit

action� We see from 
gure � that the edit rule is a
creative task� so Laputa pre�fetches the �C� source

les onto the portable machine�s local disk�

Once a user has 
nished editing a 
le� the e�ects
of the edit rule are asserted� satisfying the conditions
of the reference rule� which in turn forward chains to
the compile rule� The possible forward chains are sim�
ulated before disconnecting from the shared repository�
so Laputa can pre�fetch all 
les that are needed for
these two tasks �the �C� source and its header 
les	�
The �C� 
le has already been pre�fetched for the edit
rule� and is locked in creative exclusive mode� but
the header 
les are only used as inputs to generated

tools� so they are locked in dirty read mode� The
system continues to explore its rule network and pro�
ceeds to pre�fetch those 
les that are needed for 
ring
the build rule and the test rule�

Once 
le pre�fetching has concluded� the user dis�
connects the portable workstation from the network
and is free to continue development� The user can edit
�C� code� compile the 
les� build new executables� and
test the code changes� All of the object code and exe�
cutables produced during the disconnected period are
locked in generated exclusivemode� and the source

les are locked in creative exclusive mode�

When the user is ready to reintegrate� a network
connection is reestablished� First� all of the modi�

ed �C� 
les that were locked in creative exclusive

mode are copied from the Laputa client into the main
repository� Then� all of the dirty read 
les are com�
pared against the copies in the repository to check for
di�erences� If none are found� then the object code and
the executables locked in generated exclusivemode

on the disconnected client are also copied into the
main repository� If there are discrepancies between the
repository and the 
les locked in dirty read mode�
then all 
les which have dependencies upon the incon�
sistent 
les are deleted� Then the process is charged
with regenerating all of the deleted 
les� in the central
repository completing the reintegration�

� Status
The Laputa implementation is currently in

progress� The initial platform for the notebook com�
puter will be a SparcBook � with ���MB disk� run�
ning SunOS ������ Marvel ��� itself consists of about
������� lines of C� lex and yacc� and runs on SparcSta�
tions� DECStations and IBM RS����s� It was released
in March ����� and has been licensed to over 
fteen in�
stitutions to date�

	 Contributions
A related approach was taken in the Sun Network

Software Environment ���� A user would select a soft�
ware component to check out� and all of its constituent

les were �acquired�� The user was then able to work
independently on the 
les in the component� Other
users were free to �acquire� the same software compo�
nent� increasing parallelism� On request or at �recon�
ciliation� time� the system detected any changes in the

le repository from the user�s workspace� and copied
the new versions of the checked out 
les� A diff�like
tool assisted the user in merging the updated 
les with
their newer versions�

Numerous other SDEs employ some form of check�
out model for concurrency control� but we know of
none besides Laputa that either exploits the software
process to assist in selecting 
les to be checked out or
that permits disconnected operation�

Acknowledgements

We would like to thank Dan Duchamp� who initially
interested the authors in the problems of mobile com�
puting�

References
�� �nd International Conference on the Software

Process� Continuous Software Process Improve�

ment� Berlin� Germany� February ����� IEEE
Computer Society Press�

�� David Cornelius� XRemote� A Serial Line Proto�
col for X� In �th Annual X Technical Conference�
January �����

�� Jim Fulton and Chris Kent Kantarjiev� An Up�
date on Low Bandwidth X �LBX	� A Standard for



X and Serial Lines� Technical Report P���������
Xerox Palo Alto Research Center� February �����

�� Israel Z� Ben�Shaul� Oz� A Decentralized Pro�
cess Centered Environment� Technical Report
CUCS�������� Columbia University� Department
of Computer Science� April ����� PhD Thesis Pro�
posal�

�� Gail E� Kaiser� Peter H� Feiler� and Steven S�
Popovich� Intelligent Assistance for Software De�
velopment and Maintenance� IEEE Software�
���	������� May �����

�� George T� Heineman� Gail E� Kaiser� Naser S�
Barghouti� and Israel Z� Ben�Shaul� Rule chain�
ing in marvel� Dynamic binding of parameters�
IEEE Expert� ���	������� December �����

�� Israel Z� Ben�Shaul� Gail E� Kaiser� and George T�
Heineman� An Architecture for Multi�User Soft�
ware Development Environments� Computing

Systems� The Journal of the USENIX Associa�

tion� ���	�������� Spring �����

�� J� S� Heideman� T� T� Page� R� G� Guy� and G� J�
Popek� Primarily Disconnected Operation� Ex�
periences with Ficus� In Second Workshop on

Management of Replicated Data� IEEE� Novem�
ber �����

�� Mahadev Satyanarayanan� James J� Kistler�
Puneet Kumar� Maria E� Okasaki� Ellen H� Siegel�
and David C� Steere� Coda� A Highly Avail�
able File System for a Distributed Workstation
Environment� IEEE Transactions on Computers�
����	��������� April �����

��� Carl D� Tait and Dan Duchamp� Detection and
Exploitation of File Working Sets� In ��th In�

ternational Conference on Distributed Computing

Systems� pages ���� IEEE� May �����

��� Gail E� Kaiser� Steven S� Popovich� and Israel Z�
Ben�Shaul� A Bi�Level Language for Software
Process Modeling� In ��th International Con�

ference on Software Engineering� pages ��������
Baltimore MD� May ����� IEEE Computer Soci�
ety Press�

��� M� J� Rochkind� The Source Code Control Sys�
tem� IEEE Transactions on Software Engineering�
SE����������� �����

��� Won Kim� Nat Ballou� Jorge F� Garz� and
Darrell Woelk� A Distributed Object�Oriented

Database System Supporting Shared and Private
Databases� ACM Transactions on Information

Systems� ���	������� January �����

��� Naser S� Barghouti and Gail E� Kaiser� Con�
currency Control in Advanced Database Applica�
tions� ACM Computing Surveys� ����	���������
September �����

��� George T� Heineman� A Transaction Manager
Component for Cooperative Transaction Models�
Technical Report CUCS�������� Columbia Uni�
versity Department of Computer Science� July
�����

��� Walter F� Tichy� RCS � a system for ver�
sion control� Software 	 Practice 
 Experience�
����	��������� July �����

��� Evan W� Adams� Masahiro Honda� and Ter�
rence C� Miller� Object Management in a CASE
Environment� In ��th International Conference

on Software Engineering� pages �������� Pitts�
burgh PA� May ����� IEEE Computer Society
Press�


