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ABSTRACT

Stochastic Networks: Modeling, Simulation Design and Risk Control

Juan Li

This dissertation studies stochastic network problems that arise in various areas with

important industrial applications. Due to uncertainty of both external and internal vari-

ables, these networks are exposed to the risk of failure with certain probability, which, in

many cases, is very small. It is thus desirable to develop efficient simulation algorithms

to study the stability of these networks and provide guidance for risk control.

Chapter 2 models equilibrium allocations in a distribution network as the solution of

a linear program (LP) which minimizes the cost of unserved demands across nodes in the

network. Assuming that the demands are random (following a jointly Gaussian law), we

study the probability that the optimal cost exceeds a large threshold, which is a rare event.

Our contribution is the development of importance sampling and conditional Monte Carlo

algorithms for estimating this probability. We establish the asymptotic efficiency of our

algorithms and also present numerical results that demonstrate the strong performance of

our algorithms.

Chapter 3 studies an insurance-reinsurance network model that deals with default con-

tagion risks with a particular aim of capturing cascading effects at the time of defaults.

We capture these effects by finding an equilibrium allocation of settlements that can be

found as the unique optimal solution of an optimization problem. We are able to obtain

an asymptotic description of the most likely ways in which the default of a specific group



of participants can occur, by solving a multidimensional Knapsack integer programming

problem. We also propose a class of strongly efficient Monte Carlo estimators for com-

puting the expected loss of the network conditioned on the failure of a specific set of

companies.

Chapter 4 discusses control schemes for maintaining low failure probability of a trans-

mission system power line. We construct a stochastic differential equation to describe the

temperature evolution in a line subject to stochastic exogenous factors such as ambient

temperature, and present a solution to the resulting stochastic heat equation. A num-

ber of control algorithms designed to limit the probability that a line exceeds its critical

temperature are provided.



Contents

List of Figures v

List of Tables vi

Acknowledgements vii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Long-tailed, Heavy-tailed, and Light-tailed Distributions . . . . . 3

1.2.2 Notations for Asymptoticity . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Importance Sampling (IS) . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Conditional Monte Carlo (CMC) . . . . . . . . . . . . . . . . . 6

1.2.5 Notions of Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.6 Other Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Distribution Networks 9

i



2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Properties of Our Primal and Dual Linear Programs . . . . . . . . . . . . 17

2.3.1 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Uniqueness and Positivity . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Insensitivity of the Solution to the Primal . . . . . . . . . . . . . 22

2.4 Asymptotic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Efficient Algorithms: Importance Sampling and Conditional Monte Carlo 31

2.5.1 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.2 Conditional Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.1 Example 1: d = 3, fixed sss . . . . . . . . . . . . . . . . . . . . . 51

2.6.2 Example 2: d = 10, fixed sss . . . . . . . . . . . . . . . . . . . . . 51

2.6.3 Example 3: d = 3, fixed k . . . . . . . . . . . . . . . . . . . . . 52

2.6.4 Example 4: d = 10, fixed k . . . . . . . . . . . . . . . . . . . . . 53

2.6.5 Discussion of Results and Comparison Between Algorithms . . . 54

2.7 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Insurance-Reinsurance Networks 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 The Network Model and Its Properties . . . . . . . . . . . . . . . . . . . 62

3.2.1 The Eisenberg and Noe Framework . . . . . . . . . . . . . . . . 62

ii



3.2.2 An Equivalent Form . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3 The Network Model . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Asymptotic Description of the Network . . . . . . . . . . . . . . . . . . 81

3.3.1 Large Deviations Description via An Integer Program . . . . . . . 82

3.3.2 The Role of Companies in R(A) . . . . . . . . . . . . . . . . . . 86

3.4 Design of Efficient Simulation Algorithms . . . . . . . . . . . . . . . . . 89

3.4.1 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4.3 Proof of Theorem 3.3.1 and 3.4.2. . . . . . . . . . . . . . . . . . 99

3.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Electrical Power Transmission Networks 106

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Criterion 1: Maximum Temperature . . . . . . . . . . . . . . . . . . . . 111

4.3.1 Current Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.2 Study of Tripping Probability . . . . . . . . . . . . . . . . . . . 113

4.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3.4 Numerical Light-Tailed Example: G(h(x)) = h(x) . . . . . . . . 125

4.4 Criterion 2: Average Temperature . . . . . . . . . . . . . . . . . . . . . 130

4.4.1 Line limits in the context of Optimal Power Flow (OPF) . . . . . 130

4.4.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

iii



4.4.3 Constant I(t), t ∈ [0,τ] . . . . . . . . . . . . . . . . . . . . . . . 136

4.4.4 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography 156

iv



List of Figures

3.1 Directed contractual graph of a simple example network. . . . . . . . . . 69

3.2 A network example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Directed graph combining risk factor exposures and contractual links. . . 83

4.1 Upper Bound -
√

L(τ,k) as a function of rε . . . . . . . . . . . . . . . . . . 140

4.2 Adding upper bound to a power grid DC problem - linear objective function142

4.3 Quadratic Obj function: Feasible, When r < 93 . . . . . . . . . . . . . . 143

4.4 Distribution of W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.5 Values of I2 for first 2-stage experiment . . . . . . . . . . . . . . . . . . . . 155

4.6 Optimal Values change with z1 . . . . . . . . . . . . . . . . . . . . . . . . 155

v



List of Tables

2.1 Results of Naive Simulation, IS, and CMC for d = 3, fixed sss. . . . . . . 51

2.2 Results of Naive Simulation, IS, and CMC for d = 10, fixed sss. . . . . . . 52

2.3 Results of Naive Simulation, IS, and CMC for d = 3, fixed k. . . . . . . 53

2.4 Results of Naive Simulation, IS, and CMC for d = 10, fixed k. . . . . . . 53

3.1 Values of model parameters. . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2 Numerical results with scenarios 1. . . . . . . . . . . . . . . . . . . . . 104

3.3 Numerical results with scenarios 2. . . . . . . . . . . . . . . . . . . . . 105

vi



Acknowledgements

I have a mixed feeling. This dissertation gives me an opportunity to summarize what I

have been doing in the past few years, but also marks the end of my PhD life at the IEOR

Department of Columbia University, where I learned knowledge, made good friends, ex-

perienced happiness and sadness, gained confidence and encourage.

I wish to express my sincere thanks to Professor Jose Blanchet, my advisor, collabora-

tor, and friend. I am indebted to him for invaluable guidance and encouragement extended

to me. He is one of the smartest people I have ever met, and his passion for research is

contagious. I always enjoy and benefit from discussing with him, whether it was about

any questions regarding our research, or an interesting trip he had just taken. Besides his

vast knowledge, what also impresses me is his deep love for his family, which tells me

how to keep a good balance between work and life. In the past year, I have been keeping

doing research while working full-time, and I really appreciate his sacrifice of rest time

meeting with me on weekends. Without his guidance and persistent help this dissertation

would not have been possible.

I am very grateful to my dissertation committee, Daniel Bienstock, Marvin K. Nakayama,

Tim Leung, and Agostino Capponi, for taking time reading this dissertation and providing

constructive feedbacks. I would like to dearly thank Daniel and Marvin who collaborated

with me along with Jose in the work of Chapter 2 and 4, and they have shown excellent

examples as successful researcher and professor. Special thanks go to David Yao and

Donald Goldfarb, who encouraged me to pursue a doctoral degree when I was a master

vii



student, and who are always willing to help me and give their best suggestions on my

personal development for the past few years, from which I would benefit lifelong. I also

want to express my gratitude to all the professors who taught me at Columbia Univer-

sity: Daniel Bienstock, Jose Blanchet, Donald Goldfarb, Soulaymane Kachani, Mariana

Olvera-Cravioto, Karl Sigman, David Yao, Assaf Zeevi (CBS), Mark Broadie (CBS), Cia-

mac C. Moallemi (CBS). I thank all staff from IEOR Department who create a pleasant

atmosphere, and are always so helpful and friendly.

My time at Columbia University was made enjoyable in large part due to the many

friends I have made. I feel so lucky to have all of them with me: Xinyun Chen, Yujiao

Chen, Jing Dong, Anran Li, Yina Lu, Bo Ren, Xingbo Xu...

Lastly, I would like to dedicate this dissertation to my parents, Kewei Li and Fengrong

Guo, for their unconditional love, encouragement and support. Without them, I can hardly

imagine getting through some tough times and getting this far. I love them so much.

Juan Li

May 18, 2015

viii



1

Chapter 1

Introduction

1.1 Overview

This dissertation is devoted to algorithms for risk control on stochastic networks. Net-

works are very useful in modeling real-life problems. A network is identified by the

characteristics of each vertex and the relationships across vertices, and it usually operates

in some normal way. However, because of the uncertainty of both external and internal

conditions, the characteristics of some individual vertex may change, therefore the status

of the whole network may be affected as well, which sometimes may result in the failure

of this network. Some examples are given in [35], [29] and [51]. It is thus desirable to

develop efficient algorithms to study stochastic networks. This dissertation contributes in

three themes:

• Modeling: Given a complex network, our model is able to capture how the un-
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certainty impacts each vertex, and how the change of each vertex impacts other

correlated vertices in this network.

• Simulation Design: The failure of the network is usually a rare event and the failure

probability is difficult to estimate through crude Monte Carlo. Asymptotic behav-

iors are studied, and efficient simulation algorithms are developed and implemented

which have proven to be both fast and accurate.

• Risk Control: Some guidance on risk management is provided which ensures that

the failure probability is limited to a certain level.

Chapter 2 presents a distribution network in which each vertex is subjected to jointly

Gaussian distributed demands. The equilibrium is determined by solving a liner program

to minimize the total unserved demands across all vertices. This networks fails if the

optimal objective function exceeds a large threshold, which is a rare event. Efficient

Importance Sampling and Conditional Monte Carlo algorithms are developed to estimate

the failure probability.

Chapter 3 discusses an insurance-reinsurance network in which stochastic claims ar-

rive as the weighted sum of Pareto distributed common factors and individual factors.

Reinsurance companies absorb some proportion of claims, but return spillover losses if

they default. The equilibrium is obtained by solving a linear program. This network

fails if all companies in a particular set default. When initial reserve and premium are

large, the failure probability is very small. An efficient Importance Sampling algorithm is

developed to estimate this probability and the spillover losses.
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Chapter 4 studies an electrical power transmission network. The temperature evolu-

tion of each power line is determined by random ambient temperature through a stochastic

differential equation. A line fails if the temperature is too high. Several control schemes

are provided to limit the failure probability.

1.2 Preliminaries

1.2.1 Long-tailed, Heavy-tailed, and Light-tailed Distributions

Here we introduce some definitions of distributions that are used in this dissertation.

Definition 1.2.1. The distribution of a random variable X with distribution function F is

long-tailed if for all c > 0,

lim
x→∞

P(X > x+ c|X > x) = 1,

or equivalently

lim
x→∞

F̄(x+ c)
F̄(x)

= 1,

where F̄(·) represents tail distribution function.

Definition 1.2.2. The distribution of a random variable X with distribution function F is

heavy-tailed if for all λ > 0,

lim
x→∞

eλxP(X > x) = ∞.
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In other words, for heavy-tailed distributions, tails are not exponentially bounded. All

long-tailed distributions are heavy-tailed, while the converse is false.

Definition 1.2.3. The distribution of a random variable X with distribution function F is

light-tailed if there exists some λ > 0,

lim
x→∞

eλxP(X > x)< ∞.

1.2.2 Notations for Asymptoticity

When we design efficient Monte Carlo algorithms, asymptotic behaviors of the probabil-

ity of interest play an important role. Here we introduce some related definitions that are

used throughout this dissertation.

Definition 1.2.4. Let f and g be two functions defined on some subset of the real numbers.

Then

1. g(n) = O( f (n)), if there exists a positive real number M and a real number n0 such

that |g(n)| ≤M| f (n)| for all n≥ n0.

2. g(n) = Ω( f (n)), if there exists a positive real number M and a real number n0 such

that |g(n)| ≥M| f (n)| for all n≥ n0.

3. g(n) = Θ( f (n)), if g(n) = O( f (n)), and g(n) = Ω( f (n)).

Definition 1.2.5. Let {Xn} and {an} be a sequence of random variables and a sequence
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of deterministic positive constants, respectively. Suppose there exists a probability space

{X ′n} such that X ′n
d
= Xn, where d

= represents equal in distribution. We denote by

1. Xn = Op (an) if there exists a random variable M1, non-negative and finite almost

surely, such that

P
(
|X ′n| ≤ anM1

)
= 1.

2. Xn = Ωp (an) if there exists a random variable M2, non-negative and finite almost

surely, such that

P
(
|X ′n| ≥ anM2

)
= 1.

3. Xn = Θp (an) if Xn = Op (an) and Xn = Ωp (an).

1.2.3 Importance Sampling (IS)

Importance Sampling is one of the variance reduction techniques when doing Monte Carlo

simulation, which is very powerful for rare event probability estimation.

Suppose we are interested in estimating: α = P(X ∈ Ab). Instead of obtaining sam-

ples from the original probability measure P(·), an alternative approach is to use another

probability measure Pg(·), as long as the Radon-Nikodym derivative between these two

measures is well defined on the event of interest. Then the IS estimator is

Y = 1{ω∈Ab}
dP
dPg

(ω),
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where ω is the random outcome generated under Pg. Note that Y is unbiased since

Eg[Y ] =
∫

Ab

dP
dPg

(ω)dPg(ω) =
∫

Ab

dP(ω) = P(X ∈ Ab).

An interesting probability measure is when Pg(·) = P(·|X ∈ Ab) = P(·,X ∈ Ab)/α,

which depends on the unknown α. This measure is called zero-variance change-of-

measure which is virtually impossible to implement because Ab is involved. However,

studying the asymptotic behavior of this measure as b→ ∞ can provide useful guidance

on developing an efficient IS algorithm.

The technique that we will use is inspired by this spirit and can be traced back to

[28]. Generally, a natural way to develop an efficient IS algorithm is to bias the sampling

distribution to be compatible with large deviation behaviors (see [16]).

1.2.4 Conditional Monte Carlo (CMC)

Another variance reduction technique is Conditional Monte Carlo. Suppose we are inter-

ested in estimating α, and U is an unbiased estimator. According to the conditional vari-

ance formula: Var(U) = E[Var(U |Y )]+Var(E[U |Y ]), we have Var(U) ≥ Var(E[U |Y ]).

Therefore, using E[U |Y ] as an estimator may help to reduce variance.

1.2.5 Notions of Efficiency

For a given Monte Carlo simulation algorithm, the following definitions provide a way to

evaluate the efficiency.
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Definition 1.2.6. A simulation estimator Zb for ρ(b) is said to be strongly efficient if

E[Zb] = ρ(b) and if

sup
b>0

E(Z2
b)

ρ2(b)
< ∞,

Definition 1.2.7. A simulation estimator Zb for ρ(b) is said to be weakly efficient or

asymptotically optimal if E[Zb] = ρ(b) and if

sup
b>0

E(Z2
b)

ρ2−ε(b)
< ∞, ∀ε > 0.

Asymptotic optimality also amounts to showing that

logE(Z2
b)

2log(ρ(b))
→ 1, b→ ∞.

These two definitions are motivated by the number of replications required to achieve

a certain level of error. To see this, let us define the coefficient of variation of Zb as

CV (Zb)
∆
=

[
Var (Zb)

ρ2(b)

]1/2

.

Using Chebyshev’s inequality we obtain

P
{
|Zb−ρ(b)|

ρ(b)
> ε

}
≤ CV (Zb)

2

ε2 .

For crude Monte Carlo estimator Zc
b, based on n independently and identically dis-
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tributed (i.i.d) replications, the variance of Zc
b is ρ(b)(1−ρ(b))/n, so

CV (Zc
b) =

(1−ρ(b))1/2

ρ1/2(b)n1/2 .

Therefore, in order to achieve the relative error with probability at least 1−δ, one needs

Ω(1/ρ(b)) replications through crude Monte Carlo simulation. On the other hand, effi-

cient simulation algorithm only needs O(ε−2δ−1) replications as ρ(b)→ 0.

Since we only focus on unbiased estimators, this requirement essentially reduces to

controlled second moment.

1.2.6 Other Definitions

Definition 1.2.8. A function L(·) is slowly varying if for all x > 0,

lim
t→∞

L(xt)
L(t)

= 1.

Definition 1.2.9. A random variable X is said to be regularly varying with index α > 0

(which we shall write X ∈ RV(α)) if for any x > 0,

lim
t→∞

F(xt)
F(t)

= x−α.

Equivalently, X ∈ RV(α) if F(t) = t−αL(t) for some slowly varying function L(·).
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Chapter 2

Distribution Networks

2.1 Introduction

Consider the following model of a distribution network. We assume that there is a com-

modity to be distributed among various nodes in a network. Each node is endowed with a

given supply of the commodity and at the same time it experiences a random demand. If

the demand at a given node exceeds its supply, then the excess demand is distributed ac-

cording to some proportions to each of its neighbors, which in turn do the same. In order

to obtain the distribution amounts in equilibrium, we solve a linear program (LP), where

the objective function to minimize is the sum across nodes of the unserved demands.

One possible practical example where such a problem might arise is an electric power

grid. Here, the commodity is electricity, and each node represents a geographic region.

Each region has generators, which provide the region’s supply of electricity. Also, each

region has a random load (i.e., demand for electricity). Regions are connected by trans-
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mission lines, and if a region’s load exceeds its supply, then the network tries to serve a

node’s excess load by sending it to neighboring regions. If the total amount of load not

served at their originating regions exceeds a threshold k, then this network is recognized

to have failed.

Another application involves load distribution for internet services, such as web servers,

cloud-computing services, and domain name servers (DNS). A company may have a num-

ber of fixed-capacity servers situated in different geographic regions. As the requests to

servers (i.e. the demand) arrive, a specific server tries to fulfill its own local requests, but

if the demand exceeds its capacity, then the server may offload its excess to a neighboring

server. Since this shifting may incur additional delays for the user, we want to minimize

the amount of distributed demand. This is similar to load balancing, see [35].

Let α(k) be the probability that the sum of unserved demands, in equilibrium, ex-

ceeds threshold k. Our goal is to estimate the probability α(k), especially in the case

in which k is large. Assuming jointly distributed multivariate Gaussian demands, we

provide asymptotically optimal estimators, together with numerical experiments showing

their performance, and associated large deviations results. We recall that an unbiased

estimator for α(k) is asymptotically optimal if the logarithm of its second moment is

asymptotically equivalent to the logarithm of α2 (k) (see [9], for notions of efficiency in

rare-event simulation).

As far as we know, this chapter provides the first type of large deviations analysis and

efficient Monte Carlo for solutions of linear programs with random input. More precisely,

our contributions are as follows:
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1) For our model formulation, we show that our optimal allocation is invariant if one

replaces the objective function by any other criterion that is increasing as a function of

the unserved demands (see Theorem 2.3.3).

2) We establish large deviations estimates for our class of linear programs with random

input (see Theorem 2.4.2).

3) We develop an importance sampling (IS) algorithm for estimating α(k), and we

show that the algorithm is asymptotically optimal as the threshold k → ∞ (see Sec-

tion 2.5.1).

4) We develop a conditional Monte Carlo (CMC) algorithm for the evaluation of α(k),

and we prove the asymptotic optimality of this procedure as k→ ∞ (see Section 2.5.2).

5) We provide several numerical examples in Section 2.6 that validate the performance

of our algorithm.

We now explain how our research relates to prior work. First, regarding 1), we note

that similar results, with different types of networks and other applications, have been

obtained in the literature (see [29]). We only learned about these applications after we

obtained our model formulation, but we believe the connections are relevant. For the IS

algorithm (contribution 2), we introduce a probability measure that is obtained by con-

necting the event of interest (i.e. total unserved demands in equilibrium exceeding a

threshold) with a simple union event involving the demands. Then we use an IS distribu-

tion inspired by an approach developed by [1]. Regarding the CMC estimator, we express

the Gaussian demands in polar coordinates. Given the angle, the conditional probability

of the LP’s optimal objective function value exceeding k can be expressed as the proba-



12

bility of the radial component of the Gaussian lying in an interval or union of intervals,

and this conditional probability can be computed analytically. We prove the asymptotic

optimality of these two methods using the theory of excursions of Gaussian random fields

( [3]). The use of polar transformations for CMC and rare event simulation has been used

in the past, see for example, [8]. [9], Chapters V and VI, provide additional background

material on importance sampling and conditional Monte Carlo.

Our work also has other potential applications, in particular to cascading failures. For

example, [54] studies cascades in a sparse, random network of interacting agents whose

decisions are determined by the actions of their neighbors according to a simple thresh-

old rule. [26] considers a branching process model of cascading failures in an electric

power grid. [34] analyzes a continuous-time Markov chain of a dependability model with

cascading failures.

We would like to point out that although we assume multivariate Gaussian demands

in this chapter, the CMC algorithm can be applied to the case when the demands follow

elliptical distribution (see [40]). Furthermore, while elliptical copula exhibits symmetric

tail dependence, the well known Archimedean copula allows asymmetric tail dependence

( [21]). Making use the results in [41], we can see that CMC algorithm is also applicable to

Archimedean copula, which makes this algorithm very powerful in solving a wide range

of problems; additional details on the application to Archimedean copulas are given in

our last section on final comments.

The rest of this chapter develops as follows. Section 2.2 presents the model of the

distribution network, and it also defines the LP problem and its dual. We establish some
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properties of the primal and dual LPs in Section 2.3. The asymptotic behavior of the

model is discussed in Section 2.4. We describe the asymptotic optimality and implemen-

tations of importance sampling and conditional Monte Carlo methods for estimating α(k)

in Section 2.5. Section 2.6 contains the experimental results from some examples, and we

give some final comments in Section 2.7.

2.2 Model Description

We consider a network model which is induced by a directed graph G=(V,E), where V =

{1,2, . . . ,d} is the set of vertices and E = {(i, j) :∃ directed edge from vertex i to vertex j}

is the set of edges. The incidence matrix of the graph is denoted by H = (H(i, j) : i, j ∈V ),

where H(i, j) = 1 if (i, j) ∈ E, and H(i, j) = 0 otherwise, and we assume H(i, i) = 0 for

any i ∈V . The network model we consider is induced by this graph, and we also assume

the following:

1 The network is irreducible in the sense that the matrix H is irreducible.

2 Each node i has a given fixed supply si.

3 Each node i is subjected to a random demand Di. The demand vector DDD=(D1,D2 . . . ,Dd)
′

is jointly Gaussian N(µµµ,Σ), where prime denotes the transpose of a matrix or vector.

4 The expectation of Di is less than or equal to si for each node i.

Each node tries to serve its realized demand. However, if a given nodes supply is

exhausted, it distributes the unserved demand to its neighbors, which, in turn, do the same
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with their respective neighbors. Nevertheless, there is a cost associated with transferring

unserved demands which should be minimized. We construct a linear program to describe

this problem. The demands achieve an equilibrium point at each feasible solution, and the

objective function is to minimizing the sum of the excess demands across the nodes. Let

sss = (s1,s2, . . . ,sd)
′, and the LP is:

min
d

∑
i=1

x+i

s.t. Di− si + ∑
j:( j,i)∈E

x+j a ji = x+i − x−i ,∀i

x+i ≥ 0,x−i ≥ 0,∀i. (2.2.1)

The quantity x+i ≥ 0 represents the demand shed from node i in equilibrium that is dis-

tributed among its neighbors using a fixed distribution scheme, which we describe shortly.

The quantity x−i ≥ 0 represents the unused supply at node i in equilibrium. Therefore, in

equilibrium, if x+i − x−i > 0, then node i sheds demand; if x+i − x−i < 0, then node i has

unused supply. When node j has excess demand, a ji denotes the proportion of unserved

demand at node j distributed to node i. We assume that if H(i, j) = 0, then ai j = 0; if

H(i, j) = 1, then ai j > 0. In addition, ∑
d
j=1 ai j = 1,∀i = 1,2, . . . ,d. The solution moves

around excess demands and supplies to neighbors but does so in such a way that the sum

of x+i ’s, which are the equilibrium demands shed, is minimized. The problem can be

expressed in matrix notation as follows. Define A(i, j) = ai j (note that A(i, i) = 0). There-

fore, A is also inreducible. Let 111 = (1,1, . . . ,1)′ denote the d-dimensional column vector
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with all components equal to 1. Then the previous linear programming problem (2.2.1)

can be written as:

min 111′xxx++000′xxx−

s.t. (A′− I)xxx++ Ixxx− = sss−DDD

xxx+ ≥ 000,xxx− ≥ 000, (2.2.2)

where 000 = (0,0, . . . ,0)′ is the d-dimensional column vector with all components equal

to 0, A = (A(i, j) : i, j ∈ V ), I is the d× d identity matrix, xxx+ = (x+1 ,x
+
2 , . . . ,x

+
d )
′, and

xxx− = (x−1 ,x
−
2 , . . . ,x

−
d )
′. The goal is that the sum of demands shed is as small as possible

because, e.g., the cost of distributing demands is high. If the cost is too high, for example,

larger than a given number, say k, or the LP is infeasible, we consider the network to have

failed.

Now, we also introduce the dual linear program:

max yyy′rrr

s.t. Myyy≤ 111

yyy≥ 000, (2.2.3)

where M = I−A and rrr = DDD− sss.
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We are interested in computing the probability that the network fails, for different

values of k. Let α(k) represent this failure probability. We consider the network to have

failed in two cases:

1. The primal is infeasible, i.e., the total demand exceeds the total supply.

2. The primal is feasible, but the cost of distributing demand is too high, i.e., F(DDD) is

larger than k.

Let Q(DDD) = 1 if the primal is feasible, and Q(DDD) = 0 otherwise. Let β0 = P{Q(DDD) =

0), which is the probability of the first kind of failure, and β1(k) = P{Q(DDD) = 1,F(DDD)≥

k}, which is the probability of the second kind of failure. If β0 or β1(k) is large, the

network is at a high risk of failure. Then we are interested in computing α(k) = β0 +

β1(k), which is the probability that the networks fails.

Let L(DDD) denote the optimal value of the dual when the demand vector is DDD. Note that

α(k) = β0 +β1(k)

= P{Q(DDD) = 0}+P{Q(DDD) = 1,F(DDD)≥ k}

= P{Q(DDD) = 0}+P{Q(DDD) = 1}P{F(DDD)≥ k|Q(DDD) = 1}

= P{Q(DDD) = 0}P{L(DDD)≥ k|Q(DDD) = 0}+P{Q(DDD) = 1}P{L(DDD)≥ k|Q(DDD) = 1}

= P{L(DDD)≥ k}, (2.2.4)
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where the fourth equality follows from strong duality, and the fact that when Q(DDD) = 0,

i.e., the primal is infeasible, we have L(DDD) = +∞. Therefore, we want to compute the

probability that the optimal value of the dual L(DDD) is larger than k.

Notice that while β0 is independent of k, β1(k) is decreasing in k. Thus, if β0 is large

compared to β1(k), then α(k)≈ β0 as k increases, which is a constant. On the other hand,

if β0 is small compared to β1(k) even for large k, then α(k) ≈ β1(k) is decreasing in k.

In our experiments (Section 2.6), we consider examples in which β0� β1(k) for all k, so

the latter situation occurs.

2.3 Properties of Our Primal and Dual Linear Programs

2.3.1 Feasibility

Theorem 2.3.1. The primal and the dual problems have the following properties:

(a) The dual problem (2.2.3) is always feasible.

(b) The primal problem (2.2.2) is feasible if and only if ∑
d
i=1 Di ≤ ∑

d
i=1 si.

Proof. For part (a), take yyy = 0, which is clearly feasible.

For part (b), note that if ∑
d
i=1 Di > ∑

d
i=1 si, i.e., 1′rrr > 0, then the dual is unbounded

and therefore the primal is infeasible. To see this, note that −M can be interpreted as

the rate matrix of a continuous-time Markov chain, so M1 = 0, and yyy = m1 is a feasible

solution to the dual, for all m > 0. Therefore, if 1′rrr > 0, we clearly have that the dual is

unbounded.



18

If ∑
d
i=1 Di ≤ ∑

d
i=1 si, i.e., 1′rrr ≤ 0, then we claim the dual is bounded and therefore the

primal has an optimal feasible solution. To see this, we argue by contradiction. Suppose

that the dual is unbounded. Then there exists a vector vvv = (v1,v2, . . . ,vd)
′ ≥ 0 such that

vvv′rrr > 0, and Mvvv≤ 0. Let vi0 =max j=1,2,...,d v j. Without loss of generality, we assume that

i0 = 1. Since A is irreducible, there exists some h2 ≥ 1 such that a(h2)
12 > 0, where a(h2)

i j

denotes the (i, j) element of Ah2 . Because A is the transition matrix of a discrete-time

Markov chain, A1 = 1 and Ah21 = 1. Thus,

(I−Ah2)vvv =



1−a(h2)
11 −a(h2)

12 . . . −a(h2)
1d

−a(h2)
21 1−a(h2)

22 . . . −a(h2)
2d

...
...

...

−a(h2)
d1 −a(h2)

d2 . . . 1−a(h2)
dd





v1

v2

...

vd



=



a(h2)
12 (v1− v2)+a(h2)

13 (v1− v3)+ · · ·+a(h2)
1d (v1− vd)

a(h2)
21 (v2− v1)+a(h2)

23 (v2− v3)+ · · ·+a(h2)
2d (v2− vd)

...

a(h2)
d1 (vd− v1)+a(h2)

d2 (vd− v2)+ · · ·+a(h2)
d,d−1(vd− vd−1)


,

where the second equality follows from Ah21 = 1. Also we have

(I−Ah2)vvv = (I +A+A2 + · · ·+Ah2−1)(I−A)vvv = (I +A+A2 + · · ·+Ah2−1)Mvvv≤ 0,

where the inequality follows from Mvvv ≤ 0, and the fact that every entry of the matrix
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I +A+A2 + · · ·+Ah2−1 is non-negative. Therefore,

(I−Ah2)vvv =



a(h2)
12 (v1− v2)+a(h2)

13 (v1− v3)+ · · ·+a(h2)
1d (v1− vd)

a(h2)
21 (v2− v1)+a(h2)

23 (v2− v3)+ · · ·+a(h2)
2d (v2− vd)

...

a(h2)
d1 (vd− v1)+a(h2)

d2 (vd− v2)+ · · ·+a(h2)
d,d−1(vd− vd−1)


≤



0

0

...

0


.

Consider the first element of (I−Ah2)vvv. Because a(h2)
1 j ≥ 0 and v1−v j ≥ 0 for all j 6= 1,

we have ∑ j 6=1 a(h2)
1 j (v1− v j) = 0. Therefore, a(h2)

1 j (v1− v j) = 0 for all j 6= 1. Because

a(h2)
12 > 0, we must have v1 = v2. Similarly, by irreducibility, there exists some h3 ≥ 1

such that a(h3)
13 > 0. Again we conclude that v1 = v3. Therefore, by iteration, we have that

v1 = v2 = · · · = vd > 0. Then 1′rrr = vvv′rrr/v1 > 0, which contradicts our assumption that

1′rrr ≤ 0.

2.3.2 Uniqueness and Positivity

Theorem 2.3.2. The primal problem (2.2.2) has the following properties:

(a) It has a unique optimal solution.

(b) At the optimal solution, at most one element in the pair (x+k ,x
−
k ) is strictly positive,

∀1≤ k ≤ d.

Proof. Suppose both xxx1 =

xxx+1

xxx−1

 and xxx2 =

xxx+2

xxx−2

 are optimal solutions. Let ddd∗ = xxx1−
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xxx2 =

xxx+1 − xxx+2

xxx−1 − xxx−2

 =

ddd∗+

ddd∗−

, which is of dimension 2d. We want to prove that ddd∗ = 0.

Consider the following linear program:

(P) min 000′ddd

s.t. 111′ddd+ = 0

(A′− I)ddd++ Iddd− = 000

ddd ≥ eee j,

where eee j is a 2d-dimensional vector with the jth element equal to 1 and other elements

equal to 0. Equivalently, we write the LP (P) as

min 000′ddd

s.t. Bddd = 000 (α)

ddd ≥ eee j, (β)

where B =

 111′ 000′

A′− I I

. Then we only need to prove the above LP is infeasible for all
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1≤ j ≤ 2d. Consider the corresponding dual problem:

(D) max βββ
′eee j

s.t. B′ααα+βββ = 0

βββ≥ 0.

Then, for all m > 0, ααα =

 −m

−m111

 ,βββ =

m111

m111

 is a feasible solution to (D) since (I−

A)111 = 0. The value of the objective function is m. Due to the arbitrariness of m, we see

that the optimal value of the dual is unbounded. Therefore, for all 1≤ j ≤ 2d, the primal

is infeasible. Hence, each element of d must be 0, which means that xxx1 = xxx2, proving

part (a). To establish (b), suppose (xxx+,xxx−) is the optimal solution of the primal (2.2.2).

Suppose for some 1≤ k ≤ d, both x+k and x−k are strictly positive, i.e., x+k > δ and x−k > δ

for some δ > 0. Let x̂+k = x+k − δ, x̂−k = x−k − δ, and define a new vector (x̄xx+, x̄xx−) as

follows:


x̄+i = x̂+k , x̄

−
i = x̂−k , if i = k;

x̄+i = x+i , x̄
−
i = x̄i

+− (Di− si +∑ j:( j,i)∈E x̄+j a ji), otherwise.

Then it is not hard to show that x̄xx =

x̄xx+

x̄xx−

 is a feasible solution to the problem (2.2.2). In

addition, the value of the objective function at x̄xx is strictly less than the value at xxx, which
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conflicts with the optimality of xxx. Therefore, at least one element in the pair (x+k ,x
−
k ) is

zero, ∀1≤ k ≤ d.

2.3.3 Insensitivity of the Solution to the Primal

Theorem 2.3.3. Suppose xxx∗ =

xxx∗+

xxx∗−

 is the optimal solution to the problem

min f1(xxx+)

s.t. (A′− I)xxx++ Ixxx− = sss−DDD

xxx+ ≥ 000,xxx− ≥ 000,

where f1(xxx+) is differentiable and increasing with respect to xxx+. Let f2(xxx+) be another

differentiable and increasing function. Then xxx∗ is also the optimal solution to the problem

min f2(xxx+)

s.t. (A′− I)xxx++ Ixxx− = sss−DDD

xxx+ ≥ 000,xxx− ≥ 000.
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Proof. Consider the problem

(P′) min f1(xxx+)

s.t. (A′− I)xxx++ Ixxx− = sss−DDD (ααα)

xxx+ ≥ 000 (µµµ)

xxx− ≥ 000, (λλλ)

Suppose xxx∗ =

xxx∗+

xxx∗−

 is the optimal solutions to (P′), and the Lagrange function is

L(xxx∗,ααα,µµµ,λλλ) = f (xxx∗+)+ααα
′[(A′− I)xxx∗++ Ixxx∗−− sss+DDD]−µµµ′xxx∗+−λλλ

′xxx∗−.

Then (xxx∗+,xxx∗−) and (ααα,µµµ,λλλ) satisfy the Karush-Kuhn-Tucher (KKT) conditions when

f = f1, i.e. 

∇xxx+ f +(A− I)ααα−µµµ = 000

ααα−λλλ = 000

x∗+i µi = 0,∀i

x∗−i λi = 0,∀i

(A′− I)xxx∗++ Ixxx∗− = sss−DDD

xxx∗+ ≥ 000,xxx∗− ≥ 000,µµµ≥ 000,λλλ≥ 000,

where ∇xxx+ f represents the gradient of f with respect to xxx+. Now we would like to
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construct the dual solution vector (α̂αα, µ̂µµ, λ̂λλ), such that when f = f2, (xxx∗+,xxx∗−) and (α̂αα, µ̂µµ, λ̂λλ)

satisfy the above KKT conditions. Then we can claim that (xxx∗+,xxx∗−) is also the optimal

solution when f = f2. Define H = {1≤ i≤ d : x∗+i > 0}, and H̄ = {1,2, . . . ,d}\H. For

each i∈H, set µ̂i = 0; and for each i∈ H̄, set λ̂i = 0. Without loss of generality we assume

that H= {1,2, . . . , |H|}. Let µµµH̄ = {µ|H|+1,µ|H|+2, . . . ,µd}, λλλH = {λ1,λ2, . . . ,λ|H|}, and

ξξξ =

λλλH

µµµH̄

. Let Q be a d×d diagonal matrix with the first |H| diagonal elements equal

to 1 and the remaining elements equal to 0. Considering the second KKT condition, the

first KKT condition becomes

∇xxx+ f +(A− I)ααα−µµµ = ∇xxx+ f +(A− I)λλλ−µµµ = ∇xxx+ f +(A− I)Qξξξ− (I−Q)ξξξ = 0

⇒ [(I−Q)− (A− I)Q]ξξξ = ∇xxx+ f

⇒ (I−AQ)ξξξ = ∇xxx+ f .

Notice that the matrix A is irreducible and stochastic. Also we claim that Q cannot be the

identity matrix with probability 1. To see this, suppose Q is the identity matrix, in other

words, x∗+i > 0,∀1 ≤ i ≤ d. Note that the conclusion of Theorem 2.3.2(b) is still valid

when the objective function is f , and the proof is exactly the same. Then x∗−i = 0,∀1 ≤

i≤ d. Adding all constraints in the primal problem (2.2.2) gives us ∑
d
i=1 Di = ∑

d
i=1 si. But

this equality holds with probability 0. Therefore, (I−AQ) is invertible with probability 1,

and ξξξ = (I−AQ)−1∇xxx+ f . Because f is increasing in xxx+ and (I−AQ)−1≥ 0, we have that
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ξξξ ≥ 0. It is obvious that (xxx∗+,xxx∗−) and (α̂αα, µ̂µµ, λ̂λλ) = (Qξξξ,(I−Q)ξξξ,Qξξξ) satisfy the above

KKT conditions when f = f2.

Note that although Theorem 2.3.3 established the insensitivity of the optimal solution

to a large class of nonlinear objective functions, for the rest of the chapter, our discussion

is based on the primal problem (2.2.2) and the dual problem (2.2.3) with linear objective

functions.

2.4 Asymptotic Behavior

Now we would like to discuss the asymptotic behavior of the failure probability of this

distribution network, which is useful when we develop efficient simulation algorithms

for estimating the failure probability in the next section. We will now assume a specific

geometric layout for the network. In particular, the vertices in the network lie in the plane

T = [0,1]2, and their locations are i.i.d. We next specify the vertices’ supplies and the

distribution for the demands.

Let t ∈ T represent a location in this network, where we note that T is a compact

set. Suppose we have positive continuous functions γ(t),µ(t),σ(t) on T , and σ2(s, t) on

T × T . Let gT (t) be the density function of t ∈ T , which is positive and continuous.

We independently generate this random graph with d nodes at locations {t1, t2, . . . , td} in

T . For each node i with location ti ∈ T , there is a deterministic supply sn(ti) , s(ti) =

nβγ(ti), where β> 0, n is a rarity parameter, and a random demand D(ti)∼N(µ(ti),σ2(ti)),

where the covariance between the demands at two vertices with locations ti and t j is
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cov[(D(ti),D(t j)] = σ2(ti, t j). The demands correspond to a Gaussian random field with

parameter space T . Since T is a compact set, we have that γ(t),µ(t),σ(t) are bounded

and inf
t∈T

σ(t)> 0. Also note that only the supply function s(t) involves n, not the demand

function. Let Σ be the covariance matrix of (D(t1),D(t2), . . . ,D(td)), which we require to

be symmetric positive definite.

We now establish a theorem that describes the asymptotic behavior of this network.

More specifically, it tells what is the most likely way in which this network fails. This

result is crucial in designing an efficient importance sampling algorithm. To prove the

theorem, we will use the following result.

Lemma 2.4.1. If a random variable X ∼ N(µ̄, σ̄2), where σ̄ > 0, then for all α > µ̄,

P{X > α} ≥ 1√
2π

σ̄

α− µ̄
exp{−(α− µ̄)2

2σ̄2 }. (2.4.1)

Proof. Let g(x) be the density function of X , so g(x) = 1√
2πσ̄2 exp{− (x−µ̄)2

2σ̄2 }. Note that

g(x) =− σ̄2

x−µ̄g′(x), where g′(x) represents the derivative of g(x), and for all α > µ̄,

P{X > α}=
∫

∞

α

g(x)dx =
∫

∞

α

− σ̄2

x− µ̄
g′(x)dx≥− σ̄2

α− µ̄

∫
∞

α

g′(x)dx =
σ̄2

α− µ̄
g(α).

Theorem 2.4.2. Let Ln(DDD) denote the optimal value of the dual (2.2.3), when the demand
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vector is DDD and the rarity parameter is n. Then for all k ≥ 0,

lim
n→∞

n−2β logP{Ln(DDD)> k}= lim
n→∞

n−2β logP{ max
i=1,...,d

D(ti)− s(ti)> k} (2.4.2)

= lim
n→∞

n−2β logP{sup
t∈T

D(t)− s(t)> k} (2.4.3)

=− γ2(t∗)
2σ2(t∗)

, (2.4.4)

where t∗ = arg inf
t∈T

γ(t)
σ(t) .

Proof. We will prove this result by establishing upper and lower bounds on P{Ln(DDD) >

k}. We start with deriving an upper bound. Note that h(t) , D(t)−µ(t)
σ(t) is a centered

Gaussian process, almost surely (a.s.) bounded on T . Then σ2
T , sup

t∈T
E[h2(t)] = 1, λ ,

E[‖h‖]< ∞, where ‖h‖= supt∈T h(t). We first claim that

{Ln(DDD)> k} ⊆ { max
i=1,...,d

D(ti)− s(ti)> 0}. (2.4.5)

To see this, if we assume max
i=1,...,d

D(ti)− s(ti) ≤ 0, then D(ti) ≤ s(ti),∀i = 1,2, . . . ,d. Ac-

cording to Theorem 2.3.1(b), the primal problem (2.2.2) is feasible, and it is easy to see

that x+i = 0,x−i = s(ti)−D(ti) ≥ 0,∀i = 1,2, . . . ,d, is an optimal solution to the primal

problem. In this case Ln(DDD) = 0. Thus { max
i=1,...,d

D(ti)−s(ti)> 0}c ⊆ {Ln(DDD)> k}c, where
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“c” represents the complement of a set. Therefore,

P{Ln(DDD)> k} ≤ P{ max
i=1,...,d

D(ti)− s(ti)
σ(ti)

> 0}

≤ P{sup
t∈T

D(t)− s(t)
σ(t)

> 0}

= P{sup
t∈T

(h(t)− s(t)−µ(t)
σ(t)

)> 0}.

Set t̂ = argsup
t∈T

µ(t)
σ(t) . Note that when n is large enough, nβγ(t∗)

σ(t∗) −
µ(t̂)
σ(t̂) > 0. Then

P{Ln(DDD)> k} ≤ P{sup
t∈T

h(t)>
nβγ(t∗)
σ(t∗)

− µ(t̂)
σ(t̂)
}

= P{‖h‖> nβγ(t∗)
σ(t∗)

− µ(t̂)
σ(t̂)
}

≤ exp{−1
2
(
nβγ(t∗)
σ(t∗)

− µ(t̂)
σ(t̂)
−λ)2}, (2.4.6)

where the last inequality is obtained by Borell-TIS inequality ( [3], p. 50). This establishes

the desired upper bound on P{Ln(DDD)> k}.

To obtain a lower bound on the probability, we first define a metric d on T , known as

the canonical metric ( [3], p. 12), by setting

d(s, t), {E[(h(s)−h(t))2]}1/2,

where h is a centered Gaussian process, a.s. bounded on T . We denote the ball of radius
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ε in the canonical metric, centered at a point t ∈ T , by

B(t,ε), {s ∈ T : d(s, t)≤ ε}.

Define g(t) , 1√
2π

σ(t)
s(t)−µ(t)+k exp{− (s(t)−µ(t)+k)2

2σ2(t) }, t ∈ T , where k ≥ 0 is some constant.

Then g(t) is continuous in T . Therefore, for a given 0 < δ < 1, there exists a ball B(t∗,ε)

centered at t∗ such that |g(t)−g(t∗)| ≤ δg(t∗), for all t ∈ B(t∗,ε). We now claim that

P{Ln(DDD)> k} ≥ P{ max
i=1,...,d

D(ti)− s(ti)> k}.

To see this, note that if maxi=1,...,d D(ti)−s(ti)> k, then there exists some 1≤ i0 ≤ d such

that D(ti0)− s(ti0)> k. Let yyy be the vector with the i0-th element equal to 1 and the rest of

the elements equal to 0. It is easy to see that yyy is a feasible solution to the dual problem

(2.2.3) and yyy′(DDD− sss) = D(ti0)− s(ti0)> k. Therefore, Ln(DDD)> k. Then,

P{Ln(DDD)> k} ≥ P{ max
i=1,...,n

D(ti)− s(ti)> k} (2.4.7)

≥ P{D(t1)− s(t1)> k}

=
∫

T
P{D(t)− s(t)> k}gT (t)dt

≥
∫

B(t∗,ε)
P{D(t)− s(t)> k}gT (t)dt

≥
∫

B(t∗,ε)

1√
2π

σ(t)
s(t)−µ(t)+ k

exp{−(s(t)−µ(t)+ k)2

2σ2(t)
}gT (t)dt

≥ g(t∗)(1−δ)C, (2.4.8)
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where C =
∫

B(t∗,ε) gT (t)dt, and the second-to-last step applied Lemma 1, and the last step

follows from the fact that for all t ∈ B(t∗,ε), g(t) ≤ (1− δ)g(t∗), giving us the desired

lower bound on P{Ln(DDD)> k}.

Therefore, (2.4.6) and (2.4.8) imply for n sufficiently large,

1√
2π

σ(t∗)
nβγ(t∗)−µ(t∗)+ k

exp{−(nβγ(t∗)−µ(t∗)+ k)2

2σ2(t∗)
}(1−δ)C

≤ P{Ln(DDD)> k} ≤ exp{−1
2
(
nβγ(t∗)
σ(t∗)

− µ(t̂)
σ(t̂)
−λ)2}.

Taking logarithms, we have

log[
1√
2π

σ(t∗)
nβγ(t∗)−µ(t∗)+ k

]− (nβγ(t∗)−µ(t∗)+ k)2

2σ2(t∗)
+ log[(1−δ)C]

≤ logP{Ln(DDD)> k} ≤ −1
2
(
nβγ(t∗)
σ(t∗)

− µ(t̂)
σ(t̂)
−λ)2.

Because

lim
n→∞

1
n2β

(
log [

1√
2π

σ(t∗)
nβγ(t∗)−µ(t∗)+ k

]− (nβγ(t∗)−µ(t∗)+ k)2

2σ2(t∗)
+ log[(1−δ)C]

)
= lim

n→∞
− 1

n2β

1
2
(nβγ(t∗)−µ(t∗)+ k)2

σ2(t∗)
=− γ2(t∗)

2σ2(t∗)
,

it follows that

lim
n→∞

n−2β logP{Ln(DDD)> k}=− γ2(t∗)
2σ2(t∗)

,

thereby verifying (2.4.4).
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We now establish (2.4.2) and (2.4.3). By (2.4.7) and (2.4.8), it follows that

1√
2π

σ(t∗)
nβγ(t∗)−µ(t∗)+ k

exp{−(nβγ(t∗)−µ(t∗)+ k)2

2σ2(t∗)
}(1−δ)C ≤ P{ max

i=1,...,d
D(ti)− s(ti)> k}.

In addition, similar to what we did for P{Ln(D) > k}, to obtain an upper bound for the

right side of the previous display, we can use the Borell-TIS inequality to conclude that

P{ max
i=1,...,d

D(ti)− s(ti)> k} ≤ P{sup
t∈T

D(t)− s(t)> k} ≤ exp{−1
2
(
nβγ(t∗)
σ(t∗)

− µ(t̂)
σ(t̂)

+
k

σ(t̄)
−λ)2},

where t̄ = arg inf
t∈T

1
σ(t) . Then by taking logarithms across these two sets of inequalities, we

see that

lim
n→∞

n−2β logP{ max
i=1,...,d

D(ti)−s(ti)> k}= lim
n→∞

n−2β logP{sup
t∈T

D(t)−s(t)> k}=− γ2(t∗)
2σ2(t∗)

.

2.5 Efficient Algorithms: Importance Sampling and Con-

ditional Monte Carlo

Suppose the locations of the vertices ti, i = 1,2, . . . ,d, have been generated. When n is

large, the failure of this network is a rare event. To estimate this failure probability, we

develop two efficient simulation algorithms: one based on importance sampling (IS) and

the other using conditional Monte Carlo (CMC).
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2.5.1 Importance Sampling

Algorithm Description

We now develop an IS estimator making use of a new probability measure Q:

Q{DDD ∈ B}=
d

∑
i=1

p(i)P{DDD ∈ B|D(ti)− s(ti)> 0}, (2.5.1)

where B⊂ Rd is a Borel set, and

p(i) =
P{D(ti)− s(ti)> 0}

∑
d
j=1 P{D(t j)− s(t j)> 0}

.

Note that Q is a mixture of d measures, where the i-th measure in the mixture is the

conditional distribution given that the i-th node’s demand exceeds its supply. Since

Q{DDD ∈ B}= 1

∑
d
j=1 P{D(t j)− s(t j)> 0}

d

∑
i=1

P{DDD ∈ B,D(ti)− s(ti)> 0},

it is easy to see that

dP
dQ

=
∑

d
j=1 P{D(t j)− s(t j)> 0}

∑
d
j=1 I{D(t j)− s(t j)> 0}

.

Asymptotic Optimality

Theorem 2.5.1.

Zn(DDD) =
dP
dQ

I{Ln(DDD)> k}=
∑

d
j=1 P{D(t j)− s(t j)> 0}

∑
d
j=1 I{D(t j)− s(t j)> 0}

I{Ln(DDD)> k}
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is an asymptotically optimal estimator for αn(k), P{Ln(DDD)> k}.

Proof. Let EQ denote the expectation under Q, so by (2.4.5), we have

logEQ[Z2
n(DDD)] = logEQ[(

dP
dQ

I{Ln(DDD)> k})2]

≤ logEQ[
( dP

dQ
I{ max

i=1,...,d
D(ti)− s(ti)> 0}

)2
].

Since I{ max
i=1,...,d

D(ti)− s(ti) > 0} = 1 implies ∑
d
j=1 I{D(t j)− s(t j) > 0} ≥ 1, and under

measure Q, ∑
d
j=1 I{D(t j)− s(t j)> 0} ≥ 1,

dP
dQ

I{ max
i=1,...,d

D(ti)− s(ti)> 0}=
∑

d
j=1 P{D(t j)− s(t j)> 0}

∑
d
j=1 I{D(t j)− s(t j)> 0}

I{ max
i=1,...,d

D(ti)− s(ti)> 0}

≤
d

∑
j=1

P{D(t j)− s(t j)> 0}.

Thus

logEQ[Z2
n(DDD)]≤ log

( d

∑
j=1

P{D(t j)− s(t j)> 0}
)2

= 2log
d

∑
j=1

P{D(t j)− s(t j)> 0}.

Since

P{ max
i=1,...,d

D(ti)− s(ti)> 0} ≤
d

∑
j=1

P{D(t j)− s(t j)> 0} ≤ d×P{ max
i=1,...,d

D(ti)− s(ti)> 0},

we have

lim
n→∞

log∑
d
j=1 P{D(t j)− s(t j)> 0}

logP{ max
i=1,...,d

D(ti)− s(ti)> 0}
= 1.
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Therefore,

lim
n→∞

logEQ[Z2
n(DDD)]

logP{Ln(DDD)> k}
≤

2log∑
d
j=1 P{D(t j)− s(t j)> 0}

logP{ max
i=1,...,d

D(ti)− s(ti)> 0}

logP{ max
i=1,...,d

D(ti)− s(ti)> 0}

logP{Ln(DDD)> k}
= 2,

where the last equation follows from Theorem 2.4.2.

Algorithm Implementation

We now explain how to implement the IS algorithm.

1. Set i = 1 and let N be the total number of replications to simulate.

2. Generate demand vector DDD(i) from distribution Q as in (2.5.1). To do this, we use

the algorithm described in [46] to sample truncated normal variables.

3. Calculate Zn(DDD(i)) =
∑

d
j=1 P{D(t j)−s(t j)>0}

∑
d
j=1 I{D(t j)−s(t j)>0} I{Ln(DDD(i))> k}.

4. If i < N, set i = i+1 and go to step 2; otherwise, go to step 5.

5. Compute α̂n(k)= (∑N
i=1 Zn(DDD(i)))/N as our importance sampling estimator of αn(k)=

P{Ln(DDD)> k}, and a 100(1−δ)% confidence interval for αn(k) is (α̂n(k)±Φ−1(1−

δ/2)Ŝ/
√

N)), where Ŝ2 =
(

∑
N
i=1(Zn(DDD(i))− α̂n(k))2)/(N−1), and Φ(·) is the dis-

tribution function of a standard normal.
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2.5.2 Conditional Monte Carlo

Algorithm Description

Note that the multivariate-normal random demand has polar-coordinate representation

(see [40]):

DDD = µµµ+RWΨΨΨ, (2.5.2)

where the radius R satisfies R2 ∼ Γ(d/2,1/2), i.e., its density function

g(x) = xd/2−1e−x/2(1/2)d/2/Γ(d/2),

where Γ(·) is the gamma function, WW ′ = Σ, the angle ΨΨΨ = zzz/‖zzz‖, is uniformly dis-

tributed over the unit sphere, zzz=(z1,z2, . . . ,zd)
′∼N(0, I), and ‖zzz‖=

√
z2

1 + z2
2 + · · ·+ z2

d .

In addition, the radius R and angle ΨΨΨ are independent.

In the set {(R,ΨΨΨ) : primal with (R,ΨΨΨ) is feasible}, let F(DDD) denote the optimal value

of the primal when the demand vector is DDD = µµµ+RWΨΨΨ, and let FΨΨΨ(R) denote F(DDD) when

ΨΨΨ is fixed. Then we have the following theorem regarding the shape of the optimal value

function.

Theorem 2.5.2. For fixed ΨΨΨ,

(a) FΨΨΨ(R) is a piecewise linear function of R in the set

JΨΨΨ = {R≥ 0 : primal with (R,ΨΨΨ) is feasible}; (2.5.3)
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(b) FΨΨΨ(R) is a convex function of R in the set JΨΨΨ.

Proof. We can write the primal as

min ggg′xxx

s.t. Θxxx = sss−µµµ−RWΨΨΨ

xxx≥ 0,

where xxx =

xxx+

xxx−

, ggg = (1,1, . . . ,1,0,0, . . . ,0)′, and Θ = (A′− I, I). Obviously, the rows

of Θ are linearly independent.

The dual can be written as

max yyy′(µµµ+RWΨΨΨ− sss)

s.t. yyy′(−Θ)≤ ggg′.

Because the dual is always feasible, for any R ∈ JΨΨΨ, FΨΨΨ(R) is finite and by strong duality

(e.g., Theorem 4.4 of [13]), is equal to the optimal value of the dual objective.

Let us fix a particular element R∗ ∈ JΨΨΨ. Then there exists a primal optimal basic

feasible solution. Let B be the corresponding optimal basis matrix. The vector xxxB of basic

variables at that optimal solution is given by xxxB = B−1(sss−µµµ−R∗WΨΨΨ), which is strictly

positive with probability 1 because R∗2 follows the continuous distribution Γ(d/2,1/2).

In addition, the vector of reduced costs is nonnegative. If we change R∗ to R and if the
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difference R−R∗ is sufficiently small, B−1(sss− µµµ−RWΨΨΨ) remains positive and we still

have a basic feasible solution. The reduced costs are not affected by the change from R∗

to R and remain nonnegative. Therefore, B is an optimal basis for the new problem with

R as well. Then FΨΨΨ(R) for the new problem is given by

FΨΨΨ(R) = ggg′BB−1(sss−µµµ−RWΨΨΨ) for R close to R∗,

where gggB is the cost vector corresponding to the basis. This establishes that in the vicinity

of R∗, FΨΨΨ(R) is a linear function of R.

To show part (b), let R(1) and R(2) be two elements of JΨΨΨ. For i = 1,2, let xxx(i) be

an optimal solution to the primal corresponding to R(i). Thus, FΨΨΨ(R(1)) = ggg′xxx(1) and

FΨΨΨ(R(2)) = ggg′xxx(2). Fix a scalar γ ∈ [0,1], and note that the vector xxx = γxxx(1)+(1− γ)xxx(2)

is a feasible solution to the primal, so γR(1)+(1− γ)R(2) ∈ JΨΨΨ. Therefore,

FΨΨΨ(γR(1)+(1− γ)R(2))≤ g′x = γggg′xxx(1)+(1− γ)ggg′xxx(2) = γFΨΨΨ(R
(1))+(1− γ)FΨΨΨ(R

(2)),

establishing the convexity of FΨΨΨ(R).

Making use of the polar-coordinate representation and the above the theorem, we now

develop a conditional Monte Carlo approach for estimating α(k).

Note that α(k) can be written as α(k) = E[E[U |ΨΨΨ]], so if we can compute E[U |ΨΨΨ] =

P{L(DDD) ≥ k|ΨΨΨ}, then sampling E[U |ΨΨΨ] rather than U as in naive simulation reduces
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variance. Below is an algorithm for computing an estimator of α(k) with conditional

Monte Carlo.

Asymptotic Optimality

Recall that we defined in Section 2.4 the deterministic supply of node i at location ti as

sn(ti) = nβγ(ti), where β > 0 is a constant, n is the rarity parameter, and γ( ·) is a fixed

positive function.

Theorem 2.5.3. 1 There exist constants n0 > 0, c3 > 0, s∗ > 0, η1 ∈ R, such that when

n > n0,

Tn(ΨΨΨ), P{Ln(DDD)> k|ΨΨΨ} ≤ P{R > nβs∗+η1}, ∀‖ΨΨΨ‖= 1, (2.5.4)

P{Ln(DDD)> k} ≥ c3P{R > nβs∗+O(1)}n−(d−1)β. (2.5.5)

Also, the conditional Monte Carlo estimator Tn(ΨΨΨ) is asymptotically optimal.

Proof. We first prove (2.5.4). Let Ω = {yyy : Myyy ≤ 111,yyy ≥ 000} denote the feasible re-

gion of the dual problem (2.2.3). Then Ln(DDD) = maxyyy′(µµµ+RWΨΨΨ− nβγγγ),yyy ∈ Ω, where

γγγ = (γ(t1),γ(t2), . . . ,γ(td))′ as defined in Section 2.4. We are interested in the failure prob-

ability, which includes two cases as we noted previously in Section 2.2. One case is that

the primal problem is infeasible, which, according to Theorem 2.3.1(b), occurs if and only

if when 111′(µµµ+RWΨΨΨ−nβγγγ)> 0. The other case is that the primal problem is feasible but

the optimal value is greater than k. Since the dual problem is an LP, for the second case,

we can focus on the extreme points of the feasible region Ω. Since k > 0, when yyy = 000, the
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optimal value is 0, so we do not have a failure. Therefore, we do not need to consider the

solution 000 when calculating the failure probability.

Suppose {ỹyyi : i = 1,2, . . . ,m} are the extreme points of Ω, excluding 000, and we have

{Ln(DDD)> k}= {111′(µµµ+RWΨΨΨ−nβ
γγγ)> 0}

⋃[ m⋃
i=1

{ỹyy′i(µµµ+RWΨΨΨ−nβ
γγγ)> k}

]
=

m⋃
i=0

{ỹyy′i(µµµ+RWΨΨΨ−nβ
γγγ)> ki},

where ỹyy0 = 111, and

ki =


0, i = 0;

k, i = 1,2, . . . ,m.

Let n1 = max{0, max
i=0,1,...,m

〈ỹyyi,µµµ〉−ki
〈ỹyyi,γγγ〉

}1/β, where 〈·, ·〉 denotes inner product. Then when

n > n1, we have nβ〈ỹyyi,γγγ〉−〈ỹyyi,µµµ〉+ki > 0. Recall that R is a positive random variable, so

ỹyy′i(µµµ+RWΨΨΨ−nβ
γγγ)> ki ⇒


R > nβ〈ỹyyi,γγγ〉−〈ỹyyi,µµµ〉+ki

〈ỹyyi,WΨΨΨ〉 , if 〈ỹyyi,WΨΨΨ〉> 0;

R ∈ /0, if 〈ỹyyi,WΨΨΨ〉 ≤ 0.

Define

Γ0 = {ΨΨΨ : ‖ΨΨΨ‖= 1, max
i=0,1,...,m

〈ỹyyi,WΨΨΨ〉> 0},

MΨΨΨ = {i = 0,1, . . . ,m : 〈ỹyyi,WΨΨΨ〉> 0}.

For ΨΨΨ ∈ Γ0, define

H(ΨΨΨ,n) = min
i∈MΨΨΨ

nβ〈ỹyyi,γγγ〉−〈ỹyyi,µµµ〉+ ki

〈ỹyyi,WΨΨΨ〉
,
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S(ΨΨΨ) = min
i∈MΨΨΨ

〈ỹyyi,γγγ〉
〈ỹyyi,WΨΨΨ〉

, iΨΨΨ ∈ arg min
i∈MΨΨΨ

〈ỹyyi,γγγ〉
〈ỹyyi,WΨΨΨ〉

, ỹyyΨΨΨ = ỹyyiΨΨΨ.

It is easy to see that when n > n1,

P{Ln(DDD)> k}= P{R > H(ΨΨΨ,n)}. (2.5.6)

In the non-trivial case when Γ0 6= /0, there exists some ΨΨΨ0 ∈Γ0. Let a= max
i=0,1,...,m

〈ỹyyi,WΨΨΨ0〉>

0. Define

Γa = {ΨΨΨ : ‖ΨΨΨ‖= 1, max
i=0,1,...,m

〈ỹyyi,WΨΨΨ〉 ≥ a}.

Let us consider inequality (2.5.4) first. We have

Tn(ΨΨΨ) = P{R > H(ΨΨΨ,n)|ΨΨΨ} ≤ P{R > inf
ΨΨΨ∈Γ0

H(ΨΨΨ,n)}= P{R > inf
ΨΨΨ∈Γa

H(ΨΨΨ,n)},

and

inf
ΨΨΨ∈Γa

H(ΨΨΨ,n) = inf
ΨΨΨ∈Γa

min
i∈MΨΨΨ

nβ〈ỹyyi,γγγ〉−〈ỹyyi,µµµ〉+ ki

〈ỹyyi,WΨΨΨ〉

≥ inf
ΨΨΨ∈Γa

min
i∈MΨΨΨ

nβ〈ỹyyi,γγγ〉
〈ỹyyi,WΨΨΨ〉

+ inf
ΨΨΨ∈Γa

min
i∈MΨΨΨ

−〈ỹyyi,µµµ〉+ ki

〈ỹyyi,WΨΨΨ〉

= nβ inf
ΨΨΨ∈Γa

S(ΨΨΨ)+ inf
ΨΨΨ∈Γa

min
i∈MΨΨΨ

−〈ỹyyi,µµµ〉+ ki

〈ỹyyi,WΨΨΨ〉
.

Note that both S(ΨΨΨ) and min
i∈MΨΨΨ

−〈ỹyyi,µµµ〉+ki
〈ỹyyi,WΨΨΨ〉 are continuous with respect to ΨΨΨ on the compact
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set Γa. Then there exist ΨΨΨ
∗ ∈ Γa and η1 ∈ R such that

inf
ΨΨΨ∈Γa

S(ΨΨΨ) = S(ΨΨΨ∗) =
〈ỹyyΨΨΨ

∗,γγγ〉
〈ỹyyΨΨΨ

∗,WΨΨΨ
∗〉
,

inf
ΨΨΨ∈Γa

min
i∈MΨΨΨ

−〈ỹyyi,µµµ〉+ ki

〈ỹyyi,WΨΨΨ〉
= η1. (2.5.7)

Therefore,

inf
ΨΨΨ∈Γa

H(ΨΨΨ,n)≥ nβS(ΨΨΨ∗)+η1.

Then we have

Tn(ΨΨΨ)≤ P{R > nβS(ΨΨΨ∗)+η1}.

Let s∗ , S(ΨΨΨ∗), then (2.5.4) is established.

Now we consider the inequality (2.5.5). We claim that for any ΨΨΨ in Γa, there exists

n2(ΨΨΨ)> 0 such that when n > n2(ΨΨΨ),

H(ΨΨΨ,n) = nβS(ΨΨΨ)+
kΨΨΨ−〈ỹyyΨΨΨ,µµµ〉
〈ỹyyΨΨΨ,WΨΨΨ〉

, (2.5.8)

where kΨΨΨ is the ki corresponding to ỹyyΨΨΨ. To see why this is true, observe that for any

i ∈MΨΨΨ,

λi ,nβS(ΨΨΨ)+
kΨΨΨ−〈ỹyyΨΨΨ,µµµ〉
〈ỹyyΨΨΨ,WΨΨΨ〉

− nβ〈ỹyyi,γγγ〉−〈ỹyyi,µµµ〉+ ki

〈ỹyyi,WΨΨΨ〉

=nβ
(
S(ΨΨΨ)− 〈ỹyyi,γγγ〉

〈ỹyyi,WΨΨΨ〉
)+(

kΨΨΨ−〈ỹyyΨΨΨ,µµµ〉
〈ỹyyΨΨΨ,WΨΨΨ〉

− ki−〈ỹyyi,µµµ〉
〈ỹyyi,WΨΨΨ〉

)
.
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We know that S(ΨΨΨ)− 〈ỹyyi,γγγ〉
〈ỹyyi,WΨΨΨ〉 ≤ 0. Define

IΨΨΨ = {i ∈MΨΨΨ : S(ΨΨΨ)− 〈ỹyyi,γγγ〉
〈ỹyyi,WΨΨΨ〉

= 0}, I−
ΨΨΨ
= {i ∈MΨΨΨ : S(ΨΨΨ)− 〈ỹyyi,γγγ〉

〈ỹyyi,WΨΨΨ〉
< 0}.

Choose

iΨΨΨ ∈ argmin
i∈IΨΨΨ

kΨΨΨ−〈ỹyyΨΨΨ,µµµ〉
〈ỹyyΨΨΨ,WΨΨΨ〉

,

then λi ≤ 0,∀i ∈ IΨΨΨ. For i ∈ I−
ΨΨΨ

, note that both S(ΨΨΨ)− 〈ỹyyi,γγγ〉
〈ỹyyi,WΨΨΨ〉 and kΨΨΨ−〈ỹyyΨΨΨ,µµµ〉

〈ỹyyΨΨΨ,WΨΨΨ〉 −
ki−〈ỹyyi,µµµ〉
〈ỹyyi,WΨΨΨ〉

are bounded on Γa. Then there exist η2(ΨΨΨ),η3(ΨΨΨ)> 0, such that

S(ΨΨΨ)− 〈ỹyyi,γγγ〉
〈ỹyyi,WΨΨΨ〉

≤ −η2(ΨΨΨ),

−η3(ΨΨΨ)≤ kΨΨΨ−〈ỹyyΨΨΨ,µµµ〉
〈ỹyyΨΨΨ,WΨΨΨ〉

− ki−〈ỹyyi,µµµ〉
〈ỹyyi,WΨΨΨ〉

≤ η3(ΨΨΨ).

Then when n > n2(ΨΨΨ) = (η3(ΨΨΨ)/η2(ΨΨΨ))1/β, we have that λi ≤ 0,∀i ∈ I−
ΨΨΨ

. Therefore,

when n > max{n1,n2(ΨΨΨ
∗)}, it follows that λi ≤ 0,∀i ∈MΨΨΨ

∗ , so

H(ΨΨΨ∗,n) = nβS(ΨΨΨ∗)+
kΨΨΨ
∗−〈ỹyyΨΨΨ

∗,µµµ〉
〈ỹyyΨΨΨ

∗,WΨΨΨ
∗〉

. (2.5.9)

We also claim that there exist c1 > 0, c2 ∈ R , such that if n > max{n1,n2(ΨΨΨ
∗)}, then

H(ΨΨΨ,n)−H(ΨΨΨ∗,n)≤ (nβc1+c2)‖ΨΨΨ−ΨΨΨ
∗‖ on Γa. To see this, for any δ > 0 and θθθ ∈ Γa

, define B(θθθ,δ) = {ΨΨΨ ∈ Γa : ‖ΨΨΨ−θθθ‖ ≤ δ}. Note that there exists δ1 > 0, such that when

0 < δ ≤ δ1, and n > max{n1,n2(ΨΨΨ
∗)}, for any ΨΨΨ ∈ B(ΨΨΨ∗,δ), we have that the index
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corresponding to ỹyyΨΨΨ
∗ is in MΨΨΨ, and

H(ΨΨΨ,n)−H(ΨΨΨ∗,n) = min
i∈MΨΨΨ

nβ〈ỹyyi,γγγ〉−〈ỹyyi,µµµ〉+ ki

〈ỹyyi,WΨΨΨ〉
− nβ〈ỹyyΨΨΨ

∗,γγγ〉−〈ỹyyΨΨΨ
∗,µµµ〉+ kΨΨΨ

∗

〈ỹyyΨΨΨ
∗,WΨΨΨ

∗〉

≤ nβ〈ỹyyΨΨΨ
∗,γγγ〉−〈ỹyyΨΨΨ

∗,µµµ〉+ kΨΨΨ
∗

〈ỹyyΨΨΨ
∗ ,WΨΨΨ〉

− nβ〈ỹyyΨΨΨ
∗,γγγ〉−〈ỹyyΨΨΨ

∗,µµµ〉+ kΨΨΨ
∗

〈ỹyyΨΨΨ
∗ ,WΨΨΨ

∗〉

= (nβ〈ỹyyΨΨΨ
∗,γγγ〉−〈ỹyyΨΨΨ

∗,µµµ〉+ kΨΨΨ
∗)
〈ỹyyΨΨΨ

∗ ,WΨΨΨ
∗〉−〈ỹyyΨΨΨ

∗,WΨΨΨ〉
〈ỹyyΨΨΨ

∗ ,WΨΨΨ〉〈ỹyyΨΨΨ
∗,WΨΨΨ

∗〉

= (nβ〈ỹyyΨΨΨ
∗,γγγ〉−〈ỹyyΨΨΨ

∗,µµµ〉+ kΨΨΨ
∗)
〈W ′ỹyyΨΨΨ

∗,ΨΨΨ∗−ΨΨΨ〉
〈ỹyyΨΨΨ

∗ ,WΨΨΨ〉〈ỹyyΨΨΨ
∗,WΨΨΨ

∗〉
.

Since 〈ỹyyΨΨΨ
∗,WΨΨΨ〉〈ỹyyΨΨΨ

∗,WΨΨΨ
∗〉 is continuous on B(ΨΨΨ∗,δ), there exists δ2 ≥ 0 such that

when 0 < δ≤min{δ1,δ2}, we have

〈ỹyyΨΨΨ
∗,WΨΨΨ〉〈ỹyyΨΨΨ

∗ ,WΨΨΨ
∗〉 ≥ 〈ỹyyΨΨΨ

∗ ,WΨΨΨ
∗〉2− c0 > 0,

where c0 is some positive constant.

Define c1 = 〈ỹyyΨΨΨ
∗,γγγ〉 ‖W ′ỹyyΨΨΨ∗‖

〈ỹyyΨΨΨ∗ ,WΨΨΨ
∗〉2−c0

> 0, c2 =(kΨΨΨ
∗−〈ỹyyΨΨΨ

∗,µµµ〉) ‖W ′ỹyyΨΨΨ∗‖
〈ỹyyΨΨΨ∗ ,WΨΨΨ

∗〉2−c0
, n3 =(max{0,−c2}

c1
)1/β.

When n > max{n1,n2(ΨΨΨ
∗),n3}, we have nβc1 + c2 > 0. Therefore,

H(ΨΨΨ,n)−H(ΨΨΨ∗,n)≤ (nβ〈ỹyyΨΨΨ
∗,γγγ〉−〈ỹyyΨΨΨ

∗,µµµ〉+ kΨΨΨ
∗)
〈W ′ỹyyΨΨΨ

∗,ΨΨΨ∗−ΨΨΨ〉
〈ỹyyΨΨΨ

∗ ,WΨΨΨ〉〈ỹyyΨΨΨ
∗,WΨΨΨ

∗〉

≤ (nβ〈ỹyyΨΨΨ
∗,γγγ〉−〈ỹyyΨΨΨ

∗,µµµ〉+ kΨΨΨ
∗)
‖W ′ỹyyΨΨΨ

∗‖‖ΨΨΨ∗−ΨΨΨ‖
〈ỹyyΨΨΨ

∗,WΨΨΨ
∗〉2− c0

= (nβc1 + c2)‖ΨΨΨ∗−ΨΨΨ‖.



44

So for any ΨΨΨ ∈ B(ΨΨΨ∗,δ),

H(ΨΨΨ,n)≤ H(ΨΨΨ∗,n)+(nβc1 + c2)δ. (2.5.10)

Since ΨΨΨ is uniformly distributed over the unit sphere, which is a (d−1)-dimensional

manifold, there exists some constant c3 > 0 such that

P{‖ΨΨΨ−ΨΨΨ
∗ ‖≤ δ} ≥ c3δ

(d−1).

Let δ = n−β. By equations (2.5.6) and (2.5.10), it follows that

P{Ln(DDD)> k}= P{R > H(ΨΨΨ,n)}

≥ P{R > H(ΨΨΨ∗,n)+(nβc1 + c2)δ,‖ΨΨΨ−ΨΨΨ
∗ ‖≤ δ}

≥ c3P{R > H(ΨΨΨ∗,n)+(nβc1 + c2)δ}δ(d−1)

= c3P{R > nβS(ΨΨΨ∗)+
kΨΨΨ
∗−〈ỹyyΨΨΨ

∗,µµµ〉
〈ỹyyΨΨΨ

∗,WΨΨΨ
∗〉

+(c1 + c2n−β)}n−(d−1)β

(2.5.11)

= c3P{R > nβS(ΨΨΨ∗)+O(1)}n−(d−1)β.

Hence, we have proven (2.5.5).
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We now establish the last part of the theorem. By (2.5.4) and (2.5.11), we have

logE[Tn(ΨΨΨ)2]

logP{L(DDD)> k}
≤ logP{R > nβS(ΨΨΨ∗)+η1}2

logc3P{R > nβS(ΨΨΨ∗)+ kΨΨΨ∗−〈ỹyyΨΨΨ∗ ,µµµ〉
〈ỹyyΨΨΨ∗ ,WΨΨΨ

∗〉 +(c1 + c2n−β)}n−(d−1)β

=
2logP{R > nβS(ΨΨΨ∗)+η1}

logc3 + logP{R > nβS(ΨΨΨ∗)+ kΨΨΨ∗−〈ỹyyΨΨΨ∗ ,µµµ〉
〈ỹyyΨΨΨ∗ ,WΨΨΨ

∗〉 +(c1 + c2n−β)}− (d−1)β logn

= 2
( logP{R > nβS(ΨΨΨ∗)+ kΨΨΨ∗−〈ỹyyΨΨΨ∗ ,µµµ〉

〈ỹyyΨΨΨ∗ ,WΨΨΨ
∗〉 +(c1 + c2n−β)}

logP{R > nβS(ΨΨΨ∗)+η1}
+

logc3− (d−1)β logn
logP{R > nβS(ΨΨΨ∗)+η1}

)−1
.

(2.5.12)

Recall that nβc1 + c2 > 0 when n > max{n1,n2(ΨΨΨ
∗),n3}, so (2.5.7) implies

η1 = inf
ΨΨΨ∈Γa

inf
i∈MΨΨΨ

−〈ỹyyi,µµµ〉+ ki

〈ỹyyi,WΨΨΨ〉
≤ kΨΨΨ

∗−〈ỹyyΨΨΨ
∗ ,µµµ〉

〈ỹyyΨΨΨ
∗,WΨΨΨ

∗〉
+(c1 + c2n−β).

Therefore,

P{R > nβS(ΨΨΨ∗)+
kΨΨΨ
∗−〈ỹyyΨΨΨ

∗,µµµ〉
〈ỹyyΨΨΨ

∗ ,WΨΨΨ
∗〉

+(c1 + c2n−β)} ≤ P{R > nβS(ΨΨΨ∗)+η1},

and

logP{R > nβS(ΨΨΨ∗)+ kΨΨΨ∗−〈ỹyyΨΨΨ∗ ,µµµ〉
〈ỹyyΨΨΨ∗ ,WΨΨΨ

∗〉 +(c1 + c2n−β)}

logP{R > nβS(ΨΨΨ∗)+η1}
≥ logP{R > nβS(ΨΨΨ∗)+η1}

logP{R > nβS(ΨΨΨ∗)+η1}
= 1.

When n > n4 = elogb/β(d−1) , the second term inside the parentheses in (2.5.12) is non-

negative. Then when n> n0 =max{n1,n2(ΨΨΨ
∗),n3,n4}, it follows that (2.5.12) is bounded

above by 2, thereby concluding the result.
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Algorithm Implementation

We now explain how to implement the Conditional Monte Carlo algorithm.

1. Set i = 1 and let N be the total number of replications to simulate.

2. Generate ΨΨΨi = zi/‖zi‖, where zi ∼ N(0, I).

3. Search for the root R∗i of the equation FΨΨΨi(R) = k if it exists, and calculate E[Ui|ΨΨΨi].

4. If i < N, then set i = i+1 and go to step 2; otherwise, go to step 5.

5. Compute α̃n(k) = (∑n
i=1 E[Ui|ΨΨΨi])/n as our conditional Monte Carlo estimator of

α(k), and a 100(1−δ)% confidence interval for α(k) is (α̃n(k)±Φ−1(1−δ/2)S̃n/
√

n)),

where S̃2
n = (∑n

i=1(E[Ui|ΨΨΨi]− α̃n(k))2)/(n−1).

Now we give more details about how we calculate E[Ui|ΨΨΨi] and search for the root R∗i

of the equation FΨΨΨi(R) = k. Note that

E[U |ΨΨΨ] = P{L(D)≥ k|ΨΨΨ}

= P{F(D)≥ k,Q(D) = 1|ΨΨΨ}+P{Q(D) = 0|ΨΨΨ}

= P{FΨΨΨ(R)≥ k,Q(D) = 1|ΨΨΨ}+P{Q(D) = 0|ΨΨΨ}

= P{R ∈ KΨΨΨ|ΨΨΨ}+P{R ∈ Jc
ΨΨΨ
|ΨΨΨ}

= P{R ∈ KΨΨΨ∪ Jc
ΨΨΨ
|ΨΨΨ}, (2.5.13)
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where KΨΨΨ = {R∈ JΨΨΨ : FΨΨΨ(R)≥ k}, JΨΨΨ is defined in (2.5.3), and Jc
ΨΨΨ
= {R≥ 0 : primal with

(R,ΨΨΨ) is infeasible} is the complement of JΨΨΨ. The last equality follows from the fact that

KΨΨΨ∩ Jc
ΨΨΨ
= /0.

By Theorem 2.5.2, for fixed ΨΨΨ, FΨΨΨ(R) is piecewise linear and convex on JΨΨΨ. There-

fore, KΨΨΨ is an interval or union of intervals if not empty. By Theorem 2.3.1, for fixed ΨΨΨ,

JΨΨΨ = {R≥ 0 : R1′WΨΨΨ≤ 1′s−1′µ}. By Assumption 4 in Section 2.2, we have 1′s > 1′µ.

If 1′WΨΨΨ > 0, then JΨ = [0,(1′s−1′µ)/1′WΨΨΨ]; JΨΨΨ = [0,+∞) otherwise. In both cases,

JΨΨΨ is an interval. Thus, KΨΨΨ∪ Jc
Ψ

is an interval or union of intervals if not empty. Because

R2 ∼ Γ(d/2,1/2), E[U |ΨΨΨ] can be calculated analytically using (2.5.13).

As noted above, Jc
ΨΨΨ

is easy to find, and calculating KΨΨΨ only requires finding R∗ ∈ JΨΨΨ

such that

FΨΨΨ(R
∗) = k. (2.5.14)

There are three cases for the root, as we now explain.

• There is no root in the set JΨΨΨ.

If FΨΨΨ(R)< k for all R ∈ JΨΨΨ, then KΨΨΨ = /0 and E[U |ΨΨΨ] = P{R ∈ Jc
ΨΨΨ
}. If FΨΨΨ(R)> k

for all R ∈ JΨΨΨ, then KΨΨΨ = JΨΨΨ and E[U |ΨΨΨ] = 1.

• There is only one root R∗ in the set JΨΨΨ.

If the slope of FΨΨΨ(R) at R∗ is positive, then KΨΨΨ = [R∗,(1′s−1′µ)/1′WΨΨΨ] when

1′WΨΨΨ > 0, and KΨΨΨ = [R∗,+∞) when 1′WΨΨΨ ≤ 0; in both cases E[U |ΨΨΨ] = P{R ∈

[R∗,+∞)}. If the slope of FΨΨΨ(R) at R∗ is negative, then KΨΨΨ = [0,R∗] and E[U |ΨΨΨ] =

P{R ∈ [0,R∗]∪ Jc
ΨΨΨ
}.
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• There are two different roots R∗(1) < R∗(2) in the set JΨΨΨ.

Because FΨΨΨ(R) is convex on JΨΨΨ, it must be that the slope at R∗(1) is negative

and the slope at R∗(2) is positive. Then KΨΨΨ = [0,R∗(1)]∪ [R∗(2),(1′s−1′µ)/1′WΨΨΨ]

when 1′WΨΨΨ > 0, and KΨΨΨ = [0,R∗(1)]∪ [R∗(2),+∞) when 1′WΨΨΨ≤ 0; in both cases

E[U |ΨΨΨ] = P{R ∈ [0,R∗(1)]∪ [R∗(2),+∞)}.

Now we explain how we search for the root R∗ of (2.5.14) for a fixed ΨΨΨ using New-

ton’s method. Recall that if 1′WΨΨΨ > 0, JΨΨΨ is a finite interval; JΨΨΨ is an infinite in-

terval otherwise. We hope to find a uniform way to search in both cases to simplify

coding. Meanwhile, we want to control the computational error. If 1′WΨΨΨ > 0, set

b = GΓ((1′s−1′µ)/1′WΨΨΨ)2, where GΓ is the distribution function of Γ(d/2,1/2); set

b = 1 otherwise. Then we let bl =
√

G−1
Γ
(0.5c) and bu =

√
G−1

Γ
(b−0.5c), where c is a

small constant such that P{R∈ [bl,bu]}> 0. In our algorithm, bl and bu are lower and up-

per bounds for the root R∗, and we search for R∗ ∈ [bl,bu], which is a finite interval in both

cases. Let K̃ΨΨΨ = {R ∈ [bl,bu] : FΨΨΨ(R)≥ k}. Then our algorithm calculates K̃ΨΨΨ instead of

KΨΨΨ. Because P{R ∈ JΨΨΨ}−P{R ∈ [bl,bu]}= c, we have 0≤ {R ∈ KΨΨΨ}−P{R ∈ K̃ΨΨΨ} ≤ c,

and the error between E[U |ΨΨΨ] and our computed value of it will not exceed c. We first

start from an initial value R0 = bl , and by strong duality, we solve the dual LP with de-

mand DDD = µµµ+R0WΨΨΨ using the simplex algorithm to obtain the corresponding FΨΨΨ(R0)

and slope l0 of FΨΨΨ(R) at R0.

• If l0 > 0, there is at most one root.

– If FΨΨΨ(R0)> k or FΨΨΨ(bu)< k, then there is no root.
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– Otherwise, there is one root. We update R1 = min(R0 +(k−FΨΨΨ(R0))/l0,bu).

Solve the dual LP with demand DDD = µµµ+R1WΨΨΨ to obtain the corresponding

FΨΨΨ(R1) and slope l1. We keep updating until we find the root R∗.

• If l0 < 0, there are at most two different roots.

– If FΨΨΨ(R0)< k and FΨΨΨ(bu)< k, then there is no root.

– If FΨΨΨ(R0) ≥ k and FΨΨΨ(bu) < k, then there is one root. We update R1 = R0 +

(k−FΨΨΨ(R0))/l0. Solve the dual LP with demand DDD = µµµ+R1WΨΨΨ to obtain

the corresponding FΨΨΨ(R1) and slope l1. We keep updating until we find the

root R∗.

– If FΨΨΨ(R0) < k and FΨΨΨ(bu) ≥ k, then there exists one root. We first increase

R from R0 to R1 in JΨΨΨ using a fixed step way such that l1 > 0. We try

R1 = min(R0 + t,bu), where t is the fixed step length. If l1 ≤ 0, we try

R1 = min(R0 + 2t,bu). We increase until we find a point R1 with positive

slope. Then we update R2 = min(R1 +(k−FΨΨΨ(R1))/l1,bu). Solve the dual

LP with demand DDD = µµµ + R2WΨΨΨ to obtain the corresponding FΨΨΨ(R2) and

slope l2. We keep updating until we find the root R∗.

– If FΨΨΨ(R0)≥ k and FΨΨΨ(bu)≥ k, then there exists no root or there exist two roots.

We first test if there exists a root. We update R1 =R0+(k−FΨΨΨ(R0))/l0. Solve

the dual LP with demand DDD = µµµ+R1WΨΨΨ to obtain the corresponding FΨΨΨ(R1)

and slope l1. We keep updating until we find a root R∗(1), or we reach some

point with non-negative slope before we find a root. If the latter case happens,
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there is no root. If the former case happens, there exist two roots. We increase

R from R∗(1) to R′1 in JΨΨΨ using the fixed step way such that l′1 > 0, and then

update R′2 = min(R′1 +(k−FΨΨΨ(R′1))/l′1,bu). Solve the dual LP with demand

DDD = µµµ+R′2WΨΨΨ to obtain the corresponding FΨΨΨ(R′2) and slope l′2. We keep

updating until we find the second root R∗(2).

2.6 Numerical Examples

Here we use the same basis for comparing the estimators using different simulation al-

gorithms as in [18]. Suppose we want to estimate α = E[X ], and X1,X2, . . . ,XN are in-

dependent replications of X . Then α̂ = (∑N
i=1 Xi)/N is an unbiased estimator of α, and

S2 = (∑N
i=1(Xi− α̂)2)/(N−1) is an unbiased estimator of Var[X ] = σ2, which we assume

is finite. We then define the RSE (relative standard error) as S/(
√

Nα̂). To consider

both the accuracy and computational efficiency when comparing different unbiased esti-

mators, as suggested in [30], we use the relative measure RSE2×CT (Computing Time)

as the criterion.

In our experiments we apply naive simulation, importance sampling, and conditional

Monte Carlo methods to different networks, and compare RSE2×CT . Examples 1 and 2

show how failure probability changes with the threshold k for fixed supply, and Examples

3 and 4 show how failure probability changes with the rarity parameter n for fixed k. We

set N = 105 for all of the four examples.
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2.6.1 Example 1: d = 3, fixed sss

The first example is a 3-dimensional network with the following parameters:

H =


0 1 0

1 0 1

0 1 0

 , sss =


3

1

13

 , µµµ =


1

1

2

 , Σ =


1 0.5 0.1

0.5 1 0.5

0.1 0.5 1

 .

Table 2.1: Results of Naive Simulation, IS, and CMC for d = 3, fixed sss.

Naive Simulation Importance Sampling Conditional MC
k α(k) RSE2×CT α(k) RSE2×CT α(k) RSE2×CT
1 1.73×10−1 2.07×10−2 1.73×10−1 8.40×10−3 1.73×10−1 2.95×10−2

5 1.63×10−2 2.71×10−1 1.62×10−2 9.22×10−2 1.64×10−2 6.23×10−2

10 1.72×10−3 2.93×100 1.61×10−3 7.60×10−1 1.55×10−3 9.80×10−2

12 4.80×10−4 8.79×100 5.46×10−4 2.17×100 5.09×10−4 1.17×10−1

16 2.00×10−5 1.92×102 6.01×10−5 1.99×101 3.96×10−5 1.51×10−1

20 0 NaN 0 NaN 2.08×10−6 1.85×10−1

22 0 NaN 0 NaN 4.23×10−7 1.96×10−1

25 0 NaN 0 NaN 3.20×10−8 1.86×10−1

2.6.2 Example 2: d = 10, fixed sss

The second example is a 10-dimensional network with the following parameters:

H =



0 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0



, sss =



3

5

3

3

3

3

3

3

3

15



, µµµ =



1

5

1

1

1

1

1

1

1

1



,Σ =



0.5 0.3 0.3 0.25 0.2 0.15 0.2 0.25 0.2 0.15

0.3 0.5 0.25 0.2 0.15 0.1 0.15 0.2 0.15 0.1

0.3 0.25 0.5 0.3 0.25 0.2 0.25 0.3 0.25 0.2

0.25 0.2 0.3 0.5 0.3 0.25 0.3 0.25 0.2 0.15

0.2 0.15 0.25 0.3 0.5 0.3 0.25 0.2 0.15 0.1

0.15 0.1 0.2 0.25 0.3 0.5 0.3 0.25 0.2 0.15

0.2 0.15 0.25 0.3 0.25 0.3 0.5 0.3 0.25 0.2

0.25 0.2 0.3 0.25 0.2 0.25 0.3 0.5 0.3 0.25

0.2 0.15 0.25 0.2 0.15 0.2 0.25 0.3 0.5 0.3

0.15 0.1 0.2 0.15 0.1 0.15 0.2 0.25 0.3 0.5
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Table 2.2: Results of Naive Simulation, IS, and CMC for d = 10, fixed sss.

Naive Simulation Importance Sampling Conditional MC
k α(k) RSE2×CT α(k) RSE2×CT α(k) RSE2×CT
2 3.64×10−2 1.21×10−1 3.67×10−2 9.57×10−2 3.66×10−2 2.00×10−1

7 3.53×10−3 1.29×100 3.30×10−3 8.27×10−1 3.30×10−3 7.23×10−1

12 4.70×10−4 9.67×100 4.08×10−4 3.98×100 4.01×10−4 1.44×100

20 3.00×10−5 1.52×102 4.44×10−5 1.83×101 3.87×10−5 3.32 ×100

30 0 NaN 3.00×10−6 2.04×102 3.86×10−6 8.17×100

40 0 NaN 0 NaN 3.47×10−7 1.38×101

47 0 NaN 0 NaN 4.88×10−8 2.95×101

2.6.3 Example 3: d = 3, fixed k

The third example is a 3-dimensional network with the following parameters:

H =


0 1 0

1 0 1

0 1 0

 , γγγ =


3

1

13

 , µµµ =


1

1

2

 , Σ =


1 0.5 0.1

0.5 1 0.5

0.1 0.5 1

 , k = 1.
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Table 2.3: Results of Naive Simulation, IS, and CMC for d = 3, fixed k.

Naive Simulation Importance Sampling Conditional MC
n α(k) RSE2×CT α(k) RSE2×CT α(k) RSE2×CT
1 1.73×10−1 2.07×10−2 1.73×10−1 8.40×10−3 1.73×10−1 2.95×10−2

1.5 6.77×10−2 5.04×10−2 6.76×10−2 1.59×10−2 6.69×10−2 4.35×10−2

2.5 6.44×10−3 5.34×10−1 6.19×10−3 4.40×10−2 6.21×10−3 7.74×10−2

3.2 6.10×10−4 5.63×100 6.92×10−4 8.82×10−2 6.88×10−4 1.14×10−1

3.9 8.00×10−5 4.27×101 4.82×10−5 4.68×10−1 4.83×10−5 1.43×10−1

4.5 0 NaN 3.39×10−6 1.62×100 3.30×10−6 1.84×10−1

4.9 0 NaN 4.80×10−7 7.08×100 4.89×10−7 2.03×10−1

2.6.4 Example 4: d = 10, fixed k

The fourth example is a 10-dimensional network with the following parameters:

H =



0 1 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0

0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0



, γγγ =



3

5

3

3

3

3

3

3

3

15



, µµµ =



1

5

1

1

1

1

1

1

1

1



,Σ =



0.5 0.3 0.3 0.25 0.2 0.15 0.2 0.25 0.2 0.15

0.3 0.5 0.25 0.2 0.15 0.1 0.15 0.2 0.15 0.1

0.3 0.25 0.5 0.3 0.25 0.2 0.25 0.3 0.25 0.2

0.25 0.2 0.3 0.5 0.3 0.25 0.3 0.25 0.2 0.15

0.2 0.15 0.25 0.3 0.5 0.3 0.25 0.2 0.15 0.1

0.15 0.1 0.2 0.25 0.3 0.5 0.3 0.25 0.2 0.15

0.2 0.15 0.25 0.3 0.25 0.3 0.5 0.3 0.25 0.2

0.25 0.2 0.3 0.25 0.2 0.25 0.3 0.5 0.3 0.25

0.2 0.15 0.25 0.2 0.15 0.2 0.25 0.3 0.5 0.3

0.15 0.1 0.2 0.15 0.1 0.15 0.2 0.25 0.3 0.5



, k = 2.

Table 2.4: Results of Naive Simulation, IS, and CMC for d = 10, fixed k.

Naive Simulation Importance Sampling Conditional MC
n α(k) RSE2×CT α(k) RSE2×CT α(k) RSE2×CT
1 3.64×10−2 1.21×10−1 3.67×10−2 9.57×10−2 3.66×10−2 2.00×10−1

1.32 3.05×10−3 1.39×100 3.38×10−3 2.09×10−1 3.38×10−3 6.85×10−1

1.48 2.10×10−4 2.00×101 2.70×10−4 6.14×10−1 2.73×10−4 2.28×100

1.6 4.00×10−5 1.04×102 3.20×10−5 2.19×100 3.23×10−5 3.79 ×100

1.7 0 NaN 4.13×10−6 1.09×101 4.02×10−6 6.07×100

1.78 0 NaN 7.34×10−7 5.24×101 7.26×10−7 6.87×100
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2.6.5 Discussion of Results and Comparison Between Algorithms

1. When k or n increases, the performance of both the naive simulation and IS deteri-

orates quickly in terms of RSE2×CT . Because we fix the number of simulations

N, as in Example 1 and 2, when k is very large, we do not get even one observation

of the event {Ln(DDD) ≥ k}. However, although the performance of CMC becomes

worse as well, it does not deteriorate as quickly as the other two. No matter how

large k is, we can obtain a non-zero estimate of α(k).

2. Although both IS and CMC are asymptotically optimal, when k or n is small, IS

performs better than CMC, as we now explain. The IS method only needs to solve

a single optimization problem to determine Zn(DDD) (see Section 2.5.1) in each repli-

cation i. In contrast, our conditional Monte Carlo method needs to solve several

optimization problems to find the roots R∗i which equate the optimal value of the

primal and the threshold k for a fixed angle ΨΨΨ (see equation (8) in [18]) in each

replication i. Thus, the added computational effort required by CMC can lead to it

performing worse than IS. However, as k or n increases, conditional Monte Carlo

method works much better. The larger k or n is, the bigger the advantage CMC has

compared to naive simulation. The advantage arises because of the significant vari-

ance reduction obtained for large k or n overwhelms the additional computational

effort. In conclusion, for a given network, IS performs best when k or n is small,

and CMC is better when k or n is large.
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2.7 Final Comments

We discuss a distribution network model with each node subjected to given fixed supply

and Gaussian random demand. The unserved demand at a node is distributed propor-

tionally to its neighbors. The equilibrium point is determined by a linear program whose

objective is to minimize the sum of excess demands across all nodes in this network. We

developed IS and CMC approaches to efficiently estimate the failure probability. Numeri-

cal results show that these two algorithms greatly outperform naive simulation, especially

when the threshold k is large.

For CMC algorithm, note that the algorithm requires that the radial component, R, is

a positive continuous random variable and that we are able to simulate the radial com-

ponent conditional on the angular part, ΨΨΨ. Therefore the conditional Monte Carlo al-

gorithm applies as long as the demand vector DDD is an elliptical copula. As for the case

of Archimedean copula, recall that if (U1, ...,Ud) follows an Archimedean copula then

C (u1, ...,ud) := P(U1 ≤ u1, ...,Ud ≤ ud) satisfies

C (u1, ...,ud) = ϕ
(
ϕ
−1 (u1)+ ...+ϕ

−1 (ud)
)
,

for ui ∈ (0,1) and ϕ(·) is the so-called generator of C (·) and is d−monotonic (see [41]). A

sufficient condition for d-monotonicity is that ϕ(·) is the Laplace transform of some non-

negative random variable, for example ϕ(x) = 1/(1+θx)1/θ

+ , for θ > 0, and x+ denotes

max(0,x), which gives rise to the so-called Clayton family. Theorem 3.1 in [41] indicates
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that the following equality in distribution holds, namely,

(
ϕ
−1 (U1) , ...,ϕ

−1 (Ud)
)
= RΨΨΨ,

where ΨΨΨ is uniformly distributed in the l1 ball, and R is independent of ΨΨΨ, with a distri-

bution depending on ϕ(·) to be discussed shortly. We can simulate ΨΨΨ by sampling i.i.d.

exponential random variables (τ1, ...,τd) with unit mean and letting Ψi = τi/(τ1+ ...+τd).

Moreover, we have that the distribution function of R, FR (·), satisfies

FR (r) = 1−
d−2

∑
k=0

(−1)k rkϕ(k) (r)
k!

−
(−1)d−1 rd−1ϕ

(d−1)
+ (r)

(d−1)!
,

for r > 0. The conditional Monte Carlo algorithm that we propose is then readily appli-

cable also in the setting of Archimedean copulas. The proof of asymptotic optimality of

the estimator would follow similar lines of reasoning, assuming, in addition, that Di is

sufficiently heavy tailed, for example regularly varying tails suffice.

We can make several extensions. In this chapter, all of our discussion focuses on a

given graph. We can also consider the asymptotic behavior of a graph when the number of

nodes grows. For the case when the demand is fixed and supply is jointly Gaussian, which

is probably more appropriate for modeling the electric power grid, similar properties and

simulation algorithms can be developed.
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Chapter 3

Insurance-Reinsurance Networks

3.1 Introduction

We develop both modeling and simulation methodology for a class of networks consist-

ing of multiple institutions with inter-correlated exposures. Our modeling framework is

introduced in light of an insurance setting, which involves a market with two types of

participants: insurance and reinsurance companies. The dynamics of the network are

governed by well-defined multidimensional stochastic processes subject to funding and

contractual constraints. An equilibrium approach is taken to arbitrate settlements when

company defaults occur. The types of models we consider are closely related to and, in

fact, inspired by network models that have been analyzed in the literature in recent years,

for example [23], [24], [5], [29] and [36], to name a few.

Some stylized features of insurance markets that make our framework reasonable in-

clude: 1) risk factors display fat tails and independent structures in time, e.g., annual
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hurricane risks, and 2) the contractual relationships, summarized in a contractual graph to

be defined later, either remain constant, when there is no default, or the associated graph

reduces to a subgraph, if defaults occur.

We say a market or system dislocation occurs when a specific group of participants

fails. Using our results and simulation procedures we aim at characterizing the features

that dictate a significant change in the nature of the system’s exposures given market

dislocation. For instance, if a specific set of market participants is not sufficiently capital-

ized to fulfill their obligations, what is the most likely responsible externalities for such

a scenario, a systemic shock in the market or a sequence of specific idiosyncratic events

pertaining to the specific set of participants? (See Theorem 3.3.1.) We believe that our re-

sults can aid policy makers by shedding light on regulatory questions such as determining

the appropriate capital requirements. Our goal is to provide a framework for systemically

studying and gauging risks in such stochastic insurance-reinsurance networks. Our con-

tributions spanning modeling, asymptotic analysis and computations are summarized as

follows:

a) We propose a network model that allows to deal with default contagion risks. Cas-

cading default losses are captured by means of the solution of a linear programming

problem that can be interpreted in terms of an equilibrium. This formulation allows

us to define the evolution of reserve processes in the network throughout time, see

Proposition 3.2.4.

b) The linear programming formulation and therefore the associated equilibrium of
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settlements at the time of default recognizes: 1) the correlations among the risk

factors, which are assumed to follow a linear factor model, 2) the contractual obli-

gations among the companies, which are assumed to follow popular contracts in the

insurance industry (such as proportional reinsurance retrocession), and 3) the inter-

connectedness of the network. The equilibrium approach we adopted (see (3.2.8))

turns out to be closely related to the market clearing framework established in [29],

see Remark 3.2.1. Our approach, however, permits companies to net against each

other’s losses in the wake of default.

c) Our model allows to obtain asymptotic results and a description of the asymptotic

most likely way market dislocation can occur. This description is fleshed out explic-

itly by means of an integer programming problem (a multidimensional Knapsack

problem). Such a description emphasizes the impact on the systemic risk landscape

of the interactions between the severity of the exogenous claims, their dependence

structure, and the interconnectedness of the companies, see Theorem 3.3.1 and The-

orem 3.3.2.

d) Our model provides a method to quantify the higher economic role that companies

with large endowment play in the insurance market. This is achieved in terms of an

integer programming problem, which is the result of a large deviations asymptotic

limit, and reduces to the Knapsack problem mentioned in c) when companies have

comparable economic power. Theorem 3.3.2 thus puts forward a regulatory sug-

gestion, pointing out that companies might play only a limited role in mitigating
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systemic risks unless adequate capital requirements are in place (these should be an

order of magnitude higher than those held by regular companies).

e) On the computation side, we propose a class of strongly efficient estimators for

computing the expected loss of the network at the time of dislocation conditioned

on the event that a specific set of market participants fails to meet their obligations.

In addition, these estimators allow to compute associated conditional distributions

of the network exposures given the dislocation of a specific set of companies. The

estimation of these conditional distributions is performed with a computational cost

(as measured by the number of simulation replications) that remains bounded even

if the event of interest becomes increasingly rare, see Theorem 3.4.2. The design

of strongly efficient estimators in this setting presents some challenges as the most

likely paths occur through several jumps, (according to the solution to the combi-

natorial problem in c)), instead of only one jump, as it is customary in heavy tailed

models.

We are aware of only a limited amount of research that provides a risk analytical

framework in an integrated insurance-reinsurance market with heavy-tailed risks. The

work of [47] considers a simple two-node insurance-reinsurance network involving light-

tailed claims. Our work, however, puts into consideration a more complex and general

network that captures more stylized features of the insurance market in practice. We have

formulated our results in terms of regularly varying distributions for simplicity. Deriving

logarithmic asymptotics with basically the same qualitative conclusions under other types
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of tail distributions, such as intermediate regularly varying or lognormal distributions, is

straightforward; Weibullian distributions present additional complications. Our asymp-

totic results are obtained with the intention of gaining qualitative insight in the form of

logarithmic asymptotics. The role of the simulation algorithms, then, is to endow these

asymptotic approximations with a computational device that allows one to efficiently ob-

tain quantitatively accurate results. Thus, the entire approach we use, namely analysis

and efficient computation, must be thought as a coherent contribution.

Now, as the connections in the network increase, one must account for all possibilities

in which failure can occur. We have aimed at laying out a program which is adequate for

a fixed network architecture, as the probability of a failure event becomes more rare. The

question of performing rare-event analysis in large networks is certainly important and

we plan to investigate this avenue in future research.

The rest of this chapter is organized as follows. Section 3.2 describes in detail our

network model and discuss the associated linear programming formulation for the evolu-

tion of contract settlements in the event of company failures. The asymptotic analysis of

the model is given in Section 3.3. Section 3.4 proposes a simulation scheme that balances

practicality and efficiency, accompanied by a rigorous efficiency analysis at the end of the

section. Numerical experiments are given in Section 3.5 on a test network under various

configurations and target sets.



62

3.2 The Network Model and Its Properties

3.2.1 The Eisenberg and Noe Framework

Since our model is closely related to the framework developed in [29], we explain it first.

Suppose there are n nodes in a network. Each node i has an initial cash flow ei, and

is subject to liability p̄i. Lis represents the liability of node i to node s, Lii = 0, and

p̄i = ∑
n
s=1 Lis. The relative liability matrix Π is defined as

Πis =


Lis
p̄i
, if p̄i > 0

0, otherwise

. (3.2.1)

Let pi represent the payment made by node i to other nodes, and ppp = (p1, p2, . . . , pn)
′.

Then a clearing vector can be decided by the following linear program:

[EN1] : max 1′ppp

s.t. ppp≤Π
′ppp+ eee

ppp≤ p̄pp

ppp≥ 0, (3.2.2)

where 1 is the n-dimensional column vector with all components equal to 1, 0 is the

n-dimensional column vector with all components equal to 0, eee = (e1,e2, . . . ,en)
′, and

p̄pp = (p̄1, p̄2, . . . , p̄n)
′.
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We would like to point out that, actually, constraint (3.2.2) is redundant, i.e. [EN1] is

equivalent to:

[EN2] : max 1′ppp

s.t. ppp≤Π
′ppp+ eee

ppp≤ p̄pp

To see this, we prove by contradiction. Suppose we ignore constraint (3.2.2), and

at some optimal solution ppp∗ to the new optimization problem [EN2], there exist some

elements that are negative. We can construct a new vector p̃pp∗ by replacing all negative

elements of ppp∗ with 0. Then the new vector is also feasible to [EN1] but have a larger

value of objective function, which contracts with the optimality of ppp∗. Therefore, we can

remove constraint (3.2.2) from now on.

