
Valued Redundancy

Calton Pu, A rraham LfjJ, Shu-Wit' ChE n, Fl'cdcrick !\'or:, Jac Hna

Department of Computer Science

Colum bia r ni \,ersity

:\ew York. :\Y 10027

Technical Report :\0. (TCS--1.,);)-89

Abstract

Replicated objects inrrease distributed s:.-stem pf?rformance and availabiHty. An object is

more valuable to the Sy"Tf'111 if it cOlllrihules more to :o.yslem performance (e.g .. it is frequently

accessed) and availability. Similarly. an object is less \'aluable if it is expensive to maintain

(e.g .. it is a large object). By replicating only the most \'aluable objects we use redundancy to

maximize system performance and availability at low cost. A simulation study of a distributed

main-nlemory database shows substantial performance and availability gains with valued redun­

dallcy.

Contents

1 Introduction

2 The Idea And Its Implementation

2.1 \'alued Redundancy

2.2 Implementation Issues

3 Distributed :\lain-~lemory Database

:3.1 :\rchitectural Assumptions ...

:.L2 :"lemory· \femory Rpdulldancy

-i The Simulation Study

·U The Simulation :"fodel

·L2 The Simulation Program.

·1.:3 Performance Results

-1..1 :hailability Result,: .

5 Related \Vork

.').1 Caching ..

Redundancy for Performance

Replication for Availability

Replication Policies.

6 Conclusion

References

1

2

"2

3

.')

6

6

11

12

12

14

14

1-5

15

16

1 Introduction

Data redundancy in centralized systems shows up in two ways. Horizontally. copies of an object

may be placed on storage media of comparable speed. say mirrored disks. for increased avail­

ability. Vertically. copies of an object may appear in storage media with order-of-magnitude

differences in performance characteristics. for example. between main memory and disks. Ver­

. ical redundancy typically increases performance, as in caching or buffering.

Data redundancy in distributed systems naturally combines horizontal redundancy with

vertical redundancy. Since copies are stored on different nodes. accessing a local copy increases

performance while the presence of multiple copies increases availability. The communications

net \vork. however. complicates the an alysis of performa nee and availability gains. since its latency

and bandwidth add more levels of performance differences and its own failure modes. Already

hard questions such as "hou' mClny copies should we keep" and "where do we put the copies"

become even more difficult to answer.

Redundancy for all its benefits has its costs. Poorly managed redundancy can be worse for

system performance than having no redundancy. It is also a common belief that redundant

"ystems with higher a\'ailability will carry a higher price tag. However, we believe that an

integrated redundancy management system can handle both horizontal and vertical redundancy

to achieve improved performance and availability in a distributed system's rich environment.

The redundancy management should minimize the storage cost and the system overhead. at the

same time it maximizes the performance and availability.

Our idea is t'a/ued redundancy. An object's value increases with its usefulness in the system

and decreases with its maintenance cost. By replicating only the most valuable objects (the

cheapest objects that improve system performance a.nd availability the best) we achieve the

redundancy objective of ma.x.imizing the cost/performance ratio of redundancy.

The implementation of valued redundancy requires cooperation of the three existing com­

ponents of a replication mechanism: the location algorithms that find objects and their copies,

the replacement algorithms that manage local storage. and the update propagation algorithms

that keep an object's copies mutually consistent. ~lost of the existing rich literature on data

replication focuses on one of these three components. \'alued redundancy provides the glue that

implements a smart replication policy integrating these three components.

Because the weights in weighted voting [6] are analogous to the values in valued redundancy,

we note here their differences. Weighted voting is an algorithm to maintain consistency among

the copies of an object. Valued redundancy is an approach to manage the degree of redundancy

for replicated data. ~Iore technically, weights are a.<;signed to the copies in weighted voting to

represent the static differences relative to each other, e.g. a heavier weight for a copy on a faster

machine. Values are assigned to the copies to represen t t he dynamic properties relative to other

resources in the system. e.g. a higher value for a copy would keep it longer in the local cache.

2 The Idea And Its Inlplell1entation

2.1 Valued Redundancy

Replication in distributed databases has recei\'ed considerable attention from two groups of

res€>;'i'chers. For those interested in performance. replication decreases system response time

since reading a local copy is faster than reading a remote copy. For those interested in reliability,

replication increases system availability since reading from any of several copies is more likely to

succeed. Frequently. a naive redundancy mechanism for performance reduces system availability

(e.g .. by requiring that all copies be accessible for consistent updates). Similarly. a simplistic

redundancy method for availability reduces system performance (e.g., by requiring the access of

1110re than one copy which worsens response time).

