Assessment of the Fluorescence and Auger Database Used in Plasma Modeling

Savin, Daniel Wolf; Gorczyca, T. W.; Kodituwakku, C. N.; Korista, K. T.; Zatsarinny, O.; Badnell, N. R.; Behar, E.; Chen, M. H.

We have investigated the accuracy of the 1s vacancy fluorescence database of Kaastra and Mewe resulting from the initial atomic physics calculations and the subsequent scaling along isoelectronic sequences. In particular, we have focused on the relatively simple Be- and F-like 1s vacancy sequences. We find that the earlier atomic physics calculations for the oscillator strengths and autoionization rates of singly charged B II and Ne II are in sufficient agreement with our present calculations. However, the substantial charge dependence of these quantities along each isoelectronic sequence, the incorrect configuration averaging used for B II, and the neglect of spin-orbit effects (which become important at high Z) all cast doubt on the reliability of the Kaastra and Mewe data for application to plasma modeling.


Also Published In

The Astrophysical Journal

More About This Work

Academic Units
Astronomy and Astrophysics
Published Here
March 25, 2013