3.2.2 An Equivalent Form

To find a clearing vector, while the Eisenberg and Noe framework maximizes the total

payments, a more intuitive way is to minimize the total unserved demands. We introduce
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slack variables xxx+ and xxx−, and get the equivalent form:

max 1′ppp

s.t. ppp+ xxx+ = Π
′ppp+ eee

ppp+ xxx− = p̄pp

xxx+,xxx− ≥ 0.

Replacing ppp with p̄pp− xxx− gives the following equivalent form

min 1′xxx−

s.t. xxx+− xxx− = eee− (I−Π
′)p̄pp−Π

′xxx−

ppp+ xxx− = p̄pp (3.2.3)

xxx+,xxx− ≥ 0,

where I is the identity matrix. Note that p̄pp is constant and has no impact on the optimal

solution, so it has been removed from the objective function. Also since there is no

constraint on ppp, equation (3.2.3) can be removed, and we obtain:

min 1′xxx−

s.t. xxx+− xxx− = eee− (I−Π
′)p̄pp−Π

′xxx−

xxx+,xxx− ≥ 0, (3.2.4)
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Our model is constructed by adding randomness features based on (3.2.4) and settle-

ment mechanism developed in [29].

3.2.3 The Network Model

In this section we provide a precise description of our model in light of the insurance

setting. The architecture we build reflects a stylized insurance market structure. 1 Specif-

ically, we consider an insurance market with two types of roles:

• Insurance companies or Insurers whose core business involves underwriting insur-

ance policies and thereby providing protection to policy-holders.

• Reinsurance companies or Reinsurers, acting as “insurers of insurers”, sell reinsur-

ance contracts to insurance companies, in exchange for collections of reinsurance

premiums to get funded.

In practice, there are insurance companies that act as reinsurance providers, so we don’t

differentiate between insurance companies and reinsurance companies unless otherwise

stated. In order to cover typical features of an insurance market with these two sets of

participants, the model is set up to allow reasonable generalities regarding

1) contractual specifications, popular in the insurance literature;

2) network topology/architecture, specifying the dependence among the participants;

1See p. 51 of “Systemic risk in insurance: An analysis of insurance and financial stability, Special
Report of The Geneva Association Systemic Risk Working Group,” 2010.
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3) settlement/clearing mechanisms, allowing us to deal with the settlements of cascad-

ing defaults.

Contractual Specifications and Network Topology

Let us denote by I = {1,2, . . . ,K} the set of companies in the market, including both

insurance and reinsurance companies. We then endow the following claim structure to

this insurance network.

Claim arrival and heavy-tailed claim structure

We consider a single-period setting. Claims arrive at each company Ii, i = 1, . . . ,K ex-

ogenously. We add up all claims and consider them as one single claim. The claim size is

assumed to adopt a linear factor model with heavy-tailed structure. Let Vi be the size of

the claim that Ii incurs, and we have

Vi =
d

∑
h=1

γi,hZh +βiYi. (3.2.5)

Here {Zh}h≤d is a series of common factors. For instance, if d = 2, Z1,Z2 might rep-

resent exposures to hurricanes and earthquakes, respectively. Non-negative constant γi,h

is the associated factor loading for Ii to Zh. If γi,h is positive, Ii is exposed to Zh. The

set of common factors {Zh} quantifies the “sectoral risk” that is shared by a subset of

companies. On the other hand, Yi is the idiosyncratic factor corresponding to Ii and is

independent of all the common factors Zh, h ≤ d. Non-negative constant βi is the factor

loading for Ii associated with Yi. In general γi,h’s and βi’s can be taken as random, as long
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as E
[
exp
(
θγi,h

)]
< ∞ and E [exp(θβi)]< ∞ for any θ > 0. For simplicity, we assume the

factor loadings are deterministic. We also assume that for each ∑
d
h=1 γi,h +βi > 0,∀i ∈ I,

which is reasonable since otherwise that company has no exposure at all. The factors are

assumed to be independent in time.

Factors are assumed to have heavy tails. In particular, they belong to the class of

regularly varying distributions. Specifically, we assume Zh ∈ RV(αZ
h ), Yi ∈ RV(αi). The

regularly varying class requires the random variable to basically possess polynomial de-

caying tails. It clearly includes the well-known Pareto distributions. Recall that a random

variable X is said to have Pareto distribution, X ∼ Pareto(θ,α), if

P{X > x}=
(

θ

θ+ x

)α

, x > 0.

Sources of Funding and Risks

Companies are funded by: 1) an initial reserve and 2) net premiums, with the latter defined

as

net premiums = premiums received−premiums paid.

For each i ∈ I, we denote by ui the initial reserve for Ii; and denote by Ci the total net

premiums for Ii. On the other hand, companies are faced with two sources of risks:

1) Claim risks, which is the primary risk incurred in the main insurance/reinsurance

business. This type of risk is captured in the effective claims, which is defined as

effective claims = total liability− liability reinsured. (3.2.6)
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We shall detail the mathematical form of the definition later in Subsection 3.2.3.

2) Reinsurance counterparty risks, which is the risk associated with the event of rein-

surance counterparty defaults and the subsequent dishonor of reinsurance payments.

As a result, one can define the end reserve as follows

end reserve= initial reserve+net premiums−effective claims−losses from counterparty defaults.

Naturally, company Ii is insolvent if the available funds is insufficient to cover the losses

from the realized risks, that is, if the end reserve level, denoted by u′i for i ∈ I, is negative.

Precise definitions of {u′i}i∈I will be given in (3.2.9) later in Subsection 3.2.3. If a com-

pany is insolvent, a default process is triggered, which has direct impacts on the solvency

of other companies. A detailed rule must be specified to ensure that such a process be

executed in an orderly fashion, and that all the counterparties (and counterparties of any

subsequently defaulted companies) get their deserved shares of default payments. We

assume that defaults only occur at the end of the period.

While recognizing that in reality, a company is faced with more sophisticated sources

of risks than the ones specified above (for example, market risks from trading financial

derivatives such as credit default swaps), we restrict the risks to claim risks and rein-

surance counterparty risks in order to single out and gauge the risks primarily from the

insurance business. The insurance/reinsurance companies might be inter-connected with

respect to those other risks that are not directly modeled here. But from a regulatory

perspective, any such risks can be thought of incremental to the claim risks and reinsur-
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ance counterparty risks, and can be segregated and studied in separate frameworks. Note

that this “divide and conquer” approach is directly applied in the Basel 2.5 regulatory

framework for banks’ trading book capital, in which relatively long-term credit migra-

tion/default losses are monitored within the incremental risk charge framework, whereas

short-term market risks are scrutinized using the VaR and Stressed VaR measures.

Contractual Links and Network Topology

Naturally, the effective claims received by the companies are contingent on the survival

of their counterparties, which in turn is influenced by how the participants deal with each

other in the network. It is therefore crucial to first set the rules that govern the contractual

connectivity of the network. Once such rules are enforced, we are able to visualize the

business interactions among the participants in a directed graph, as depicted in Figure 3.1.

We now state the rules in the following assumption.

Figure 3.1: Directed contractual graph of a simple example network.

Assumption 3.2.1 (Contractual Links and Network Topology).
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i) Liability Allocation: Each company Ii enters into contracts with a set of other

companies. The exposure taken by another company Is, is a proportion, ωi,s ≥

0, of each claim. ωi,i represents the retained proportion by Ii. We assume that

∑s∈Iωi,s = 1, ∀i ∈ I. If ωi,s > 0, i 6= s, there is a directed edge from Ii to Is in the

graph representing a contractual presence in the network.

ii) Reinsuring: Each company Is,s ∈ I, cannot reinsure the exposure transferred from

one company Is1 ,s1 6= s to some other company Is2,s2 6= s1,s (i.e. there are only two

“hops” in the reinsurance sequence).

iii) Network Connectivity: For any two companies i,s ∈ I, we assume that there is a

path connecting them.

iv) Extra Node There is an extra node I|I|+1 in this network representing the customers

served by these companies. Let I+ represent the union of this extra node and I.

Assumption 3.2.1-ii) forbids a company to cede coverage back to the companies which

initially seek protection on that particular coverage. The stipulation of no more than

two ‘hops’ in the retrocession sequence is imposed merely for the sake of expositional

simplicity. In fact, as long as the contract ends up with a party other than the one that

buys protection at the first place, or equivalently if the “hops” do not create a “loop”, the

framework introduced in this chapter works. Note also that Assumption 3.2.1-iii) is a very

mild one. If the network is not connected, we can study each connected part separately.
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Matrix Π and Effective Claims

Now we are in a good position to construct the matrix Π defined in (3.2.1). To do this,

we only need to know Lis, i 6= s. Let Vi denote the size of the claim received by i, then

Lis = ωsiVs. Let L|I|+1,i = 0, i ∈ I. So Π can be computed as soon as all the claims to the

network system within a given period have been collected.

The effective claim for Ii is

Hi = total liability− liability reinsured

= p̄i−∑
s∈I

Πsi p̄s

= ∑
s∈I

Vsωsi. (3.2.7)

Settlement Mechanism

At the end of a period, each existing company in the network is faced with the settlement

of the claims collected during the period. In the event of a default, the state of the system

is defined according to a settlement mechanism. In order to describe the mechanism, we

first specify the following assumption on the rules governing the allocation of spillover

losses in the network system.

Assumption 3.2.2 (Rules for Spillover Loss Allocation). Upon the incident of Is default-

ing during a period, Ii, i 6= s gets partially settled by an amount proportional to its unset-

tled exposure to Is, if any. This proportion is Π, i.e., Πsi the proportion of spillover loss

that Ii gets if Is fails, i,s ∈ I, i 6= s.
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Nevertheless, having Assumption 3.2.2 alone turns out to be inadequate to secure a

well-defined settlement mechanism in the event of a cascade of failures. Let us take a

closer look using the following example.

(a) Initial Configurations (b) Before Write-offs

Figure 3.2: A network example

a) For each company, the initial reserve plus premium is given in the parentheses next
to it. Transfer ratios ω are given next to the arrow representing the flow of contracts.

b) State of the network after all claims have been collected, before the write-offs.
Bracketed numbers are the sizes of the claims V (defined in (3.2.5) ). Numbers in
parentheses are effective claims to the companies. And the rest is the transferred
amount.

Consider the simple network illustrated in Figure 3.2. Let I5 represent the extra node,

then the Liability matrix L, matrix Π, vector p̄, and the effective claims vector H are as

follows:
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L =



0 0 0 0 50

0 0 0 0 80

0 40 0 10 40

20 0 20 0 20

0 0 0 0 0


, Π =



0 0 0 0 1

0 0 0 0 1

0 4
9 0 1

9
4
9

1
3 0 1

3 0 1
3

0 0 0 0 0


, p̄ =



50

80

90

60

0


, H =



30

40

70

50

−190


.

Right after the claims have been collected, I3 does not have sufficient reserve base

to buffer the size of the claims arrived at that period. A write-off procedure is therefore

triggered. According to Assumption 3.2.2, I4 will get an amount of the spillover loss

from I3 equal to (10− 70)× (1/9) = −20/3. With this allocation of contagion loss, I4

is subsequently forced to fail because 10−50−20/3 < 0. But we immediately run into

a dilemma if the recurrent spillover loss from I4 is to be allocated to I1 and I3: should

I3, a bankrupt company, take on the spillover loss from I4? If we allow this process to

iterate by arguing that any failure/bankruptcy shall not be declared until all the subsequent

cascading write-offs are settled, then a more precise write-off mechanism is called for to

ensure a unique network state after all the contagion losses have been settled and received.

Network Equilibrium

In order to address the afore-mentioned issue, we take the equilibrium approach as stated

earlier. In particular, we require that, in addition to the principle stipulated in Assump-

tion 3.2.2, the companies work out the spillover loss allocation at the end of each period
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according to the single-period linear optimization problem (3.2.3), which gives an equi-

librium state of the network after all companies mark write-offs and make settlements.

Denote by ui the levels of reserves at the beginning of the period for Ii, Ci the net

premium, i ∈ I. Recall that ei represents initial cash flow, together with equation (3.2.7),

(3.2.3) can be rewritten as:

[
P+
]

: min ∑
i∈I+

x−i

s.t. x+i − x−i = ei−Hi− ∑
s∈I+

x−s ·Πsi, ∀i ∈ I+

x+i ,x
−
i ≥ 0, ∀i ∈ I+,

where ei = ui +Ci.

Suppose Ie represent the extra node. It is easy to see that the optimal value x−∗e = 0,

so we only need to consider I.

Netting

Note that Lis 6= Lsi. We can introduce a netting parameter κ ∈ [0,1], which controls the

degree of netting agreement between two companies. Define the netted liability as

L̃is = Lis−κ ·min(Lis,Lsi).

When κ = 0, none of the contracts between two companies are netted, which is the

case as we discussed above and the case in [29] setting. And κ = 1 corresponds to a
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fully netted scenario, for example, when all the contracts between two nodes are fungi-

ble/exchangeable. Of course the netting parameter κ can be made arc dependent, but for

simplicity we consider the situation where κ is identical throughout the network.

In fact, enforcing netting can have a substantial impact on defaults.

Theorem 3.2.3. Netting is beneficial (in terms of smaller optimal value) when there is at

most one company defaults.

Proof. Recall [EN2]:

[EN2] : max 1′ppp

s.t. ppp≤Π
′ppp+ eee

ppp≤ p̄pp.

Let Mi j = min(Li j,L ji),ri = ∑
n
s=1 Mis, r̄rr = (r1,r2, . . . ,rn)

′. Define vi
∆
= pi

p̄i−κp̄i
. In

other words, vi represents the proprotion of liability that has been paid for Ii. Let v̄vv =

(v1,v2, . . . ,vn)
′. Taking κ into account, we can rewrite [EN2] as

[EN3] : max (p̄pp−κr̄rr)′v̄vv

s.t. Wv̄vv≤ eee (ααα)

v̄vv≤ 111 (βββ)
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where,

Wi j =


p̄i−κr̄i, if i = j

−(L ji−κM ji), otherwise.

Its dual problem is:

[D] : min eee′ααα+111′βββ

s.t. W ′ααα+βββ = p̄pp−κr̄rr

ααα≥ 000,βββ≥ 000.

Suppose v̄vv∗ and

ααα

βββ

 are the optimal solutions to the primal and dual problems respec-

tively. Then they satisfy the Karush-Kuhn-Tucher (KKT) conditions, i.e.



αi(Wv̄vv− eee)i = 0,∀i

βi(v̄vv−111)i = 0,∀i

W v̄vv≤ eee

v̄vv≤ 111

W ′ααα+βββ = p̄pp−κr̄rr

ααα≥ 000,βββ≥ 000,

where (·)i represents the i-th element of a vector.
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• When there is no company defaults.

It is easy to see that v̄∗ = 111,ααα = 000,βββ = p̄pp−κp̄pp. When the netting parameter is set to

1≥ κ′ > κ. Then v̂∗ = 111, α̂αα = 000, β̂ββ = p̄pp−κ′ p̄pp also satisfy the (KKT) conditions, thus

are the optimal solutions. Since α̂αα = ααα, β̂ββ≤ βββ, doing more netting is beneficial.

• When there is one company i0 defaults.

Then the optimal solutions are

v̄i∗=


ei0+∑ j 6=i0(L j,i0−κM j,i0)

p̄i0−κr̄i0
, if i = i0

1, otherwise.

αi =


1, if i = i0

0, otherwise.

, βi =


0, if i = i0

(p̄i−κr̄i)+(Li,i0−κMi,i0), otherwise.

When the netting parameter is set to 1 ≥ κ′ > κ, and κ′− κ is small enough, the

new optimal solutions are

v̂i∗=


ei0+∑ j 6=i0(L j,i0−κ′M j,i0)

p̄i0−κ′r̄i0
, if i = i0

1, otherwise.
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α̂i =


1, if i = i0

0, otherwise.

β̂i =


0, if i = i0

(p̄i−κ′r̄i)+(Li,i0−κ′Mi,i0), otherwise.

Since α̂αα = ααα, β̂ββ≤ βββ, doing more netting is beneficial.

Using netted liability to calculate Π matrix, together with the fact that we only need

to focus on I, now the new linear program becomes:

[P] : min ∑
i∈I

x−i (3.2.8)

s.t. x+i − x−i = ei−Hi−∑
s∈I

x−s ·Πsi, ∀i ∈ I (I)

x+i ,x
−
i ≥ 0, ∀i ∈ I.

We shall interpret the linear program shortly after we state the following results, which

indicates desirable “stability” properties of the equilibrium state of the network under-

scored by the preceding linear program. Proposition 3.2.4 and 3.2.5 have been explained

in [29]. Since our model is equivalent to Eisenberg and Noe model, these two results are

also valid.

Proposition 3.2.4. The linear program [P], given in (3.2.8), admits a unique optimal

solution.

Moreover, it is easy to see that at this optimal solution, at least one element in each

pair,
(
x+i ,x

−
i
)
, is equal to zero, for each i ∈ I.
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Proposition 3.2.5. Let xxx− =
(
. . . ,x−i , . . .

)
, i ∈ I. Let f (xxx−) be a function that is differ-

entiable and non-decreasing with respect to its variables. And define [Pf ] be the set of

optimization problems with objective function f (xxx−) and with constraints identical to the

ones in [P]. Then the [P]-optimal solution is also [Pf ]-optimal.

The property of stable optimality suggests that, the equilibrium state found by solving

[P] is the best settlement solution to the system, as long as the companies in the network

negotiate to minimize any sensible measure, f , of the incremental system loss.

Let us denote the optimal solution pairs to [P] by {x̌+i , x̌
−
i }i∈I. At optimality, if x̌−s > 0

and x̌+s = 0, it means that Is has failed, and constraint (I) in [P] ensures that Ii receives

the contagion loss of amount equal to x̌−s ·Πsi. If the capital base of Ii is solid enough

to weather the total spillover loss from other companies (which is represented by the

amount ∑s∈I x̌−s Πsi), i.e., ei > Hi +∑s∈I x̌−s Πsi, then Ii will remain solvent, in which case

x̌+i > 0 = x̌−i . If otherwise, then Ii fails, in which case π̌
+
i = 0. As a result, {π̌−i }i∈I

represent the loss at default for Ii at the equilibrium state of the network. The preceding

optimization problem would yield the same optimal solution if we impose the additional

constraint that x+i ×x−i = 0,∀i ∈ I+. Therefore, we can interpret the state associated with

the optimal solution vector to [P] as the equilibrium state of the network.

Remark 3.2.1. Our model is amenable to a similar type of analysis that has been done for

the Eisenberg and Noe framework [37].

In addition to allowing default netting, the LP formulation developed in this chapter

is convenient for our purpose because
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a) The output of the linear optimization problem [P] are the end-of-the-period reserve

levels. [29]’s approach (in the case when κ = 0), however, requires an extra step of

calculation in order to transform the payment vector to the vector of reserve levels,

which is somewhat involved. See [48].

b) Our LP formulation, as we shall see in the discussion preceding Theorem 3.3.1,

helps build natural intuitions on the large deviations description of the system.

Reserve Processes

At the end of period, the system reaches the equilibrium state associated with the unique

optimal solution to [P]. And the end-of-period reserves are determined by the unique

optimal solution vectors {x̌+i , x̌
−
i }i∈I via

u′i = x̌+i − x̌−i , i ∈ I. (3.2.9)

Conditional Spillover Loss at System Dislocation

Usually, people are interested in the failure of a particular set of companies in the net-

work, for example, companies in the same locations, with similar sizes or business lines.

Motivated by the insurance applications discussed in the previous section, we shall study

the performance measure Conditional Spillover Loss at System Dislocation which is in

the form of a conditional expectation. In simple words, it is the expected loss to primary

risk originators conditioned on the failure of a sub set of the network constituents.

We assume that A is a subset of I, and define FA as the event that all companies in set
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A fail at the end of period. Define

Di =−min{u′i,0},

the lost reserve at system dislocation at the end of period. We can therefore introduce the

following formal definition of Conditional Spillover Loss at System Dislocation:

Definition 3.2.6. The Conditional Spillover Loss at System Dislocation for the subset

A⊆ I is defined as

D(A) = E

[
∑
i∈I

Di

∣∣∣FA

]
. (3.2.10)

The idea of such a measure is motivated by the so-called Systemic Risk Index or Con-

tagion Index, following the terminology in [11], and studied in, for example [23].

3.3 Asymptotic Description of the Network

Having fixed the architecture of the network, we now embark on providing a qualitative

characterization of the large deviations behavior of the system given FA, i.e., the event

of system dislocation caused by the set A. As we shall reveal momentarily, this charac-

terization can be identified by solving another optimization problem. In the analysis that

follows let us scale the initial cash reserves by b > 0. Assume that ei = rib is the initial

reserve for Ii, i∈ I, where ri is a fixed positive constant. Depending on the tail structure of

the claim size distributions, the failure of the designated set arises from different numbers

of extreme shocks in the claims. This particular feature of the system inspires us to tailor



82

a sequential algorithm for evaluating D(A), for any given set A, which we shall describe

in details in the next section.

3.3.1 Large Deviations Description via An Integer Program

It is interesting to realize that useful implications about the asymptotic behavior of the

system can be obtained from the linear program [P] given in (3.2.8). To see this, recall

that constraints (I) in (3.2.8) require, for each i ∈ I that,

x+i − x−i = ei−Hi−∑
s∈I

x−s ·Πsi.

Since ei−Hi = Θp(b) (recall that stochastic order notations have been explained in Sec

1.2.2), the intuition is that, P(x̌−i > 0) = Θ(1) if and only if there exists s ∈ I, s 6= i, such

that both of the following are satisfied:

i) x̌−s = Θp(b),

ii) Πsi = Θp(1).

In other words, both the default loss for Is and the contractual link between Ii and Is

need to be sufficiently large in order for Ii to fail with Θ(1) probability. This can occur

due to either of the following two possible cases:

a) Zh = Θp(b), for some 1≤ h≤ d such that γi,h > 0,

b) Yi = Θp(b).
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The intuitions above are certainly helpful, for now we are able to restrict the enumeration

of possible paths (leading to the event FA) down to a much smaller subset. In fact, as we

shall see shortly, the combinatorial task of singling out the cheapest route to the target

event boils down to solving a Knapsack problem with multiple constraints.

Now it is not difficult to see that the intercorrelation structure of the network can be

summarized in a directed graph. An example is shown in Figure 3.3 below. The left

part of the graph (a factor-company bipartite sub-graph) summarizes the exogenous risks

underlying the participants, while the part of the graph on the right (company-company)

reflects the endogenous default contagion risks, and corresponds to the directed contrac-

tual graph in Figure 3.1.

Figure 3.3: Directed graph combining risk factor exposures and contractual links.

Let us denote by Ξ the factor exposure matrix in the network, which is an |I| ×m

matrix, where m = (d + |I|). Each column corresponds to a specific factor. We align the
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factors in such a way that the first d factors are the common factors, and the remaining

|I| factors are the idiosyncratic factors for companies in I. On the other hand, each row

of Ξ represents a particular market participant, and we align the companies such that the

first |A| rows correspond to set A and the last |I|− |A| rows correspond to set Ac = I−A.

The entries of Ξ are binary: Ξi j = 1 if and only if there exists a directed path from factor

U j, common or idiosyncratic, to the node representing company i. For example, in the

network represented by Figure 3.3, Ξ1,1 = 1 and Ξ3,1 = 0. In other words, Ξi j = 1 if and

only if company i is exposed to factor U j, either in a direct or an indirect way.

Let Ξc
j be the j-th column of Ξ. In what follows we shall denote by U j the factor

corresponding to Ξc
j. Let us further define α̃ j to be the regularly varying index of U j,

i.e., α̃ j = αZ
j if j ≤ d, and α̃ j = αi if j = i+ d, i ∈ I. The following result shows that

the large deviation description of the system is simply obtained by solving an integer

programming problem, which is easily identified as a Knapsack problem with multiple

knapsacks. We shall postpone the proof of the theorem to the end of §3.4. We mention

that a one dimensional Knapsack formulation has also been proposed by [56] in the setting

of heavy-tailed large deviations.

We first introduce some definitions. Define

R(i) = {s ∈ I : Πsi > 0}= {s ∈ I,s 6= i : ωis > 0} ,

for i ∈ I. In other words, R(i) is the set of reinsurance counterparties of Ii.
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H (i) = {s ∈ I : Πis > 0}= {s ∈ I,s 6= i : ωsi > 0} ,

or i ∈ I. In other words, H (i) is the set of companies that Ii reinsures for. Let

R(A) =
⋃
i∈A

R(i), H (A) =
⋃
i∈A

H(i).

Theorem 3.3.1. As b→ ∞, we have

logP(FA(b))
logb

−→−ζ(A), (3.3.1)

where ζ(A) is the optimal cost to the following integer programming problem:

[IP] : min
m

∑
j=1

α̃ jy j (3.3.2)

s.t.
m

∑
j=1

y jΞi, j ≥ 1, ∀i ∈ A

y j ∈ {0,1}, 1≤ j ≤ m

Remark 3.3.1. For any [IP]-optimal solution yyy∗ = (y∗1, . . . ,y
∗
m)
′, y∗j is interpreted as the

“indicator of activation” which dictates the occurrence of a large factor U j. In particular,

if y∗j+d = 1, then Yj = Θ(b) in the large deviations description of the system; if y∗h = 1, for

some h≤ d, then Zh = Θ(b) in the large deviations description of the system. In general,

knapsack problems are known to be NP-hard. However, since the exposure matrix Ξ has
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binary entries, this particular knapsack problem is known to be solvable in polynomial

time, see [43].

Remark 3.3.2. An interesting feature of this characterization is that the large deviations

behavior of the network is dictated only by a set of tail indices. Depending on the choice

of A, the description of the most likely way leading to FA may change domains. For

instance, the event FA1 , where A1 = {AIG, Prudential}, could most likely result from

the occurrence of a few large common factors, while FA2 , where A2 = {Lincoln Benefit,

Northwestern Mutual}, might occur most likely due to multiple phenomenal idiosyn-

crasies, or a mixture of extremal idiosyncratic and common shocks.