The idea of valued redundancy increases system performance and availability at low cost by

replicating the most valuable objects of the system. Since the redundancy management system

explicitly maintains a replicated object's cost/performance ratio as its value, it is clear that

\'alued redundancy maximizes syst.em performance and availability objectives while minimizing

maintenance cost.

In the calculation of an object's value. we take into account the object's costs. performance

contributions. and performance goals. Important cost parameters include the object creation

costs (in terms of resources consumed) and mai ntenance costs. such as storage, consistent update

across copies and garbage collection. The performance contributions include the access patterns

such as read and write frequency. Finally. the main performance goals are object access time

(averaged over the copies) and the apparent object availability (calculated over the attempted

accesses).

These value calculation parameters are closely related. Between the performance goal of

all object and its performance cOlltributions. we have a positive correlation. For example.

to maximize system throughput we would set high performance goals for frequently accessed

objects. Between the object cost a.nd performance goals. we also have a positive correlation.

For instance. we would carry more copies of an object that is read by many nodes. Between the

object cost and the performance contributions. we ha.ve a trade-off. For example, replica update

cost will be high for objects that are modified often. while queries do not carry additional object

maintenance cost.

2

With valued redundancy. in principle we can handle specific performance goals for each

object. In this paper. we will focus on system·wide performance goals. set in terms of the

average behavior. ~lore concretely. we want a system with high throughput. fast response.time.

and high availability. Valued redundancy will let us concentrate on the objects that have high

performance contributions. replicating them to the extent we can afford. As we will see from

our discussion in the next section on the implementation of \·aJued redundancy, the interaction

between the components will influence the value calculations strongly. Therefore. it is unlikely

I hat one single value calculation formula will be t he best for all the different combinations of

algorithms. Part of our ongoing research is to determine how the value calculations are affected

by the componenb of redundancy manClgement.

2.2 Implementation Issues

\'alue calculations are the glue that holds together the three parts of a redundancy management

system: object location algorithms. replacement algorithms. and consistent update algorithms.

(For a particular redundancy management sy~tem. one concrete algorithm for each component

will do,) Although these components interact strongly with the object value calculations. they

are sufficiently independent to be described individually, In this informal discussion. we empha.

size the fUIlctions of each component rather than rigorously analyze their interactions.

Object location algorithms find the objects Clnd t heir copies in the system. Although we

call them "algorithms" for consistency with the other components of a redundancy management

system. they may use persistent data, such as directories. to store location information. An

example of a pure location algorithm is broadcast. a frequently used mechanism for locating

objects in a network. Since the location a:gorithms can improve their performance with caches.

they may use the redundancy management recursively to store the object or copy location

information.

Redundancy growing unboundedly will eventually exhaust the system resources, in particular

the storage capacity. The decision criteria for choosing the copies to reside at a given level of

memory hierarchy are embodied in the replacement algorithms, named for their similarity with

the page replacement algorithms in virtual memory. For example. Least Recently Used (LRC) is

a weU·known replacement algorithm. The replacement algorithms are invoked when the storage

capacity of a given memory hierarchy (e.g. main memory) is nearly full, to keep the most valuable

objects and throwaway the others.

Consistent update algorithms keep the copies of the same object mutually consistent. ~10st of

the recent data replication work focuses on this component of redundancy management. For ex,

3

ample. ~lajority Voting (also called Quorum Consensus) is a well· known consistent read/update

algorithm that keeps object consistency. Depending on the particular update algorithm, more or

less work is required for each kind of object access .. -\lso. algorithms may become more complex

as more kinds of fail ures (e.g. net work partitions) are considered.

For simplicity. we concentrate on data replication as the main form of redundancy in our

database. Each object is represented by its copies. To read an object. the location algorithm will

point to the (presumed) best copy. The replacement algorithm finds room in the local memory to

qore the copy. And the consistent update algorithm will make sure the copies remain mutually

comistent when the object is modified.

The implementation of valued redundancy impacts primarily the replacement algorithm.