3.3.2 The Role of Companies in R(A)

An important implication of Theorem 3.3.1 is that, the existence of the companies in

R =R(A)−A does not alter the large deviations description of the network system if they

have roughly the same economic power as companies in A. That is, the same Knapsack

problem arises if no R companies exist in the system. This observation appears to be

consistent with various empirical studies, which argue that reinsurance failure may not be

a substantial source of systemic risk for the insurance industry, see for example [52]. 2 3

We could further strengthen the roles of the companies in R by enforcing a more

2See also p. 50 of “Systemic risk in insurance: An analysis of insurance and financial stability, Special
Report of The Geneva Association Systemic Risk Working Group,” 2010.

3See also “Reinsurance - a systemic risk? Sigma, Swiss Re,” 2003.
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stringent capital requirement for them. In order to see this, let us assume that

es = Θ(bρ) ,ρ > 1,

for all s ∈ R, thereby demanding each company in R to pledge more capital than the

companies in A (recall that ei = Θ(b) for i ∈ A). The following result indicates that

asymptotic description for the system with this modified assumption can be identified by

solving a different integer programming problem.

Theorem 3.3.2. As b→ ∞,

logP(FA(b))
logb

−→−ζ̃(ρ,A) ,

where ζ̃(ρ,A) is the optimal cost to the following integer programming problem:

[
ĨP

(ρ)
]

: min
m

∑
j=1

ρα̃ jz j +
m

∑
j=1

α̃ jy j (3.3.3)

s.t.
m

∑
j=1

Ξi, jz j ≥ 1, ∀i ∈ R

m

∑
j=1

Ξl, j
(
z j + y j

)
≥ 1, ∀l ∈ A

z j,y j ∈ {0,1}, 1≤ j ≤ m

Proof. This theorem can be proved using the similar way as the proof of Theorem 3.3.1.

The idea is that, since es = Θ(bρ) ,∀s ∈ R, in order for the set A to fail, the cheapest way
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is to bring down the reinsurance counterparty set of A first. Factors of size Ω(bρ) are

required for each failure in R. If factor j has magnitude Ω(bρ), the overshoot from such

failures, again of sizes Ω(bρ) (see [44]), will lead to the default of any company k such

that Ξk j = 1, with Ω(1) probability. A few more factors of size Ω(b) are needed to fail

the surviving companies in A after R has failed. The optimization problem
[
ĨP

(ρ)
]

returns

the routes with the largest probability (in logarithmic scale).

Remark 3.3.3. In any
[
ĨP

(ρ)
]
-optimal solution (zzz∗,yyy∗), z∗j and y∗j are interpreted as the

“strong” and “weak” activation indicators, respectively. If z∗j = 1, then the corresponding

factor U j is among the factors that most likely lead to the failure of the counterparty set R,

i.e., U j = Θ(bρ); if y∗j = 1, then U j is among the factors that result in the failure of some

companies in A after they lost protections from their reinsurance counterparties, and in

that case, U j = Θ(b). The structure of the program ensures that in any optimal solution,

z∗jy
∗
j = 0. This is because if there exists an optimal solution (zzz∗,yyy∗) in which zk = yk = 1

for some k, then the solution,
(
z̃zz∗, ỹyy∗

)
which is the same as (zzz∗,yyy∗) except that the l-th pair

is given by (z̃∗l , ỹ
∗
l ) = (1,0), is also

[
ĨP

(ρ)
]
-feasible, with smaller objectives, contradicting

the optimality of (zzz∗,yyy∗).

The characterization given by Theorem 3.3.2 offers a vehicle for guiding policy-level

decisions from a regulatory stance. Questions such as “what is the minimum level of

capital required by the companies in R in order to control the probability of a specific set

A?” can be formulated and studied in a structured way.
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3.4 Design of Efficient Simulation Algorithms

The asymptotic analysis in the preceding section is useful in obtaining a qualitative de-

scription of the systemic risk landscape of the entire network. The resulting asymptotic

description is coarse. In this section we aim to achieve a more precise quantitative as-

sessment by means of efficient computations. We resort to Monte Carlo methods, and

our goal is to propose an efficient simulation algorithm to evaluate the conditional system

dislocation (3.2.10), with the aid of the large deviations analysis presented in the previous

section. We do this by designing an algorithm for the probability

q(b) = P{FA(b)}

instead. An estimator for (3.2.10) is a natural consequence.

3.4.1 Importance Sampling

As explained in Sec 1.2.3, to develop an efficient Importance Sampling algorithm, we

first study the asymptotic probability as b→ ∞.

Proposition 3.4.1. Given the network Ne defined in Section 3.2, define

δ
∆
= min

i∈A

ri

2∑s∈i∪H(i)
(
∑

d
h=1 γs,h +βs

) .
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Let X be the set of feasible solutions to the IP given in (3.3.2). And define

Aδ(b)
∆
=

⋃
yyy∈X


⋂
i∈A


 ⋃

1≤h≤d
γi,hyh>0

{
Zh ≥ δb

}⋃ ⋃
βiyi+d>0

{
Yi ≥ δb

}⋃
 ⋃

j∈H(i)
y j+d=1

{
Yj ≥ δb

}



Then we have

i) Aδ(b) is a superset of FA(b), i.e.,

Aδ(b)⊇ FA(b). (3.4.1)

ii) We have, as b→ ∞,

logP
{
Aδ(b)

}
logb

−→−ζ,

where ζ is the optimal cost to [IP] in (3.3.2).

Proof. i) Suppose there exists i′ ∈ A, such that 1) Zh < δb for all h ≤ d, γi′,hyh > 0,

and 2) Yi′ < δb, βi′yi′+d > 0, and 3) Yj < δb, for all j ∈ H(i′), y j+d = 1, then we
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have,

u′i′ = ri′b−∑
s∈I

Vsωsi′−∑
s∈I

x̌−s ·Πsi′

= ri′b− ∑
s∈i′∪H(i′)

(
d

∑
h=1

γs,hZh +βsYs

)
ωsi′−∑

s∈I
x̌−s ·Πsi′

≥ ri′b−δb · ∑
s∈i′∪H(i′)

(
d

∑
h=1

γs,h +βs

)
−∑

s∈I
x̌−s ·Πsi′

≥ ri′b/2−∑
s∈I

x̌−s ·Πsi′,

where x̌−s is the optimal solution x−s , s ∈ I of the linear program [P]. Furthermore,

the model setup ensures that at any point in time, each company cannot receive

an allocation of the spillover losses from all of its reinsurance counterparties of an

aggregate amount larger than the total amount it reinsures. Actually,

x−s ·Πsi = x−s
Lsi

p̄s
≤ Lsi, ∀s, i ∈ I.

In what follows, we shall refer to this observation as limited spillover impact.

Therefore, we have

∑
s∈I

x̌−s ·Πsi′ ≤ ∑
s∈i′∪H(i′)

(
d

∑
h=1

γs,hZh +βsYs

)
≤ ri′b/2.

Consequently u′i′ ≥ 0, and this implies that Fc
A(b), where c represents complement

set. We have thus established (3.4.1).
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ii) An equivalent expression for Aδ(b) is given by

Aδ(b) =
⋃

yyy∈X

⋂
i∈A

 ⋃
1≤ j≤m,Ξi jy j≥1

{
U j ≥ δb

} ,

where Ξ is the factor exposure matrix defined shortly before Theorem 3.3.1, and

m = d + |I| is the number of columns of Ξ. Recall that U j = Zh if 1 ≤ j ≤ d, and

U j =Yi if j = d+ i, i∈ I. For a feasible solution yyy associated with [IP], let us further

define

S(yyy) =
{

j = d + i : i ∈ I,y j = 1
}
∪{h≤ d : yh = 1} , (3.4.2)

i.e., S(yyy) is the index set of active factors associated with [IP]-feasible solution yyy.

For the lower bound, we note that

P{Aδ(b)} ≥ P

⋂
i∈A

 ⋃
1≤ j≤m,Ξi jy∗j≥1

{
U j ≥ δb

}
= ∏

j∈S(yyy∗)
P
{

U j ≥ δb
}

≥ κ1b−α̃αα
′yyy∗ ,

for some positive constant κ1, where yyy∗ is an [IP]-optimal solution.

And for the other direction, we utilize a union bound instead. In particular,

P{Aδ(b)} ≤ ∑
yyy∈X

P

⋂
i∈A

 ⋃
1≤ j≤m,Ξi jy j≥1

{
U j ≥ δb

}≤ κ2b−α̃αα
′yyy∗, (3.4.3)
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for some positive constant κ2, where yyy∗ is again an optimal solution to [IP]. The

result follows immediately after taking log for both the lower and upper bounds.

An immediate implication of the previous results is a sampling scheme that induces

the occurrence of adequately large (of size at least δ) common or individual factors might

be sufficient to guarantee bounded relative error of the estimator. From the simulation

perspective, the order of occurrence of the factors during each period deems irrelevant.

Our strategy is therefore to view the factors as if they arrive sequentially. We can consider

the random sums of the factors, as random walks themselves, thereby creating this “inter-

nal” layer of random walks. From this point on we can borrow apparatus from established

state-dependent rare event simulation algorithms to aid the design of our importance sam-

pling estimator.

The key ingredient is a mixture based importance sampling distribution for the in-

crements: with some probability p, the increment is sampled conditioning on it being

“large”, and with probability 1− p, it’s sampled as if it’s a “normal” shock. Let X be the

increment of the system, and without loss of generality suppose its density is given by

f (x), then the nth increment is drawn from the importance density g(·), defined as

g(x) =

p
I
(
x ∈ A(b)

)
P
{

X ∈ A(b)
} +(1− p)

I
(

x ∈ A(b)
)

P
{

X ∈ A(b)
}
 f (x), (3.4.4)

where A(b) specifies the region in which the increment is qualified to be a large shock.

Note that the part in (3.4.4) corresponding to the “normal” jumps is necessary in order



94

to conciliate the sensitivities of large deviations probabilities to the likelihood ratio of

those paths that have more than one jump of order Ω(b), a crucial observation pointed out

by [15], and [19].

A(b) is typically chosen to be proportional to the “distance to go” for the current

position of the random walk, and can be derived from some “auxiliary” or “steering”

processes other than the targeting process. A convenient choice of such an auxiliary

process in our setting is obtained by “eliminating” the participants in R(A) a priori and

allocating the reserve process es, s ∈ R(A) proportionally to each ei, i ∈ A. Equivalently,

we pretend that the Ii’s, i ∈ A absorb full sized claims without reaching out to R(A) to

hedge risks. In other words, by removing reinsurance we construct a convenient relaxation

yielding a system with strictly small reserves for insurance companies.

At the beginning of the period, we first sample the common factors in order to strip

off the first layer of dependence among the claims; and then sequentially sample the

remaining individual factors. The mixture sampling density (3.4.4) is used to sample

each factor, with the “distance to go” A(b) properly defined. We shall detail this choice in

the next subsection. The resulting sampling scheme is easy to carry out, self-adjusting in

nature, and saves the user the trouble of setting up the algorithm differently according to

different network structures. Formally we have the following efficiency result, the proof

of which is postponed after we have detailed the algorithm in the next subsection.

Theorem 3.4.2. The adaptive importance sampling estimator q̂Z,Y (to be defined in (3.4.9))

is strongly efficient for estimating q(b). If, in addition, αi > 2, for all i ∈ I, and αZ
h > 2,
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for all 1≤ h≤ d, then the estimator

ĥZ,Y
∆
= ∑

i∈I
q̂Z,Y Di(A)

is also strongly efficient for estimating D0(A) = E [(∑i∈IDi(A)) I (FA)].

3.4.2 The Algorithm

We are now ready to explain the state-dependent importance sampling idea in detail. Let

ei, j =


1, if i = j

ωi, j,otherwise.

Define the auxiliary process via

S(0)i = ∑
k∈i∪H(i)

ek,i

d

∑
h=1

γk,hZh,

S(1)i = S(0)i + ∑
k∈i∪H(i)

ek,iβkYk =
d

∑
h=1

γi,hZh +βiYi + ∑
k∈H(i)

ωk,i

(
d

∑
h=1

γk,hZh +βkYk

)
,

(3.4.5)

for each i ∈ A. And we introduce the following notations:

S=
⋃

yyy∈X
S(yyy), S∗ =

⋂
yyy∈X

S(yyy), (3.4.6)

where S(yyy) is defined in (3.4.2). In other words, l ∈ S if the l-th factor is active in some



96

[IP]-feasible solutions, and l ∈ S∗ if the l-th factor is active in all [IP]-optimal solutions.

We then summarize the details of our general SDIS (Stochastic Dynamic Importance

Sampling) algorithm as follows. Recall that X is the set of feasible solutions to [IP].

Description of The SDIS Algorithm

Step 1) Solve the integer program, [IP], given in (3.3.2).

Step 2) For each 1≤ h≤ d, let fZh(·) be the density for the common factor Zh. For h∈ S,

sample Zh from the mixture density gh(z) = [ηh(z|b)]−1 fZh(z), where

[ηh(z|b)]−1 = pZh

I
(
z≥ aρZ(b)

)
P
{

Zh ≥ aρZ(b)
} + (1− pZh

) I
(
z < aρZ(b)

)
P
{

Zh < aρZ(b)
} , (3.4.7)

defines the local likelihood ratio between the importance sampling and the nominal

measures. Here, a ∈ (0,1) is a constant, the mixing probability pZh ∈ (0,1) is

positive, and the “distance to go” ρZ(b) is defined as

ρ
Z (b) = min

j∈A,i∈ j∪H( j),γi,h>0,h∈S

r jb
v jdei, jγi,h

,

where vi = |i∪H(i)|. For h 6∈ S, sample Zh from its original density. Then, we can

obtain S(0)i ,∀i ∈ A∪H(A).

Step 3) For each i ∈ A∪H(A), if d + i ∈ S, given s = S(0)i , sample Yi from the mixture

density given by gi(y|s) = [ηi(y|b,s)]−1 fYi(y), where

[ηi(y|b,s)]−1 = pi
I
(
y > aρi(b,s)

)
P
{

Yi > aρi(b,s)
} + (1− pi

) I
(
y≤ aρi(b,s)

)
P
{

Yi ≤ aρi(b,s)
} , (3.4.8)
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defines the local likelihood ratio for Yi between the importance sampling and the

original measures. Here pi ∈ (0,1) is a positive mixing probability, and the “dis-

tance to go” is defined via

ρi(b,s) =


min j∈(R(i)∪i)∩A

r jb>S(0)j

r jb−S(0)j
v jei, jβi

, if max j∈(R(i)∪i)∩A
r jb−S(0)j
v jei, jβi

> 0,

0, otherwise.

And if d + i 6∈ S, sample Yi from its original density. It is understood that pi = 0,

if ρi(b,s) = 0, i.e., importance sampling is switched off when the auxiliary process

hits the corresponding initial reserve level.

Step 4) Given Zh,h≤ d and Yi, i ∈ A sampled in Step 2) and 3), set matrix Π.

Step 5) Solve the single-period linear program [P] given in (3.2.8), Update the true re-

serve processes according to (3.2.9), i.e., u′i = x̌+i − x̌−i for each i ∈ I.

Remark 3.4.1. Ideally, in Step 1) one should pick uniformly at random among the set of

optimal solutions. Also, we can further guide the choices of the mixing probabilities pZh

and pi by setting pZh = θ, if h ∈ S∗, and setting pi = θ′, if d + i ∈ S∗, and θ,θ′ are some

positive constants independent of b.

It is, however, necessary to assign a small (bounded away from zero) probability to

the mixing probability for which the associated factor is active in some but not all [IP]-

optimal solutions. This is because paths in which these factors are large create a non-

negligible contribution to the variance of the estimator. Therefore, if h ∈ S\S∗, we set
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pZh = εZ � θ; and if d + i ∈ S\S∗, we set pi = εY � θ′, where both εZ and εY are small

positive constants.

The choices are consistent with the asymptotic behaviors of the system in the sense

that they reflect the large deviations description of the system, as specified by Theorem

3.3.1 (i.e., we endow a large value to the mixing probability if the associated factor is

active in all [IP]-feasible solutions, and hence must be active in all [IP]-optimal solutions).

Remark 3.4.2. It is necessary to simulate all the claims within a period for Ii even if

some intermediate claim causes its reserve to go below zero. This is because claims are

assumed to be aggregated at the end of each period. However, the SDIS scheme should be

switched off as soon as that insurer fails, and one shall continue with crude Monte Carlo

towards the end of that period.

The Estimator

The estimator for the probability q(b) is given by

q̂Z,Y (3.4.9)

=

∏
h∈S

fZh(Zh)

gh (Zh|b) ∏
i∈A∪H(A),d+i∈S

 fYi (Yi)

gi

(
Yi|b,S

(0)
i

)
 I (FA)

=

[
∏
h∈S

ηh (Zh|b) ∏
i∈A∪H(A),d+i∈S

(
ηi

(
Yi|b,S

(0)
i

))]
I (FA) ,

where ηh(z|b) and ηi(y|b,s) are defined in (3.4.7), and (3.4.8), respectively.
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3.4.3 Proof of Theorem 3.3.1 and 3.4.2.

We first prove Theorem 3.4.2, which concludes our efficiency analysis of the algorithm,

and then we finish the proof of Theorem 3.3.1 given in Section 3.3.

Proof. Proof of Theorem 3.4.2. Let P̃(·) be the probability measure induced by the pro-

posed importance sampling distribution, and Ẽ (·) the associated expectation operator.

Note that along a sample path generated under P̃ that eventually leads to the ruin of the

set A, at least one of the following cases occurs:

1. Zh > aρ
Z (b) , for some h≤ d,

2. Yj > aρ j

(
b,S(0)j

)
, for some j ∈ i∪H(i) (3.4.10)

for all i ∈ A. Otherwise, we would obtain, for some i0 ∈ A,

S(0)i0 ≤ a(ri0b) ,

S(1)i0 ≤ ri0b(a+a(1−a))< ri0b,

which implies Fc
A .

Therefore, when FA happens, for each i ∈ A∪H(A), either (1) in 3.4.10 occurs, or (1)
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doesn’t occur but (2) does. In the former case, we have

Zh > aρ
Z (b) , for some h≤ d. (3.4.11)

In the latter case, we have that for some j ∈ i∪H(i),

Yj > aρ j(b,S
(0)
j ) = min

k∈(R( j)∪ j)∩A

rkb>S(0)k

a(rkb−S(0)k )

vke j,kβ j

≥ min
k∈(R( j)∪ j)∩A

a(1−a)rkb
vke j,kβ j

. (3.4.12)

Now, let Ω̃(X) be the subset of all the sample paths generated under P̃(·) that con-

tains large common factors or large idiosyncratic factors (in the sense of (3.4.10)) match-

ing the active factors corresponding to any [IP]-feasible solution in X. It follows from

(??) and (3.4.12) that those paths must be included on the event FA. Let the indicator

I
(
(Z,Y ) ∈ Ω̃(X)

)
be equal to one if the sample path encoded by the vector (Z,Y ) be-

longs to Ω̃(X), and zero otherwise. Further define

c = min

[
min

j∈A,i∈ j∪H( j),γi,h>0,h∈S

(
ar j

v jdei, jγi,h

)
,min

i∈A
min

j∈(R(i)∪i)∩A

a(1−a)r j

v jei, jβi

]
> 0, (3.4.13)

and let the set Ac,yyy(b) be defined as

Ac,yyy(b) =

⋂
i∈A

 ⋃
1≤ j≤m,Ξi jy j≥1

{
U j ≥ cb

} , (3.4.14)
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for yyy ∈X, where we have used the unified factor representation U introduced in §3.3 (see

the paragraph before Theorem 3.3.1). Let

φ
(

ppp
)
= ∏

h∈S

1
min

(
pZh,1− pZh

) ∏
i:i∈A∪H(A),d+i∈S

(
1

min
(

pi,1− pi
)) .

Then, we have

q̂Z,Y I
(
(Z,Y ) ∈ Ω̃(X)

)
≤max

yyy∈X
P
{
Ac,yyy(b)

}
φ
(

ppp
)
. (3.4.15)

For any yyy ∈ X,

P
{
Ac,yyy(b)

}
= P

⋂
i∈A

 ⋃
1≤ j≤m,Ξi jy j≥1

{
U j ≥ cb

}
=

[
∏

i:i∈A∪H(A),d+i∈S(yyy)
P{Yi ≥ cb} ∏

h∈S(yyy)
P{Zh ≥ cb}

]
≤ K̃1 ∏

i:i∈A∪H(A),d+i∈S(yyy)
P{Yi ≥ b} ∏

h∈S(yyy)
P{Zh ≥ b} (3.4.16)

for some positive constant K̃1 independent of b, where α̃ is defined in the paragraph before

Theorem 3.3.1, and S(yyy) is defined in (3.4.2).

Meanwhile, on defining

c(yyy) = min
i∈A

(
min

l∈S(yyy),Ξilyl≥1
riΞil

)
> 0,
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we have the following lower bound for q(b),

q(b) ≥ max
yyy∈X

P

⋂
i∈A

⋃
1≤ j≤m,Ξi jy j≥1

{
U j ≥ c(yyy)b

}
≥ max

yyy∈X

[
K̃2 ∏

i:i∈A∪H(A),d+i∈S(yyy)
P{Yi ≥ b} ∏

h∈S(yyy)
P{Zh ≥ b}

]
, (3.4.17)

for some positive constant K̃2 independent of b.

The way we choose the mixing probabilities (see Step 2 and Step 3 in the description

of the algorithm in the previous subsection) leads us to the following bound for φ
(

ppp
)
,

0 < φ
(

ppp
)
≤ (1/p∗)

m , (3.4.18)

where

p∗
∆
= min

(
min
h≤d

(
pZh,1− pZh

)
, min

i∈A∪H(A)

(
pi(k),1− pi(k)

))
> 0.

Now combining (3.4.16), (3.4.17) and (3.4.18) we conclude that

q̂Z,Y

q(b)
≤ 2C,

where the positive constant C is defined as

C = K̃1 (1/p∗)
m /K̃2 > 0, (3.4.19)
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therefore,

Ẽ
[
q̂2

Z,Y

]
≤ 4C2q2(b) = O

[
q2(b)

]
.

And the result follows.

Proof. Proof of Theorem 3.3.1. From the proof of Proposition 3.4.1 we know that AδN (b)⊇

{FA(b)}. And from (3.4.3), we have

P{FA(b)} ≤ P
{
AδN (b)

}
≤ κ2b−α̃′yyy∗,

where κ2 is some positive constant independent of b, and yyy∗ is an optimal solution to [IP]

given in (3.3.2). On the other hand, from the lower bound in (3.4.17), it’s immediate that

P{FA(b)} ≥ K̃2b−α̃′yyy∗.

Consequently the result follows.

3.5 Numerical Examples

In this section we illustrate how to apply the simulation strategy described in the previous

section on a network described in Figure 3.2, which consists of four companies. We

assume the factors follow Pareto distributions. In particular,

P{Z > z}=
(

θ

θ+ z

)α

, and P{Yi > y}=
(

θi

θi + y

)αi

, i = 1,2,3.
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Table 3.1: Values of model parameters.

I1 I2 I3 I4 Z
γ 0.3 0.2 0.4 0.5
β 1.0 1.0 1.0 1.0
θ 100 100 100 100 100
α 2.5 3.5 4.5 2.2 2.2
p 0.9 0.9 0.9 0.9 0.9
r 4.5 5.5 1 1

• Scenario 1: A = {I4}

• Scenario 2: A = {I3, I4}

The simulation results are demonstrated in Table 3.2 and Table 3.3 below. Each esti-

mate is based on 105 replications of the procedure described in the previous section. We

report the mean estimate of the probability q(b), standard error as a percentage of the

probability estimate, as well as the estimate of the Conditional Spillover Loss at System

Dislocation of the set A, standard error as a percentage of the Conditional Spillover Loss,

D(A). For moderate values of b we compare our estimates against crude Monte Carlo

in order to verify that our implementations are correct. The cost per replication of our

importance sampling estimator and that of crude Monte Carlo are very comparable.

Table 3.2: Numerical results with scenarios 1.

Scenario # 1 b = 104 b = 1.5×104 b = 4×104 b = 105

q̂ 1.15×10−5 4.66×10−6 5.38×10−7 7.36×10−8

s.e./q̂ 1.17% 1.19% 1.20% 1.19%
D̂0(A) 2.60×10−1 1.51×10−1 4.87×10−2 1.62×10−2

s.e./D̂0(A) 3.25% 2.74% 3.11% 2.85%
D̂(A) 2.27×104 3.25×104 9.05×104 2.21×105
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Table 3.3: Numerical results with scenarios 2.

Scenario # 2 b = 104 b = 1.5×104 b = 4×104 b = 105

q̂ 1.09×10−5 4.42×10−6 5.08×10−7 6.95×10−8

s.e./q̂ 1.21% 1.22% 1.24% 1.22%
D̂0(A) 2.73×10−1 1.61×10−1 5.14×10−2 1.75×10−2

s.e./D̂0(A) 4.19% 3.43% 3.89% 4.70%
D̂(A) 2.52×104 3.64×104 1.01×105 2.51×105

From the resulting tables we have a few noteworthy remarks. First of all, the relative

stable ratio between the standard error and the mean of the estimates is in line with the

strong efficiency of the algorithm. In other words, as b increases, it’s not necessary to

increase the number of replications in order to achieve the same relative accuracy. On

the other hand, there is some discernible performance differential across various system

configurations, for example, the relative error experiences a deterioration moving from

Scenario 1 to Scenario 2. This relates to Remark 3.4.1. A quick and simple solution is to

weight the factors corresponding to the “trouble-makers” substantially more than the rest

of the other factors. The asymptotically optimal waiting requires explicitly computing the

asymptotic conditional distributions of each factor’s contribution to the rare event. This

becomes even more difficult if multiple periods are considered. Another approach to find

optimal mixture probabilities could be to use cross-entropy or another adaptive technique

as illustrated in [19].
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Chapter 4

Electrical Power Transmission

Networks

4.1 Introduction

Electrical power transmission systems play a significant role in the nation’s economy,

and a critical aspect in the secure operation of electrical power transmission systems con-

cerns how to keep power lines at safe temperature levels. When a power line overheats

it becomes exposed to a number of risk factors. If the overheating is severe the physi-

cal/mechanical attributes of the line may be compromised, rendering it unusable. Under

less severe overheating the line may sag, thus bringing it into proximity with other objects,

and thereby potentially causing a contact or arc which will trip the line. If overheating

is determined, the line may be protectively tripped (be taken out of service). In any of

these cases the line will become unavailable, and the power flow on that line will instead
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become rerouted, in a nontrivial fashion that obeys the laws of physics. This rerouting

may possibly cause other lines to become overloaded. In a failure scenario of a trans-

mission system, this sequence of events may result in a cascade resulting in a large-scale

blackout. The Northeast U.S.-Canada blackout of 2003 produced precisely this type of

event, see [51].

The temperature of a power line primarily depends on the amount of (active, or real)

power flowing on that line (we refer the reader to [6], [12] or [25] for background on

power engineering). However, high-voltage power lines are uninsulated and exposed to

numerous exogenous factors, such as in particular wind and ambient temperature, among

many. All of these factors can and do influence power line temperature. IEEE Standard

738 [33] amounts to a deterministic codification of the impact of a very large number of

such factors, starting from a base model that relies on the classical heat equation. Even

though this is a very thorough approach, an examination of the standard highlights the

potential for mis-estimation due to erroneous, missing or variable data. The previously

mentioned report [51] describes instances during the 2003 cascade where incorrect cal-

ibration of a power line leads to unexpected tripping which contributed to system insta-

bility. A somewhat more nuanced analysis of power line temperature based on the heat

equation is given in [7].

In this chapter, we study a model for the temperature of a line which is based on a

diffusion equation for heat conduction with an additional stochastic component used to

model variations in ambient temperature. Based on the solution to this diffusion equation,
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we suggest a set of guidelines for control of a power line subject to risk constraints. More

specifically, we consider risk control under two failure criteria.

The first criterion is the maximum temperature along an electrical power line during

a certain period of time. A guideline for the choice of inspection frequency and ways

to control current (such control may result in intermittent load shedding) is provided.

Firstly, one can use our results to choose an appropriate time horizon that is long enough

so that it does not require impractical frequent monitoring but short enough so that risk

can be effectively managed (by selecting a time horizon under which empirical statistics

of ambient temperature data support the light-tailed assumption). Secondly, in the case

of light-tailed temperature distributions, we explain how the theory of Gaussian random

fields allows us to easily and practically estimate the risk of tripping, thereby providing a

computable upper bound that can be used in optimization routines as a side constraint.

The second criterion is the average temperature along an electrical power line dur-

ing a certain period of time. We assume that randomness is primarily of a spatial nature

and ignore the time component. This is a reasonable model given the nature of current

control practice, with various levels of control applied in the context of OPF, or Optimal

Power Flow, a computation performed every fifteen minutes (or even more frequently) so

as to set generator output levels and average power flows in the next time window. From

this perspective, and given the length of typical lines in a transmission system (short

lines may measure 50 miles, and long lines much more), local and random variations

in geographically-dependent exogenous factors (such as direction and strength of wind)

leading to heating or cooling of lines can and do manifest themselves, and may well be
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persistent across multiple OPF intervals. We suggest several control mechanisms rely-

ing on so-called “chance constraints” to maximize delivered power while maintaining an

acceptable level of risk.

Various exogenous factors are in fact the considered in IEEE 738, albeit in a simpli-

fied, deterministic manner. A comprehensive model that accounts for short-term (time de-

pendent) exogenous variability over a large spatial domain may prove challenging; though

in future work we plan to address this point.

Our particular model for stochastics of line temperature and our specific analysis are

motivated by the application. The study of stochastic variants of the heat equation is a

classical subject. See e.g. [49], [50] and citations therein. In terms of specific focus to

power line temperature, a model different than ours is given in [20].

4.2 Formulation

We now focus on a particular power line on the time domain [0,τ]. The line is modeled

as a one-dimensional object parameterized by x, 0 ≤ x ≤ L, used to model the spatial

dependence of temperature on an exogenous stochastic factor. Let

• I = I(t) denote the current of that line at time t, with the dependence on t highlighted

so as to allow for control actions.

• T (x, t) the temperature at x at time t.
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The heat equation states:

∂T (x, t)
∂t

= κ
∂2T (x, t)

∂x2 +αI2(t)−ν(T (x, t)−T ext(x, t)), (4.2.1)

where κ≥ 0, α≥ 0 and ν≥ 0 are (line dependent) constants, and T ext(x, t) is the ambient

temperature at (x, t). In order to account for stochasticity, we model T ext(x, t) = G(h(x))

where h(x) denotes a random variable at x, with distribution that is either known or can

be estimated (in what follows boldface will be used to denote uncertain quantities) and

G(·)> 0. We thus obtain

∂T (x, t)
∂t

= κ
∂2T (x, t)

∂x2 +αI2(t)−ν(T (x, t)−G(h(x)). (4.2.2)

We will further assume κ = 0. This is consistent with the use of the heat equation in [33],

[7]; it is justified by noting that propagation in the time domain is much faster than in

the spatial domain. [We will acount for the randomness of exogenous conditions in the

spatial domain in an average, or aggregated manner made precise below]. We therefore

obtain:

∂T (x, t)
∂t

= αI2−ν(T (x, t)−G(h(x)). (4.2.3)
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4.3 Criterion 1: Maximum Temperature

If we know the boundary condition T (x,0) = l(x), where l(x) is some continuous func-

tion, then for any κ≥ 0, making use of Feynman-Kac formula gives us

T (x, t)=e−νt
∫

∞

−∞

l(x)φ(y;x,2κt)dx (4.3.1)

+
αI2

v

(
1− e−vt)

+
∫ t

0
ve−vs

∫
∞

−∞

G(h(x))φ(y;x,2κs)dxds,

where

φ(y;x,2κt) =
exp(−(y− x)2 /(4κt))

(4πκt)1/2 .

For the simplified version when κ = 0, we have that

T (x, t) = (1− e−νt)(G(h(x))+
αI2

ν
)+ e−νt l(x). (4.3.2)

Note that in both solutions (4.3.1) and (4.3.2) we have that x is not bounded. However,

we might only interested in x inside some compact interval [0,L], so we look only at

x ∈ [0,L], for some L > 0. While in our technical development in this chapter we will

only consider the simplified case in which κ = 0, some of our insights can be easily seen

to also apply to the case κ > 0. In particular, as we shall briefly discuss the fact that the

tail of the temperature distribution is relatively insensitive to the current in the case of

long-tailed temperature distributions is a feature that remains valid in the case of κ > 0.
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If the internal temperature of a line is too high, it (or its connectors) might suffer

physical damage. In a more likely scenario, the line may sag and contact a foreign object

such as a tree. In either case the line will trip and be taken out of operation. Such an event

(or set of events) could trigger a cascading failure of the underlying grid. Therefore,

we want to limit the tripping probability which, in order to capture the effects described

previously, we define as follows:

P{ max
x∈[0,L],t∈[0,τ]

T (x, t)> k}, (4.3.3)

where k is some critical temperature. In order to obtain robust insights in the level of

generality that we are aiming at, we shall perform an asymptotic analysis in the context

of k large. We believe that this asymptotic environment is meaningful in the applications

considered because, presumably, failure events happen mostly when temperatures reach

a threshold.

4.3.1 Current Control

Notice that T (x, t) is a function of the current, I. To limit the tripping probability (4.3.3)

to a certain level, I should satisfy some constraint, which gives us a guidance how we

should control the current in the line.

We set the length of each time window equals to τ. At the beginning of each time

window, operators inspect the line and input updated κ,α,ν and l(x) at that time, and
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modify I such that the tripping probability in this window is limited to a certain level to

guarantee the line is safe before the next inspection.

4.3.2 Study of Tripping Probability

Now we want to learn when and where the line temperature reaches its maximum. To

do this, we further assume that G is a monotone strictly increasing and continuous func-

tion which we will discuss later, h(x)∼N(µ(x),σ2(x)) follows Gaussian distribution with

mean and variance depending on x. For x 6= y we have that h(x) and h(y) are jointly dis-

tributed Gaussian random variables with some correlation structure which satisfies mild

assumptions required to make the h(·) a Hölder continuous function with probability one

(i.e. every realization of the function h(·) satisfies |h(x)− h(x)| ≤ K |x− y|ρ for a deter-

ministic constant ρ ∈ (0,1) and some constant K > 0).

Combining (4.2.3) and (4.3.2) we get

∂T (x, t)
∂t

= e−νt [νG(h(x))+αI2−νl(x)]. (4.3.4)

Therefore,

max
x∈[0,L],t∈[0,τ]

T (x, t) =


max

x∈[0,L]
T (x,τ), if q(x, I)> 0

max
x∈[0,L]

T (x,0), if q(x, I)≤ 0

where q(x, I) = νG(h(x))+αI2−νl(x).
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If q(x, I)≤ 0, then maxx∈[0,L],t∈[0,τ]T (x, t)=maxx∈[0,L] l(x). The line trips if maxx∈[0,L] l(x)>

k, which means that this line is already tripped when operators inspect it. We believe that

this case is not of practical interest for our purposes since we aim to find controls that pre-

vent potential future tripping. We also might be able to modify I such that q(x, I)> 0 with

large probability. Thus when the critical temperature k is large, tripping is most likely to

happen at time τ. Therefore, we are more interested in the probability:

P{ max
x∈[0,L]

T (x,τ)> k}. (4.3.5)

For the rest of chapter, when we say tripping probability, we refer to probability (4.3.5)

by default unless otherwise stated.

We conclude that the tripping probability behaves very differently in the case when

maxx∈[0,L]G(h(x)) is long-tailed from the case when it is light-tailed. The definitions of

long-tailed and light-tailed distributions have been given in Section 1.2.1. We claim that:

Theorem 4.3.1. When k→∞, if maxx∈[0,L]G(h(x)) is long-tailed, then the tripping prob-

ability is independent of I; the tripping probability depends on I otherwise.

Proof.

P{ max
x∈[0,L]

T (x,τ)> k}

= P{ max
x∈[0,L]

(1− e−ντ)(G(h(x))+
αI2

ν
)+ e−ντl(x)> k} (4.3.6)

∼ P{ max
x∈[0,L]

(1− e−ντ)G(h(x))> k}, as k→ ∞, (4.3.7)
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where, in this chapter, ”∼“ represents that those two probabilities are of the same order.

The last asymptotic equivalence is obtained by the definition of long-tailed distribution

and the boundedness of l(x). Notice that (4.3.7) doesn’t involve I, so the tripping proba-

bility is (asymptotically) independent of current. On the other hand, (4.3.6) does involve

I.

We believe that this simple result provides useful and important guidance. If the

variations of the maximum ambient temperature are long-tailed, the capability to control

tripping probability through controlling current is limited. To make sure our control is

effective, we need to make sure the variations of maximum ambient temperature are light-

tailed, which required that the length of time window τ should not be too large. Given

historical data of ambient temperature, we could choose a proper τ. Although we have

used the simplified model with κ = 0, note that if maxx∈[0,L]G(h(x)) is long-tailed, then

the tail behavior of a+maxx∈[0,L]G(h(x)) coincides with that of maxx∈[0,L]G(h(x)). In

equation (4.3.2), I2 only appears as in a term added to G(h(x)), which is the only random

term, so we conclude that controlling I2 in the long-tailed setting might not be effective

to substantially reduce risk (measured in terms of tail behavior). By the same token, in

equation (4.3.1), I2 also only appears as in a term added to the only term that involves

randomness, which is a more involved expression of G(h(x)). Thus the same insights

indicated in the theorem prevail in the case when κ > 0 although the mathematical proof

will be somewhat more complicated.
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Define

g(x) = h(x)−µ(x),

µ̄ = max
x∈[0,L]

µ(x),

σ̄
2 = max

x∈[0,L]
E[g2(x)] = max

x∈[0,L]
E[h2(x)],

λ̄ = E[ max
x∈[0,L]

g(x)],

l̄ = max
x∈[0,L]

l(x),

l̃ = min
x∈[0,L]

l(x).

We assume that µ(x), σ(x) and l(x) are continuous, then µ̄ < ∞, σ̄2 < ∞ and l̄ < ∞. If we

further assume that the Gaussian random fields h(x) is almost surely continuous on [0,L],

then λ̄ < ∞. The next result allows us to obtain asymptotic approximations (at least in

logarithmic scale). These approximations, although somewhat coarse, allow to quantify

the tripping probability in great generality (including both light-tailed and long-tailed

distributions).

Theorem 4.3.2. If G−1(·) satisfies G−1(x)→ ∞ as x→ ∞ and that for any c > 0,

lim
k→∞

G−1(k− c)
G−1(k)

= 1, (4.3.8)
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then as k→ ∞,

logP{ max
x∈[0,L]

T (x,τ)> k} ∼ −
(G−1( k

1−e−ντ ))
2

2σ2(x∗)
, (4.3.9)

where x∗ = argmax
x∈[0,L]

σ(x) ∈ [0,L].

Proof. We start with deriving an upper bound.

P{ max
x∈[0,L]

T (x,τ)> k}

= P{ max
x∈[0,L]

(1− e−ντ)(G(h(x))+
αI2

ν
)+ e−ντl(x)> k}

≤ P{ max
x∈[0,L]

(1− e−ντ)(G(g(x)+ µ̄)+
αI2

ν
)+ e−ντl̄ > k}

= P{ max
x∈[0,L]

(G(g(x)+ µ̄)>
k− e−ντl̄
1− e−ντ

− αI2

ν
}

= P
{

max
x∈[0,L]

g(x)> G−1(
k− e−ντl̄
1− e−ντ

− αI2

ν
)− µ̄

}
≤ e
− (yu−µ̄−λ̄)2

2σ2(x∗) , (4.3.10)

where yu =G−1(k−e−ντ l̄
1−e−ντ − αI2

ν
) and the last inequality is obtained by Borell-TIS inequality,

see [4], page 50.
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Now we consider the lower bound.

P{ max
x∈[0,L]

T (x,τ)> k}

≥ P
{
(1− e−ντ)(G(g(x∗)+µ(x∗))+

αI2

ν
)+ e−ντl̃ > k

}
= P

{
g(x∗)> G−1(

k− e−ντl̃
1− e−ντ

− αI2

ν
)−µ(x∗)

}
≥ (

σ(x∗)√
2π(yl−µ(x∗))

− σ3(x∗)√
2π(yl−µ(x∗))3

)e
− (yl−µ(x∗))2

2σ2(x∗) , (4.3.11)

where yl = G−1(k−e−ντ l̃
1−e−ντ − αI2

ν
).

Combining (4.3.10) and (4.3.11), and taking logarithm, we have

− (yu− µ̄− λ̄)2

2σ2(x∗)

≥ logP{ max
x∈[0,L]

T (x,τ)> k}

≥ log(
σ(x∗)√

2π(yl−µ(x∗))
− σ3(x∗)√

2π(yl−µ(x∗))3
)

− (yl−µ(x∗))2

2σ2(x∗)
.

Since G−1(·) satisfies (4.3.8), then

lim
k→∞

− (yu−µ̄−λ̄)2

2σ2(x∗)

−(G−1( k
1−e−ντ ))2

= lim
k→∞

log( σ(x∗)√
2π(yl−µ(x∗))

− σ3(x∗)√
2π(yl−µ(x∗))3 )−

(yl−µ(x∗))2

2σ2(x∗)

−(G−1( k
1−e−ντ ))2

=
1

2σ2(x∗)
.
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Therefore, as k→ ∞,

logP{ max
x∈[0,L]

T (x,τ)> k} ∼ −
(G−1( k

1−e−ντ ))
2

2σ2(x∗)
.

After the discussion regarding to the general function G(·), next we will discuss two

specific functions: G(x) = ex and G(x) = x. In the former case, maxx∈[0,L]G(h(x)) is

long-tailed, and in the latter case, it is light-tailed.

4.3.3 Examples

We would like to discuss a long-tailed example and a light-tailed example. Before that,

we need to introduce some definitions and a lemma on the maximum of Gaussian non-

centered field, see [10], pages 190-193.

Definition 4.3.3. Let the collection α1, . . . ,αk of positive number is be given, as well as

the collection l1, . . . , lk of positive integers such that ∑
k
i=1 li = n. We set l0 = 0. These

two collections will be called a structure. For any vector x = (x1, . . . ,xn)
T its structural

module is defined by

|x|α =
k

∑
i=1

( E(i)

∑
j=E(i−1)+1

x2
j

)αi
2
,

where E(i) = ∑
i
j=0 l j, j = 1, . . . ,k.

Definition 4.3.4. Let an α−structure be given on Rn. We say that h(x), x ∈ A⊂ Rn, has

a local (α,Dx)-stationary structure, or h(x) is locally (α,Dx)-stationary, if for any ε > 0
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there exists a positive δ(ε) such that for any s ∈ A one can find a non-degenerate matrix

Ds such that the covariance function r(x1,x2) of h(x) satisfies

1− (1+ ε)|Ds(x1,x2)|α ≤ r(x1,x2)≤ 1− (1− ε)|Ds(x1,x2)|α,

provided ‖ x1− s ‖< δ(ε) and ‖ x2− s ‖< δ(ε).

Lemma 4.3.5. Let h(x), x∈ Rn, be a Gaussian locally (α,Dx)-stationary field, with some

α > 0 and continuous matrix function Dx). Let M ⊂ Rn be a smooth p-dimensional

compact set, 0 < p ≤ n. Let the expectation m(x) = Eh(x) be continuous on M and

attains its maximum on M at the only point x0, with

m(x) = m(x0)− (x−x0)B(x−x0)
′+O(‖ x−x0 ‖2+β),

as x→ x0, for some β > 0 and positive matrix B. Then,

P{sup
x∈M

h(x)> u}= buθ
Ψ(u−m(x0))(1+o(1)), as u→ ∞, (4.3.12)

where b and θ are constants, and

Ψ(u) =
1√
2π

∫
∞

u
e−x2/2dx.

For the rest of this section, we assume that h(x) satisfies the conditions required in the

above theorem.
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Long-tailed Example: G(h(x)) = eh(x)

1) maxx∈[0,L] eh(x) is long-tailed

Proof. Making use the above lemma, we have

P{ max
x∈[0,L]

eh(x) > k+ c}

= P{ max
x∈[0,L]

h(x)> log(k+ c)}

∼ b[log(k+ c)]θΨ(log(k+ c)−m(x0)),

where m(x0) is defined as the same as in the theorem.

Since

Ψ(log(k+ c)−m(x0))

∼ 1
log(k+ c)−m(x0)

1√
2π

e−(log(k+c)−m(x0))
2/2,

as k→ ∞, it is easy to see that

P{ max
x∈[0,L]

eh(x) > k+ c}

∼ b(logk)θ
Ψ(logk−m(x0))

∼ P{ max
x∈[0,L]

eh(x) > k}.
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2) Asymptotic behavior of tripping probability

In this case, G−1(x) = logx. Therefore,

logP{ max
x∈[0,L]

T (x,τ)> k} ∼ −
(log( k

1−e−ντ ))
2

2σ2(x∗)
, as k→ ∞.

Light-tailed Example: G(h(x)) = h(x)

1) maxx∈[0,L] h(x) is light-tailed

Proof. Since

P{ max
x∈[0,L]

h(x)> k}

∼ ckθ−1 1√
2π

e−k2/2,

for any λ > 0,

eλkP{ max
x∈[0,L]

h(x)> k}< ∞, as k→ ∞.

2) Asymptotic behavior of tripping probability

In this case, G−1(x) = x. Therefore,

logP{ max
x∈[0,L]

T (x,τ)> k} ∼ −
( k

1−e−ντ )
2

2σ2(x∗)
, as k→ ∞.

3) A useful upper bound for current control
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As we said earlier, in this case, we could control the risk effectively through current

control. The reason is we can find an upper bound of the tripping probability.

Define

µ̂ = max
x∈[0,L]

E[h(x)]< ∞,

σ̂
2 = max

x∈[0,L]
Var[h(x)]< ∞,

According to the following Borell-Sudakov-Tsirelson inequality in [10], page 192, we

can find an upper bound of the tripping probability.

Lemma 4.3.6. If there exists some a such that

P{ max
x∈[0,L]

h(x)−E[h(x)]≥ a} ≤ 1
2

Then, for all b,

P{ max
x∈[0,L]

h(x)> b} ≤ 2Ψ(
b− µ̂−a

σ̂
). (4.3.13)

In fact, it is not difficult to prove that such a exists using Borell-TIS inequality because

we are assuming that the underlying Gaussian process is continuous. In practice, such a

could be estimated through Monte Carlo simulation.
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Theorem 4.3.7. There exists a, such that

P{ max
x∈[0,L]

T (x,τ)> k} ≤ 2Ψ(
k̂− µ̂−a

σ̂
), (4.3.14)

where k̂ = k−(1−e−ντ)αI2
ν
−e−ντ l̄

1−e−ντ .

Proof. Since

T (x,τ) = (1− e−ντ)(h(x)+
αI2

ν
)+ e−ντl(x).

Then

P{ max
x∈[0,L]

T (x,τ)> k}

= P{ max
x∈[0,L]

(1− e−ντ)(h(x)+
αI2

ν
)+ e−ντl(x)> k}

≤ P
{
(1− e−ντ) max

x∈[0,L]
h(x)+(1− e−ντ)

αI2

ν
+ e−ντl̄ > k

}
= P

{
max

x∈[0,L]
h(x)>

k− (1− e−ντ)αI2

ν
− e−ντl̄

1− e−ντ

}
≤ 2Ψ(

k̂− µ̂−a
σ̂

).

Note that the upper bound (4.3.14) is increasing in I. Suppose we need to keep the risk

of tripping at a certain level η, or in other words, we require that P(maxx∈[0,L]T (x,τ) >

k) ≤ η. We only need to let 2Ψ( k̂−µ̂−a
σ̂

) ≤ η, which gives us an upper bound of current.

This provides a mechanism for periodic control of the line. Note that current magnitude



125

is directly proportional to (active, or real) power flow magnitude; in other words the risk

exposure that we compute as inputed by a given current level can be used as a guide for

load shedding in an emergency situation.

Suppose that in the presence of bound (4.3.14), we are interested in maximizing an

increasing function of I, subject to a constraint that guarantees that the tripping probability

is less than η. We then can easily compute an optimal value of I∗ satisfying

I2
∗ =

ν

α(1− e−ντ)

(
k− e−ντl̄− (1− e−ντ)(σ̂Ψ

−1(η/2)+ µ̂+a)
)
. (4.3.15)

Next, we would look into a numerical example based on this conclusion.

4.3.4 Numerical Light-Tailed Example: G(h(x)) = h(x)

Basically, we need to do three things.

1. Define h(x),x ∈ [0,L] such that it is both Hölder continuous and locally stationary.

2. Estimate a and calculate I2
∗ .

3. Set the current equal to I∗, simulate h(x) up to time τ, estimate the tripping proba-

bility.

Definition of h(x),x ∈ [0,L]

We assume that h(x) follows an Ornstein-Uhlenbeck process, i.e.

dh(x) = (c0−h(x))dx+σB(x), (4.3.16)
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where c0 and σ > 0, and B(x) denotes the standard Brownian motion. Then E[h(x)] =

c0,∀x ∈ [0,L], and cov(h(x),h(y)) = e−|x−y|/2,∀x,y ∈ [0,L].

It is known that the Ornstein-Uhlenbeck process has almost surely Hölder continuous

sample path, and it is obviously that h(x) is also locally stationary. We have

µ̂ = c0, σ̂
2 = σ

2/2.

Note that E[h(x)] = c0 does not satisfy the conditions in Lemma 4.3.5. However, h(x)

can be considered as a centered field. Therefore, we can make use of Theorem 7.1 in [45],

page 108, to find a similar equation as (4.3.12).

Estimation of a and I2
∗

We want to find a, such that

P{ max
x∈[0,L]

h(x)− c0 ≥ a} ≤ 1
2

Since the solution to the stochastic differential equation (4.3.16) is

h(x) =
σe−x
√

2
B(e2x−1)+ e−xh(0)+(1− e−x)c0,

we could estimate a using Monte Carlo simulation. Then I∗ could be calculated using

formula (4.3.15).
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Estimation of the Tripping Probability by Simulating h(x) up to Time τ

For simplicity, we assume l(x) = l̄,∀x ∈ [0,L], then the tripping probability

P{ max
x∈[0,L]

T (x,τ)> k}

= P{ max
x∈[0,L]

(1− e−ντ)(h(x)+
αI2
∗

ν
)+ e−ντl̄ > k}

= P
{

max
x∈[0,L]

h(x)> k̂
}
,

where k̂ = k−(1−e−ντ)
αI2∗

ν
−e−ντ l̄

1−e−ντ .

We want to efficiently compute the tail probability for the suprema of Gaussian ran-

dom fields. We apply algorithm 7.3 in [1]. Before we explain this algorithm, let us first

introduce a definition.

Definition 4.3.8. We call X̃ = {x1,x2, . . . ,xM} ⊂ [0,L] a θ-regular discretization of [0,L]

if,

min
i 6= j
|xi− x j| ≥ θ, sup

x∈[0,L]
min

i
|xi− x| ≤ 2θ.

To decide the number of replications n, we could choose n = O(ε−2δ−1) to achieve ε

relative error with probability at least 1−δ.

Let H = (h(x1),h(x2), . . . ,h(xM)), we define distribution Q as

Q(H ∈ B) =
M

∑
i=1

1
M

P{H ∈ B|h(xi)> k̂− 1
k̂
}. (4.3.17)
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Given a number of replications n and an ε/k̂-regular discretization, the simulation

algorithm is as follows:

Step 1: Sample H(1),H(2), . . . ,H(n) i.i.d copies of H with distribution Q given by

(4.3.17).

Step 2: Compute and output

L̂n =
1
n

n

∑
i=1

L̃(i)
k̂
,

where

L̃(i)
k̂

=
M×P{h(x1)> k̂−1/k̂}

∑
M
j=1 1(h(x j)(i) > k̂−1/k̂)

1( max
1≤i≤M

h(x j)
(i) > k̂).

Results

We set parameters as follows:

• Stochastic differential equation (4.2.3)

α = 1,ν = 1,L = 1,τ = 1/4, l̄ = 70.

• h(x)

c0 = 70,σ = 10.

• Simulation

k = 100,η = 0.05,ε = 0.05,δ = 0.05,n = 8000.
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In other words, We want the tripping probability

P{ max
x∈[0,1]

T (x,1/4)> 100} ≤ 0.05.

The simulation result is:

I2
∗ = 99.97,P{ max

x∈[0,1]
T (x,1/4)> 100}= 7.4×10−6 < 0.05.

Therefore, if we set the risk level η = 0.05, and let the current I2
∗ = 99.97, we could make

sure that the tripping probability is below this level. The simulation results confirm the

validity of the current control methodology we develop.

Analysis of Results

Assuming we use the current control methodology in (4.3.15), then one can verify that

P{ max
x∈[0,L]

T (x,τ)> k} ≤
√

σ2/2Ψ
−1(η/2)+ c0 +a.