Our "replacement algorithm" no\\' has two parts. the object value calculations and the memory

management. As we will see in the lIext paragraph. object value calculations involves the other

two components a.5 well. The memory management part consists of the resource manager that

uses the object value to decide which objects to replicate and which ones to throwaway.

An object':, \alue calculations may depend on many factors in the system. Each redundancy

management component contributes with the factors it affects. The replacement algorithm. for

example. tabulates the object access patterns such as read frequency. The consistent update

algorithm accumulates useful modification statistics: for instance. a frequently changed object

carries a high maintenance cost and therefore should not be replicated too \\lidely. The location

algorithm keeps interesting object location information; for example. a frequently moved object

increa.5es its value and the probability of being replicated .

. -\fter this abstract discussion on the implementation issues of valued redundancy. we apply

the idea of valued redundancy to a specific and concrete problem to test its validity. The

demonstration environment we have chosen is a distributed main.memory databa.5e (DMMDB).

which we describe now.

3 Distributed Main-~1elllory Database

3.1 Architectural Assumptions

We a.55Ume the architecture underlying the D~!~d DB to be a network of computer systems.

Each node ha.5 one or more moderll microprocessor cpr s (e.g. a 2.) MHz ~1C68030). relatively

large main memory (e.g. 16 ~1Bytes per cpr). and sufficient secondary storage (e.g. magnetic

or optical disks). We a.5sume that the network latency and bandwidth are about an order of

magnitude fa.5ter than the secondary storage (e.g. an Ethernet compared to a current technology

Winchester drive). ~fany modern workstations meet these assumptions.

The key to our database study is the memory hierarchy in the Dl\1MDB. For this study, we

will ignore the CPU cache memory completely. We focus our attention on the memory hierarchy

represented by the local main memory. remote main memory. and the disks. In terms of access

time, there are single order of magnitude differences between the local memory (tenth of a

millisecond). remote memory (millisecond). and disks (tens of milliseconds). If the network is a

bottleneck. then there will be a larger difference bet ween local and remote accesses to memory

dnd disks. We will take this factor into account, but \ ... ·ill not consider this as a significant source

of performance gai ns .. \rc hival storage is another level in t he memory hierarchy postponed to

future study.

In this architecture. we apply valued redundancy systematically along two dimensions. Ver­

tically. each node will manage redundancy in the caching/buffering sense. In the D~1\IDB this

is between the main memory and secondary storage (memory'-disk). Horizontally, the network

will manage redundancy in the data replication sense. In the DM~IDB this is both at the main

memory level (memory-memory) alld at the secondary storage level (disk-disk). ~1uch work

has been done on using the memory-disk redundancy to increase performance (usually called

a buffer. see Section .s.2). Also. many papers have been written on disk-disk redundancy to

increase availability (see Section .).3). Therefore, we will focus on the relatively unexplored area

of memory-memory redundancy and use simplistic algorithms to manage the other two kinds.

3.2 !\1emory-:'v1emory Redundancy

The memory hierarchy between the local main memory and remote main memory is peculiar

to the D~l~IDB. Snooping caches in shared-memory multi-processors are very similar to our

memory-memory redundancy. but the different performance characteristics between the local

main memory and remote main memory ha\'e not been intensely explored.

To focus on the memory-memory redundancy. we simplify the DMMDB. Our model of

D~I\IDB is a set of objects. We assume there is no disk-disk redundancy, i.e., the DM:\fDB

is completely partitioned and each object resides on exactly one disk. Also, the memory-disk

redundancy is managed locally, in conjunction with the memory-memory redundancy. A remote

disk read request requires the object to be read into the remote node's memory before trans­

mission. But the memory (buffer) management for both the memory-memory and memory-disk

redundancies is the same, that it is based on assigned \·alues.

We made a deliberate decision to define the object value as a function of exclusively local

parameters. To maint.ain the accurate value of a global parameter is costly in a distributed

system and even more so when the net work scales up. To use an out-of-date value would seem

to contradict the basic idea of valued redundancy, which intends the object value to reflect the

current situation adaptivel)'. Therefore we will avoid global parameters in valued redundancy

until we solve the maintenance cost problem.

Each object copy in the main memory has a Local rsage Value (LUV). The replacement

algorithm \"'ill keep the objects with the highest LVV in the main memory and throwaway

those with low LC\', From the theoretical point of vie\\', adding up all the copies' LUV gives us

the object's value, It is easy to see that the objects of highest value have the highest degree of

redundancy and are therefore also the most readily available.

To demonstrate the usefulness of valued redundancy, we need to specify the three components

of our redundancy management system. for object location. we use broadcast and individual

replies. which is one of the simplest location algorithms for a LA~-based system. For consistent

update propagation. we use versions [1J. which simplifies concurrency control. Finally, we assume

a homogeneous system in which all the nodes have the same hardware and software.

4 The Silllulation Study

4.1 The Simulation \1odel

\Ve have created a simulation program to evaluate the performance and availability gains from

valued redundancy in the D~l~fDB, Our simulation model abstracts away details from the

0)'1\10B scenario that may not affect the subjects of om evaluation. Therefore, the simulation

model has a fixed skeleton. which is the D~!~10B. and three moveable parts, which are the

components of the redundancy management system described in Section 2.2, namely, the location

algorithm. the replacement algorithm. and the consistent update algorithm. The plan is to plug

in different algorithms and see how they affect the syst.em performance and availability.

The fixed skeleton in our simulation model reflects a network of computers. Each node in

the network contains a CPU. some local memory that can cache a varied number of objects, and

disks. The hardware resources in the system are the cpr. the disks, and the network. Requests

may corne in for each of them and are serviced on a FI FO basis. The software resources in the

simulation model are the cached objects in the local memory. which the replacement algorithm

and consistent update algorithms maintain and the location algorithm uses,

The simulation model has considerable detail and builds more sophisticated services out of

more elementary ones. For example, a remote disk read is composed of a request to the remote

node. a local disk read and a reply to the requester. Besides taking into account the queueing

effects on the hardware resources. we also charge for the use of software resources, such as cache

access and maintenance.

6

To make the results more predictable, we use the most common statistical distributions to

generate the events. A central transaction server creates transactions with exponential inter­

arri al times and distributes them uniformly over the nodes of the DM~IDB. Read and write

transactions are created under binomial distribution using the specified ratio. and they are

always the same (a certain number of reads followed by writes). The hot-set curve represents

the degree of access locality; currently we are using an exponentially decaying curve (a small

hot set getting essentially all of the access).

The simulation is event- based. A transaction is created and queued at a node's CPU. It

consumes its share of cpr and then requests data. (This inverts the real situation but should

make no difference for the simulation.) Then we lise the node's object location algorithm to

ben'ice the data requbts. Essentially we look at local cache. remote cache. local disk and remote

disk in tum. The different locatioli algorithms carr,\' different costs for finding the objects in the

system.

4.2 The Simulation Program

The simulation program that implements the model above is based on the S;\fPL written by

~lacDougall [13], which simulates caching between fast cache memory and main memory. But

the D~J~lDB memory-memory boundary is sufficiently close that we were able to use S~lPL as

is. In our simulation program. his system bus is our network. his cache memory is our main

memory, and his main memory is our disk. There is an independent SMPL queue for each cpr
and disk; there may be more than one network connecting the nodes. each network having its

own queue. All these queues are serviced according to FIFO discipline.

In addition to the three redundancy management components, the simulation program can

also easily accommodate changes in some other important parameters. For example, the input

to the simulation includes the distribution of requests over the database. Currently we are using

a negative exponential distribution to determine object use frequency. This reflects a hot-set

curve, whose parameters can be luned ea.sily. Of course. the LVV calculation formula is easy to

change and the effects tested.

The run-time simulation parameters will expand as the simulation program is refined. Cur­

rently they include:

1. Total number of nodes and number of objects.

2. ~!aximum memory cache size.

3. Read/write request ratio.

cost local local disk cache ac- RPC
parameters disk read write cess overhead

cost
·50ms (disk) ·5·5ms (disk) lms cpr 3ms CPU

val ues

Table 1: Simulation Parameters

.. 1. :\etwork topology (e.g. bus or ring).

:). Cost:o of elementary operations, such as local cache location (Cpe), local disk read (disk),

and messages (network).

Currently. we assume that an update creates an immutable version. which can be replicated

without further concern about replication consistency. Since we want to use valued redundancy

to improve availability as welJ as performance. we will experiment with different algorithms to

maintain replication consistency. such as available copies [3) and regeneration [16].

4.3 Performance Results

\\'e made some additional simplifications with our initial simulation experiments. The read

transactions query only one object and the write transactions update only one object. This

makes the transaction cost uniform and the object creation cost uniform. Although these are

potentially important value parameters. we made those assumptions to study each parameter

in isolation.

Before we discuss our simulation results. we note that the simulation model is very robust

and batched funs of the program (10 each time) produce figures that are very close, usually

within 1% of each other. We will perform the usual statistical analysis for the final version of

the paper.

Our first set of graphs show performance gains due to caching. We have assumed that

the D.\ntDB access is not uniform over the objects. i.e. it exhibits locality of reference. This

phenomenon. called hot .. spots. is often verified in practice. In the simulation program. the

objects are labeled from 1 to n, where n = ·5000 for the curves shown in this paper. Our object

reference pattern is a negative exponential curve shown in figure 1. The graphs in figures 2

and 3 show a simple value calculatioll algorithm for baseline study. The algorithm is essentially

\ot frequently l'sed with aging. Each object access increases its value by a fixed amount; and

periodically all the object values are divided by a fixed factor.

8

negative exponenual
object reference fr~uency

(umes)

JJI read lransacuons
~1ean Response Ttme

(mdltseconds)

150

100

50

so

-0 \CXX) :!CXX) 3000

objeCt number

Figure 1: Object Access Pattern

5000 objects
W6112ms dotted
r.x!8/l5ms dashed
IX/1O/20ms solid

5000

-O-r-------------.-------------.------------.---
-0 500 1000 1500

cache sIze (objects per node)

Figure 2: All Read Tra.nsactions with Caching

9

50<;t read transactions
\1ean Response Time

(millIseconds)

300

200

100
\

\

- - - --

5000 objects
ty·J6112ms dOlted
lx/8115ms dashed
tx/l0l20ms solid

--------------------: --.:...---~ ":"".:,." ... --+- - - - - =-.=-.=-.~.~ ,

-O-r------------r-----------,-----------~--
-0 500 IOoo ISOO

cache size (objects per node)

Figure :3: Half Read Transactions with Caching

Figure 2 shows the mean response time of read-only transactions as a function of cache size.

The database consists of .5000 objects distributed over 10 nodes (.500 objects each). For each

~imulation run. a node stores from 12 to 1600 objects in its main memory cache. Other important

system parameters are included in table 1. The curves represent different loads on the system,

from transactions arriving at every 6ms (exponentially distributed transaction interarrival rates,

with the number being the mean) to 20ms. \\'e can see that the mean response time decreases

remarkably with increased cache size. Since write transactions do not benefit from caching, with

only .50% of the transactions writing we have less benefits from caching, shown in the figure 3.

The system cost parameters can be changed for each simulation run. We have chosen the

values according to the current workstation architecture. Each transaction consumes lOms of

cpr in its user code. Each message over the network takes O .. 5ms to be delivered (occupies the

network for that amollnt of time). Local cache requests take Ims of CPU to be serviced. This

explains the slight downward curve at cache size zero, since we avoid the cache management

cost when the cache is turned off.

So far. we have shown that caching wins when there are hot-spot. Now we want to show that

valued redundallcy wins even when simple replacement aJgorithms do not. One way to defeat

the replacement algorithms is to make the object access uniformly distributed. eliminating the

10

hot-spot. The only value parameter we will consider is the distinction between read access

(redundancy desirable) and write access (redundancy undesirable). We have modified the page

replacement algorithm to increase object value for read and decrease it for write. if not a local

object. Therefore. even though the object access is randomly distributed over the database, the

object value will be able to distinguish those to be replicated from the others. Cnfortunately.

at the time of this writing the simulation program wa." not able to produce the results due to

programming problems.

Our current investigation IS much broader than the simulation program. The additional

directions include the cost factors. the usage patterns. and the performance and availability

goals. Important cost factors that we want to explore are object size and object creation cost.

Disparate usage patterns such as reference locality and sequentiality can be easily modeled with

values. Performance goals. such a5 guaranteed response times can be assured with object values

high enough to keep them in the main memory. Availability goals can be achieved with the

same mechanism.

4.4 Availability Results

\\'e have instrumented the simulation program to coUect availability data.. The basic idea is to

use the memory-disk redundancy inherent in a D:-'I:-'IDB to continue answering queries even when

nodes go down. Even though Di-.I:-fDB is relatively new, this kind of memory-disk redundancy

exists in many existing distributed systems. For example. in a client/server environment. the

client cache could be used to improve system availability when the server goes down. It is

necessary that the client be able to answer queries. v .. ·hich is the case with a D1n1DB.

At this moment. we have a very simple failure model. The nodes are fail-safe (either up or

down) and we have not considered network partitions. The simulation program starts up running

normally. with all the (10) nodes sending and receiving transactions. After it has reached the

!lIable slate, with the caches filled, we "crash" a fixed number of nodes. The crashed nodes stop

sending transactions and refuse to answer any queries regarding the data residing on them. But

the up nodes can answer the queries if they have the object in memory cache.

As it turns out. since the memory ca.che contains the most valuable objects. the system

(read) availability increases significantly as the cache size increases. Because our D~LMDB does

not include any redunda.ncy at the disk level. write avttilability is limited by the accessible nodes.

With object redundancy at the disk level and a consistent update algorithm such as regeneration

[16]. we would have system write availability as high as the read availability.

Figure..j shows the a\·ttilability as a function of cache size and the number of nodes down. The

11

Cache Size (Objects)

1

0.9
0.8

0.7

0.6

Availability

#Nodes Down

Figure 4: . .\vailability vs. Cache Size \IS. Dm'.'n Nodes

simulation parameters are exactly the same a.s in Section 4.:3. We show only the results for the

transaction interarrival time of 20111s; the simulation results for the other transaction interarrival

times with manageable queueing effects (from ISms to 35ms) are essentially the same. Figure

S shows the increa.se in availability due to memory-memory redundancy. a.s a function of cache

size and number of down nodes. Both figures show availability gains with a simple caching

algorithm. We plan to perform further availability experiments with object values that take this

factor into account.

5 Related \Vork

5.1 Caching

In this section we summarize the cache work in the context of computer architecture caching

and distributed file system caching .. -\nother relevant area is database query value caching, to

be discussed in the next section (.).2).

Traditional architecture caching is a good example of vertical redundancy. In a centralized

system. evaluation of caching mechanisms studies only the interactions between the slow main

memory and the fast cache memory. The situation changes in multi-processor systems that

12

Availability Increase

0.4

02

2

#Nodes Down

5
Cache Size (ObjeC1S)

Figure .j: Caching Increasf's .-\ vailabiljty

share a common memory bus. where each processor may have its own cached value of a memory

location. Since the memory is shared. we need to keep the caches consistent. in a problem

called cache coherence. A typical solution for cache coherence is called snooping, in whkh each

processor observes the memory bus traffic to find values of interest. Several snooping protocols

[2J (such as those in DEC Firefly and Xerox Dragon) use direct cache-cache transfer for shared

blocks (if a requested block is in another cache. the block is loaded from that cache. not from

main memory). In this respect. our memory-memory redundancy is analogous to snooping

caches. but at a higher level in the memory hierarchy.

A common way to organize a distributed file system is to make it a server and the readers

clients. In the Sprite experimental network operating system [14]. blocks of files are cached

in the main memory of both the server and the client. Sprite caches data on demand and

uses the Least Recently llsed replacement algorithm. Another example is the Andrew [9] file

system. which caches entire files on local disks. However. neither Sprite nor Andrew make

explicit use of the memory-memory redulldancy provided by the servers caching from their local

disks. Sprite emphasizes redundancy between the client memory and server disk, while Andrew

emphasizes disk-disk redundancy between the server and clients. Valued redundancy can be

seen as a generalization of this kind of caching. since we take into account not only read and

13

write frequency but also other parameters ~uch as the cost of object creation.

5.2 Redundancy for Performance

A buffer management system speeds up data access in databases as it does for operating systems

in general. However. specialized database buffers [4. 5] can take advantage of the data structures

and access patterns in a database management system. ~fost of the database buffer work has

concentrated on the memory·disk bOllndary in centralized databases.

Redundancy improves database performance since queries can be answered more quickly.

An example of more recent work is the idea of field replication [18]. which refines the replication

granule to individual data fields. Since a frequently accessed data field may be used in conjunc­

tion with several other fields. grouping a copy of the frequently used field with each of them will

eliminate some I/O operations and functional joins. linlike valued redundancy, field replication

was presentlO'd as a static redundancy method.

Directly caching previously calculat.ed query results also increases database perfonnance.

PACI\RAT 110] stores the interml>diate results of queries on disk (called a derived database)

to shorten the processing of future queries. Periodically PACI\RAT reorganizes the derived

database to adapt to current query patterns. Another example is database procedures. which

stores queries in the database. A performance analysis of database procedure processing til shows

that redundancy wins depending on factors such as frequency of updates and size of objects.

Yalued redundancy takes in to accou n t these factors (and other relevant ones) to dynamically

adapt to ma:umize the performance benefits with minimal cost.

5.3 Replication for Availability

On the availability side. most of the work focuses on consistency maintenance algorithms, such

as weighted voting [61, available copies [3]. or regeneration [161. when nodes go down or the

network partitions. As noted in the discussion on the implementation issues (Section 2.2).

valued redundancy is orthogonal to the consistent update algorithms.

Another active area of replication research is the analysis of availability provided by the

update propagation algorithms (for example, see [12]). Our work uses simulation to evaluate

the availability provided by memory· memory redundancy. independent of the consistent update

algorithms .. \ natural extension of our work will study the influence of the three components in

the redundancy management model (including valued redundancy) on system availability.

14

5.4 Replication Policies

Good memory allocation is important for performance in shared-memory multiprocessors. Since

optimal static allocation is difficult. dynamic allocation may be the best solution. One example

is the pivot mechanism [17] which regulates dynamic migration of pages. The pivot mechanism is

implemented as a set of counters per memory page which measure the "direction of imbalance:'

\rhen a page's counters reach a preset value. that page is migrated one neighbor in the appro­

priate direction. The use of the counters is very similar to that of \'alues in valued redundancy,

the differencp being that the counters are used exclusively for adaptiveness whereas values can

be used to main! ain the correct degree of redundancy and to incorporate adaptiveness. The full

range of information provided by values helps the migration policy to make better decisions [8].

Valued redundancy assumes that the database access exhibits some kind of regularity. This

assumption is made by aU research on virtual memory, caching and buffering. In the database

field. this assumption translates into the existence of hot-spots. Empirically, different kinds

of regularity haY€' been observed in oatabase transaction trace analysis work. A. recent trace

analysis [11] made on 2.5.000.000 block references from 3.50.000 transactions shows that several

kinds of beha\'ior (e.g. locality of reference and sequentiality) have been observed. Even though

locality of reference conflicts with sequen tiality. each behavior is stable over a period of five days.

Therefore. the ideal redundancy management system should be able to identify these different

and possibly conflicting kinds of behavior and "lock on" to them. Valued redundancy can do

just that.

6 Conclusion

We have introduced the idea of valued redundancy. The goal of valued redundancy is to replicate

only the most valuable objects in the system. i.e., those that contribute the most to system per­

formance and availability. The object's value explicitly represents its cost/performance ratio for

the redundancy management system. This way. we maximize both performance and availability

while minimizing the redundancy cost.

We have written a simulation program to study the potential performance and availability

gains of valued redundancy in a distributed main-memory database. The simulation models

today's environment of a network connecting many powerful workstations. \Ve have investigated

the memory-memory redundancy between the local memory and remote memory of the database

resident in the main memory of the workstations. Even though we just started taking data, the

results are very encouraging.

1.5

The simulation shows substantial performance and availability increases provided by an inte­

grated redundancy management system. For example. in a database of 5000 objects distributed

uniformly over 10 nodes and object access determined by a negative exponential probability

function (modeling a small number of hot-spots and relatively uniformly distributed access over

the rest of the database). we used a simple aging algorithm to manage a local cache of objects.

for a cache size of 800 objects per node, we obtain an apparent availability of over 90%. even

though 3 nodes have gone down (30% of the database inaccessible). For the same parameters

(but all nodes up). a configuration of all-read transactions runs at the mean response time of

22rns in contrast to non-cache baseline case of the same load that runs at the mean response

time of67ms. In other words. a substantial cache (a total cache size that is 160% of the database

size) can improve the system response time (in this simulation also the throughput) 3 times.

\'aJued redundancy integrates the main components of a redundancy management system:

the object location algorithm. the page replacement algorithm. and the consisten update alg~

rithm. This integration implements a smart replication policy of ma.:cimizing performance and

availability while minimizing the maintenance costs. We are currently exploring the space of

redundancy management systems formed by different combinations of these components and

the interactions between \'alued red undancy and each component.

}duch work remains to be done in performance and a\'ailability analysis. since we have only

begun our sillllllaLioll study. Once we are satisfied t llat we have found a good combination of

algorithms and \'alue calculation formula, we intend to implement the redundancy management

system in the database manager on top of the Synthesis operating system [1.5] being developed

at Columbia.

References

[lJ D. Agrawal and S. Sengupta.

~lodula.r synchronization in multiversion databases: \'ersion control and concurrency con­

trol.

In Proceedings of the 1989 A Co\! SIGMOD International Conference on Management of

Data. Portland, 1989. AC~I/SIGf\IOD.

[:2] J. Archibald and J- L. Baer.

Cache coherence protocols: Evaluation using a multiprocessor simulation model.

A eM Transuction.s on Compuler Systems. ·H -1):27:3-:298. ;-';ovember 1986.

[3J P .. -\. Bernstein and ~. Coodman.

An algorithm for concurrency control and recovery in replicated distributed databases.

16

A CM Transactions on Database Systems, 9(.:1):.:)96-615. December 1984.

[4] W. Effelsberg and T. Haerder.

Principles of database buffer management.

.4 Clvl Transactions on Database Systems. 9(4):560-.)9.5. Decem ber 1984.

[.5] h. Elhard and R. Bayer.

A database cache for high performance and fast restart in dataase systems .

.4 CM Transactions on Database Systems. 9(.:1):.503-52.5. December 1984.

[6] D.h. Gifford.

Weighted voting for replicated data.

In Proceedings of the. Seventh Symposium on Operating Systems Principles. pages 150-162.

AC\l/SIGOPS. December 1979.

[I] E.:\. Hanson.

Processing queries against database procedures: A performance analysis.

In Proceedings of 1988 A C.H SIGMOD Conference on .\/anagement of Data, pages 295-302.

June 1988.

[S] ~1.A. Holliday.

Reference history. page size. and migra.tion daemons in local/remote architectures.

In Proceedings of the Third Symposium on .4 rchitectural Support for Operating Systems and

Programming Languages. pages 104-112. Boston. April 1989.

[9] J.H. Howard. :\.f.L. hazar. S.G. ~Ienees. D.A. :"ichols.]\.1. Satyanarayanan. R.:..'. Side­

botham. and :\1.J. West.

Scale and performance in a distributed file system.

A CJI Transactions on Computer Systems. 6(1):51-81. February 1988.

[10] ~.;-';.hamel.

The ("-se of Controlled Redundancy in SElf-Adaptive Databases.

PhD thesis, Department of Computer Science. rniversity of Colorado. 1985.

[11] .J.P. Kearns and S DeFazio.

Diversity in database reference behavior.

In Proceedings of the International Conference on J/tasurement and Modeling of Computer

SystEms. pages 11-19. AC:\l/SIGMETRICS. !\fay 1989.

[12J D.D.£. Long and J-F Paris.

Regeneration protocols for replicated objects.

Ii'

In Proceedings of the Fifth Inlanational Conference on Data Engineering, pages 538-545,

Los Angeles. 1989.

[13] \1.H. MacDougall.

Simulating Computer Systems.

Computer Systems. \lIT Press. 1987.

[14] \1.~. ~elson, B.B. Welch. and Ousterhout J.h.

Caching in the sprite network file system.

A C'\1 TmTlsactions on Computer Systems. 6(1): 1 :34-1.)4, February 1988.

il')) c. Pu. H. ~Iassalin. and J. Ioannidis.

The Synthesi~ kernel.

Computing Systtms. l(1):11-;32, Winter 1988.

[16] C. Pu . .I.D. ~oe, and A. Proudfoot.

Regeneration of replicated objects: A technique and its Eden implementation.

IEEE Transactions on Software Engineering. 5E·14('):936-945. July 1988.

[11] C. Scheurich and \1 Dubois.

Dynamic page migration in multiprocessors with distributed global memory.

In Procadings of tilt Eighth Intf::rnational Conftrf::Tlce on Distributed Computing Systems,

pages 162-169, Septem ber 1988.

[l~) E. Shekita and \1. Carey.

Performance enhancement through replication in an object-oriented dbms.

In Proceedings of the 1989 A CM SIG,\fOD International Conference on Management of

Data, Portland, 1989. ACM/SIG\10D.

18