Note that the upper bound above is independent of k. Thus, we can keep the tripping

probability bounded by a certain level no matter what the value of k is.

Another observation is that the tripping probability is much smaller than the risk level.

In terms of risk control, this result shows that our control is very effective. But if we would

like to simultaneously maximize the current, a tighter upper bound than (4.3.14) should

be developed.
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4.4 Criterion 2: Average Temperature

4.4.1 Line limits in the context of Optimal Power Flow (OPF)

Here we briefly review how OPF is used in current power engineering practice and how

our work here ultimately relates to guiding certain upper bound parameters in the evalua-

tion of OPF equations. For a review see e.g. [39].

The OPF (or “economic dispatch”) computation is now performed as often as every

fifteen minutes, and is used to set the output of generators (in the next fifteen-minute

window) so as to minimize cost while meeting estimates of demands in a safe manner, that

is to say, without exceeding flow limits on the transmission lines in a systematic manner.

Real-time, random fluctuations in demands are handled through automatic adjustment of

generator output. Such automatic, short-term actions may cause power lines to exceed

their flow limits in moderate form and for brief periods of time; however such overages

are tolerated unless sustained over longer periods of time. See [6], [12].

Using the linearized “DC” model of power flows, which is common in the case of OPF,
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the optimization problem that is solved in power engineering practice is of the form:

min ∑
i∈G

wi(Pi) (4.4.1a)

s.t. Bθ − P = 0 (4.4.1b)

|yi j(θi−θ j)| ≤ ui j (4.4.1c)

Pi = -(load at i), if i /∈ G (4.4.1d)

θ ∈ Rn. (4.4.1e)

In this formulation we consider a transmission system with n buses in total. We denote by

G the set of buses attached to generators. The vector P ∈ Rn indicates net output at each

bus. Thus when i ∈G, Pi is the output for the generator at i. When bus i is a load bus (i.e.,

i /∈G) the quantity Pi is fixed in equation (4.4.1d) to minus the load at i, possibly equal to

zero. Matrix B is the so-called network susceptance matrix and for a bus i, θi is the phase

angle at bus i, a variable in the computation. Equation (4.4.1b) represents the (linearized)

relationship between net power output levels and phase angles; under the DC model the

power flow from i to j on line i j equals

yi j(θi−θ j)

where yi j > 0 is the susceptance of line i j, a physical parameter. Finally, the quantity ui j

is the power transmission limit for line i j. Thus, equation (4.4.1c) states that the flow

on i j, in absolute value does not exceed the limit on that line. Finally, the objective to
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be minimized is the overall cost of generation; at generator bus i the function wi(·) is a

convex quadratic on the output Pi. Other constraints may be present, e.g. upper and lower

bounds on the generator outputs Pi.

An important part of formulation (4.4.1), of interest to us in the context of this section,

is the determination of the line limits ui j. If these are set to large values then lines may

become overheated and at risk of tripping; on the other hand if the ui j are set too low the

cost of operation (i.e. the objective value (4.4.1a) at optimality) may become too large

or we may even obtain an infeasible optimization problem. In current power engineering

practice a simple procedure is employed:

(a) Before each OPF period, if a line ui j is deemed to have become overheated (in the

previous time period) or at risk of becoming overheated in the next time period, the

ui j quantity is decreased to a “safe” value.

(b) The adjustment in (a) is typically done by reducing ui j to one of a (very) small set

of precomputed values.

We stress that (a) and (b) are performed one line at a time. Effectively, one is setting

the quantity ui j to act as a proxy for the maximum power flow that line i j can safely

sustain in the next time window; but of course, the computation in (4.4.1) may set the

actual power flow to a lower value than ui j.

At this point we note that there are several procedures that one could employ in order

to incorporate into OPF the stochasticity of line temperatures. Let us denote by Bi j =

Bi j(yi j(θi− θ j)) the (random) event that in the next time window line i j will reach a
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critical temperature given its flow value yi j(θi− θ j). This event depends on exogenous

events; we consider a specific model below. Using P to denote probability, one can then

consider the following variations of (4.4.1):

min ∑
i∈G

wi(Pi) (4.4.2a)

s.t.constraints (4.4.1b) - (4.4.1e), (4.4.2b)

P

(⋃
i j

Bi j

)
≤ ε, (4.4.2c)

and

min ∑
i∈G

wi(Pi) (4.4.3a)

s.t.constraints (4.4.1b) - (4.4.1e), (4.4.3b)

P
(
Bi j
)
≤ ε, ∀ i j. (4.4.3c)

Either (4.4.2) or (4.4.3) are risk-aware variants of OPF; with (4.4.2) likely much more

conservative. Either one of these optimization problems is, likely, quite challenging due

to the nature of the stochasticity (i.e. the “chance constraint” (4.4.3c) may be quite non-

trivial). And in fact either model amounts to a significant departure from current practice.

In this section we follow a different approach that adjusts process (a)-(b). Our goal

will simply be to refine the current practice of resetting the ui j with an intelligent compu-
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tation that is risk-aware. In other words the OPF problem to be solved will still be of the

form (4.4.1), albeit with carefully constructed quantities ui j.

Our approach will involve the computation of a general solution to a stochastic heat

equation, with an explicit spatial dependence on stochastic effects, and suggest several

control mechanisms relying on so-called “chance constraints” to maximize delivered

power while maintaining an acceptable level of risk.

Our particular model for stochastics of line temperature and our specific analysis are

motivated by the OPF application. The study of stochastic variants of the heat equation is

a classical subject. See e.g. [49], [50] and citations therein.

4.4.2 Formulation

Integrating on both sides of (4.2.3) with respect to x, and dividing by L, we have

1
L

∫ L

0

∂T (x, t)
∂t

dx = αI2(t)− ν

L

∫ L

0
T (x, t)dx

+
ν

L

∫ L

0
G(h(x))dx. (4.4.4)

Denoting by H(t) average internal temperature along the line at time t, by R the average

ambient temperature along the line, i.e.,

H(t),
1
L

∫ L

0
T (x, t)dx, R ,

1
L

∫ L

0
G(h(x))dx,
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we therefore have

dH(t)
dt

=
d
dt

1
L

∫ L

0
T (x, t)dx =

1
L

∫ L

0

∂T (x, t)
∂t

dx.

Then (4.4.4) becomes:

dH(t)
dt

= αI2(t)−νH(t)+νR, (4.4.5)

with solution

H(t)=
∫ t

0
e−ν(t−s)(αI2(s)+νR)ds+Ce−νt (4.4.6)

=
∫ t

0
e−ν(t−s)

αI2(s)ds+R(1− e−νt)+Ce−νt ,

where

C = H(0) =
1
L

∫ L

0
T (x,0)dx.

We note that the quantity R is not observed – however we can assume that its distribution

can be estimated. We are interested in control schemes that vary I(t) in response to

observed conditions. As criterion for stability, we will enforce the chance-constraint [22],

[42]

P
{

max
t∈[0,τ]

H(t)> k
}
≤ ε, (4.4.7)

where k > 0 is a given limit and ε > 0 is small.
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4.4.3 Constant I(t), t ∈ [0,τ]

The case where I(t) is constant in the time window of interest is of special interest because

of its simplicity. We are interested in computing those values Ĭ such that setting I(t) = Ĭ

for 0≤ t ≤ τ satisfies (4.4.7). From the closed-form solution above we obtain

H (t) = ((α/ν) Ĭ2 +R)(1− e−νt)+Ce−νt . (4.4.8)

Now, let us assume that G(x)≥ 0, which implies that R≥ 0.

It follows from (4.4.8) together with (4.4.5) that

dH (t)
dt

= αI2(t)−ν((α/ν) Ĭ2 +R)(1− e−νt)+ vCe−νt +νR,

= αĬ2e−νt + vRe−νt + vCe−νt .

In other words, H ′(t)> 0 if one assumes that Ĭ2 +C ≥ 0, which in turn will always hold

if H (0) =C ≥ 0. Consequently, if one assumes that C = H (0)< k, it follows that (4.4.7)

is equivalent to

P{H (τ)> k} ≤ ε.

Using (4.4.8) this implies

Ĭ2 ≤ ν

α

k−Ce−ντ− rε(1− e−ντ)

1− e−ντ
, (4.4.9)

where rε is the ε-quantile of R (i.e. rε is the smallest x such that P{R > x} ≤ ε). As
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discussed above we assume that the distribution of R is known, and consequently the

bound in (4.4.9) is computable.

For future use, we use L(τ,k) to denote the right-hand side of expression (4.4.9).

Now consider an entire grid where several lines are assumed to be thermally stressed.

We can then compute the upper bound on the current for each such line that is implied by

computation in (4.4.9). These values can then be used the OPF computation (generator

dispatch) at time t = 0.

Numerical examples

We next perform some numerical experiments designed to understand the behavior of the

threshold expression (4.4.9) in a range of numerical values which are informed by actual

IEEE Standards.

• Calibration of parameters

Expression (4.4.9) contains two line-dependent parameters, α and ν, which need to

be calibrated. Also the constant C = H (0) needs to be estimated. For the purpose

of computing the line-dependent parameters, we use some formulas provided in the

IEEE Standard 738 [33] applied to an ACSR (aluminum conductor steel reinforced)

line. We include these parameters here because they give a sense of the physical

measurements involved in ultimately evaluating the various parameters in the un-

derlying model, and because we ultimately wish to show that the numerical values

that we obtain make practical sense.
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The formulas for α and v require that we introduce some notation and parameters

arising in the standard:

ρ f : Density of air (1.029 kg/m3).

Vw: Speed of air stream at conductor (0.61 m/s).

µ f : Dynamic viscosity of air (0.0000204 Pa · s).

k f : Thermal conductivity of air (0.0295 W/(m−o C)).

Kangle: Wind direction factor (90o ).

mCACSR: Total heat capacity of conductor (ACSR in our case).

qc: Convected heat loss rate per unit length per unit temp.

qr: Radiated heat loss rate per unit length per unit temp.

qs: Heat gain rate from the sun per unit temp.

Ra: AC resistance of conductor at average temperature (5.34×10−4 Ω/m).

mCACSR: Total heat capacity of conductor (ACSR in our case).

D: Conductor diameter (.01 m).

T ext : External temperature.



139

Thus (as per the standard) we have that

low wind speed per temp. : qc1 =

(
1.01+0.0372

(
Dρ fVw

µ f

)0.52
)

k f Kangle,

high wind speed per temp. : qc2 = 0.0119
(

Dρ fVw

µ f

)0.6

k f Kangle,

qc = max(qc1,qc2).

The IEEE Standard 738 [33] provides equations for qr and qs, but these two quan-

tities typically approximately offset each other (CITATION) and hence qr ≈ qs,

thereby obtaining that

α =
Ra

mCACSR
, (4.4.10)

and

ν =
qr +qc−qs

mCACSR
≈ max(qc1,qc2)

mCACSR
. (4.4.11)

We use equations (4.4.10) and (4.4.11) to estimate α = 3.99×10−6 and ν = 2.96×

10−4.

In addition, we assume that the initial average external temperature is C := H(0)

= 70oC, we perform our analysis in a time window of τ = 900s (approximately 15

minutes). Finally, we shall set the line temperature limit to k = 110oC.

Figure 4.1 indicates how
√

L(τ,k) (namely, the square root of the right hand side

in (4.4.9)) changes with rε.
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Figure 4.1: Upper Bound -
√

L(τ,k) as a function of rε

• Applying control to a power grid

Next we describe experiments where the methodology presented above for setting

upper bounds on power flows is used in a system-wide fashion for OPF calculations.

In the computations described in this section we will rely on formulation (4.4.1)

given above.

In the tests performed below, we use varying choices of the parameter of rε to set

line limits as indicated above. More precisely, we assume that ui, j in (4.4.1) is set

equal to

ui j =
√

L(τ,k).

Of course, for line i j, the evaluation of
√

L(τ,k) depends on a wide range of line-

dependent characteristics as indicated in Section 4.4.3. For the purpose of this
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exercise we assume that all the lines have the same characteristics and therefore ui j

is constant across lines.

We shall study the resulting total “carrying capacity” for the network as measured

by the optimal value of the objective function in (4.4.1), and we will choose below

two different objective functions (linear and quadratic). Moreover, a question of

central importance for any procedure that sets line limits in protective fashion is

precisely how much such procedure may constrain (or over-constrain) operations.

So, an important part of the outcome of our study is to understand when the problem

(4.4.1) becomes unfeasible as we change a parameter which reflects underlying

stochastic fluctuations, and we will choose rε to perform this parametric study. As

we will see, we might obtain a critical threshold r∗ε such that if rε > r∗ε then (4.4.1)

becomes unfeasible, whereas if rε ≤ r∗ε , (4.4.1) is feasible.

For our testing we used the 9-bus system in [55], with three buses attached to gen-

erators (buses 1, 2, and 3). We used the following procedure:

– For rε ≤ r∗ε (that is, if (4.4.1) is feasible) we study how the optimal value of

(4.4.1) changes as we vary rε.

– For rε > r∗ε (that is, if (4.4.1) is unfeasible), then at least one of the constrains

represented in (4.4.1c) is violated. In this case, we introduce for each line,

i j, a deficit variable zi j ≥ 0, and replace each of the constrains (4.4.1c) by the

constrains

−ui j− zi j ≤ yi j(θi−θ j)≤ ui j + zi j,
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we also replace the objective function (4.4.1) by minimizing ∑i j zi j. We then

study how the optimal sum of deficits changes as we vary rε > r∗ε .

We performed two tests with two different objective functions:

1. Linear function: max0.5P1 +0.6P2 +0.7P3.

The goal of this experiment is to study how a weighted sum of generation

adapts to a change in risk aversion.

(a) Linear Obj Function: Feasible, When r < 93

(b) Linear Obj Function: Infeasible, When r > 93

Figure 4.2: Adding upper bound to a power grid DC problem - linear objective function

Figure 4.2 shows that when rε > r∗ε = 93, the LP problem becomes infeasible

(as a result of power flow limits), and thereafter the infeasibility increases

monotonically because ui j is monotone in rε.
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2. Quadratic function: min0.2P2
1 +0.3P2

2 +0.5P2
3 .

This objective function is of the typical type used in an OPF computation. See

Figure 4.3.

Figure 4.3: Quadratic Obj function: Feasible, When r < 93

4.4.4 Adaptive Control

As an extension to the above analysis above, we consider a setup where it is known at

time t = 0 that uncertainty will be resolved at later point in the time window [0,τ]. We

wish to make use of this fact by designing a better line limit than that obtained through

e.g. (4.4.9); this improvement will come about by incorporating recourse actions that will

be deployed when uncertainty is resolved. We present our specific approach below; first

we will motivate our approach through some examples. These examples deviate from

current power engineering practice, but only to a small degree.

We also note that the problem studied in this section falls under the broad category

of stochastic programming with recourse, which has received much attention, with many

elegant and powerful results that are progressively finding more applications in power
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engineering. More to the point, we will be solving optimization problems subject to

chance constraints. See, e.g. [27], [31], [32].

Consider, first, the OPF setting, with generators output levels computed so as to cover

the time interval [0,τ]. As discussed above, if some line is known to be thermally stressed

at time t = 0, special attention should (and will) be devoted to setting its limit in the OPF

computation. Using (4.4.9) provides a risk-aware methodology for doing so.

Suppose, however, that at time t = 0 it is known that the numerical value of W will be

known at t = τ/2, and, further, that a second generator dispatch (possibly in limited form)

can be performed at t = τ/2. Then additional efficiencies might be attained by resetting

the line limit at t = τ/2. We thus have a two-stage problem: set a line limit to be applied

over [0,τ/2] and another limit over [τ/2,τ] contingent on the value of W observed at

τ/2. The combined action must be done in risk-aware fashion (i.e. guaranteeing that line

temperature will exceed its critical value with probability ≤ ε) while maximizing some

weighted average of the two line limits. In addition, we would also want to guarantee that

with probability 1, some higher critical temperature is not exceeded.

A second justification refers to a method already found, to some degree, in OPF prac-

tice. This is the idea that a given OPF computation should be performed in such a way

to also incorporate information from the time window after the current one, i.e. the time

window [τ,2τ]. In our setting, suppose that at time t = 0 the line is thermally stressed,

with uncertainty, but that the random variable W will become known at time t = τ. The

computation used to set the line limit over [0,τ] should be performed aware of the fact that

the limit should be set again over [τ,2τ] because there is hysteresis in the thermal process.
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The computation should also be done so as to take advantage of the fact that uncertainty

will disappear at time t = τ.

A third justification involves the Unit Commitment problem, which covers a much

larger span of time (e.g. 24 hours). However, if thermal stresses are expected over this

longer time period, line limits will have to be accordingly reduced. Again we have a

setting where the resolution of uncertainty at some intermediate point permits a better

line limit setting (while relying on a second generator output computation).

For simplicity, in what follows we will assume that uncertainty is resolved at time

t = τ/2. The specific details of our model are as follows: Define the random variable

W , R · (1− e−ντ),

and to simplify the analysis we assume that W is discretely distributed, P{W = wi} =

pi, i = 1,2, . . . ,m with a known distribution (i.e., the distribution of R is known). We are

interested in a control scheme with the following characteristics

(1) At time t = 0, we compute values I1, and I2,i for i = 1,2, . . . ,m. These values are

used as follows:

(2) In the time window [0,τ/2] the upper bound on current is set to the value I1.

(3) At time τ/2, we observe the value of R and thus of W . Assuming W = wi then the

upper bound on current is set, in the interval [τ/2,τ], to the value I2,i.

The values I1, and I2,i, 1≤ i≤ m are computed according to the following criteria
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(a) P{H (τ)> k}< ε.

(b) I1 ≤ L(τ/2,k).

(c) Let k be the critical line temperature. For a given value k∗ > k we guarantee, with

probability 1, that line temperature will not exceed k∗.

(d) Where F : R2
+→ R+ is coordinate-wise monotonic increasing, we want to maxi-

mize, in expectation
m

∑
i=1

F(I1, I2,i)pi

We now discuss these modeling features. First, our control scheme broadly falls

within the class of “two-stage stochastic optimization” problems. In the initial time win-

dow we use a (computed) current value I1. At the midway point we observe prevailing

conditions and we adjust our policy as per criterion (3). Note that as per the analysis in

the previous section, for any choice of the values I1, I2,i we will generally have that H (t)

is monotonely increasing or decreasing for t ∈ [0,τ/2] and also for t ∈ [τ/2,τ].

Thus, our control scheme may possibly result in a realization where e.g. H (τ/2)> k.

However, (a) guarantees that even if this were to be the case, the line temperature will

have reached a safe value by time τ. And of course (b) helps ensure that the probability

of this event is small.

Regarding item (d), many examples are reasonable, keeping in mind that a central

goal is to attain “high” values for I1 or I2 without incurring risk. As discussed at the end

of Section 4.4.3 and in the Introduction, a choice of safe value for the current parameter
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I imputes an effective value for the line limit and thus is a central parameter to be used in

computing generator dispatch (OPF). For example, we could set F(I1, I2) = π1I1 +π2I2

where π1,π2 ≥ 0. Or, F(I1, I2) = π1I2
1 +π2I2

2 . Below we discuss several cases.

We will now cast the choice of the values I1, I2,i as an optimization problem. To do

so, suppose that W = wi. Then, using (4.4.6),

H (τ) = v1I2
1 + v2I2

2 (i) + wi + Ce−ντ, (4.4.12)

where

v1 ,
∫

τ/2

0
e−ν(τ−s)

α ds (4.4.13)

and

v2 ,
∫

τ

τ/2
e−ν(τ−s)

α ds. (4.4.14)

Define

z1 , v1I2
1 , z2(i), v2I2

2 (i), 1≤ i≤ n, (4.4.15)

and, for 1≤ i≤ n

k̄i , k−Ce−ντ−wi,

Using this notation we have that, when W = wi

H (τ) > k is equivalent to: z1 + z2(i)> k̄i.

Likewise, if we define ui , k∗−Ce−ντ−wi, if W = wi, then H (τ) > k∗ is equivalent to
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z1 + z2(i)> ui. Finally, let us define

F̃(z1,z2), F(
√

z1/v1,
√

z2(i)/v2), (4.4.16)

which is simply recasting function F in terms of the z variables. It follows that we can

write our optimal control problem as

P1 : max
z1,z2

m

∑
i=1

F̃(z1,z2(i))pi,

s.t.
m

∑
i=1

I{z1 + z2(i)> k̄i}pi ≤ ε (4.4.17)

z1 ≤ v1L(τ/2,k) (4.4.18)

z1 + z2(i) ≤ ui, ∀i, (4.4.19)

z1 ≥ 0, z2(i)≥ 0, ∀i. (4.4.20)

In (4.4.17), I is the indicator function; the square roots in the objective, and the bound

(4.4.18), arise from our definition of the z variables. Constraint (4.4.19) guarantees that

the line temperature at time τ not exceed k∗, with probability 1. Of course, this constraint

may render the problem above infeasible – however assuming that H (0) is “safe” the

problem will be feasible (if necessary by setting z1 = z2(i) = 0 for all i) assuming realistic

R. As per the above discussions we have that ui > k̄i.

Remark 4.4.1. Let z∗1, z∗2(i) (1 ≤ i ≤ m) be an optimal solution to problem P1. Then, for
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each 1≤ i≤ m

z∗1 + z∗2(i) = k̄i or ui.

Proof. Suppose that for some i, z∗1+z∗2(i)< k̄i. Then increasing z∗2(i) maintains feasibility,

and the monotonicity assumption on F implies that the objective improves. The same

reasoning applies if ui > z∗1 + z∗2(i)> k̄i.

Using this observation we can simplify the optimization problem. Define, for 1≤ i≤

m a binary variable yi such that

yi =


0when z1 + z2(i) = k̄i

1when z1 + z2(i) = ui

(4.4.21)

Then the above optimization problem can be recast as:

P2 : max
z1,y

m

∑
i=1

F̃(z1, k̄i− z1)pi(1− yi)+ F̃(z1,ui− zi)piyi

s.t.
m

∑
i=1

piyi ≤ ε

0 ≤ z1 ≤ min{v1L(τ/2,k) , min
i
{ui}} (4.4.22)

yi = 0 or 1, all i.

Problem P2 is a nonlinear, binary optimization problem. We are interested in methodolo-

gies and special cases where a near optimal solution can be obtained in practicable form.

Here we will present two results:
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• We will describe a general approximation method that should prove effective when

the parameter m is moderately large, say m < 104.

• We also describe a provably good approximation algorithm for the case where m is

very large, which however only applies in a special case of the function F .

As an aside, the issue of the magnitude of m concerns several practical questions,

primarily with regards with how accurate a representation of the random variable R can

be constructed in “real time”. Adequate sensorization of power lines should help in this

regard, however there is a larger issue of how data uncertainty can arise in this context

(e.g., the spatial distribution of exogenous temperatures over a small time window).

General approach for moderately large m

Suppose that in problem P2 we were to fix the variable z1 to a value ẑ1 satisfying (4.4.22).

The remaining part of problem P2 has the following general structure:

P2(ẑ1) : max
m

∑
i=1

f̃i(ẑ1)yi

s.t.
m

∑
i=1

piyi ≤ ε,

yi = 0 or 1, all i.

Problem P2(ẑ1) is a linear (binary) knapsack problem. Knapsack problems are NP-hard

– however in this case we are dealing with values of m that are not very large. In fact, it

is fair to say that knapsack problems are the easiest of the NP-hard problems, and, more
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to the point, commercial mixed-integer program solvers can handle such problems with

ease even for large m.

These observations suggest the following (grid- or mesh-parameterization) approach:

(1) Enumerate equally spaced values of ẑ1 between the two bounds in (4.4.22).

(2) For each enumerated value, solve P2(ẑ1).

While suffering from an enumerative component, this approach does have the attribute

of handling any objective function F in the definition of our problem.

A separate issue regarding the small n case concerns the robustness of the computed

answers with respect to e.g. the (necessarily estimated) parameters pi and wi. Using a

small n has the effect of accumulating more probability mass into fewer values, with a

resulting increase in numerical sensitivity (to the choices for the pi and wi).

Very large m

Suppose now that m is very large. As stated above we expect that even in this case a

good mixed-integer programming solver should be able to solve the problems P2(ẑ1).

Nevertheless, we would like to discuss a case where a solution methodology with sound

theoretical foundations is available.

Recall the formula (4.4.12) for H (τ) as well as (4.4.15), and note that z1 + z2(i) ap-

pears in H (τ) and thus, in the chance constraint (4.4.17). Consider the special case where
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F(I1, I2) = v2
1I2

1 + v2
2I2

2 (4.4.23)

for all I1, I2. Below we will discuss the implications of this selection of F(I1, I2). Using

(4.4.23), it will follow that using (4.4.16),

F̃(z1,z2) = z1 + z2, for all z1,z2.

Thus, problem P2 can be equivalently restated as:

P3 :max
m

∑
i=1

k̄i pi(1− yi)+ui piyi

s.t.
m

∑
i=1

piyi ≤ ε

0 ≤ z1 ≤ min{v1L(τ/2,k) , min
i
{ui}} (4.4.24)

yi = 0 or 1, all i.

We can see that constraint (4.4.24) is not needed. In short, P3 can be rewritten in the

form:

P′3 :max
m

∑
i=1

fi yi

s.t.
m

∑
i=1

piyi ≤ ε

yi = 0 or 1, all i,
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for appropriate quantities fi > 0 and qi > 0; this problem constitutes a standard, linear

0−1 knapsack problem.

In comparing this approach to that used for the small n case, we can see that we have

simplified the problem (no enumeration over the ẑ1 values). Of course, we do have to

solve the possibly large knapsack problem P3. As we discussed before, this should prove

routine (and very fast) even for n in the thousands. However, even though the knapsack

problem is NP-hard, there is a very large literature regarding rigorous algorithms for

obtaining nearly-optimal solutions to a knapsack problem, within arbitrary precision, in

an efficient manner. For a broad survey, see [53]. Also see [14] and references therein.

An alternative procedure would rely on branch-and-cut to directly tackle the underlying

chance-constrained problem; see [38]. Another alternative would rely on affine controls,

see e.g. [2].

Finally we comment on (4.4.23). We would argue that this is a “reasonable” functional

form for F(I1, I2) in that it amounts to a weighted sum. Of course the weights are not

flexibly chosen. Nevertheless, note (see (4.4.13), (4.4.14)) that v2 > v1. Thus, (4.4.23)

places more emphasis on what happens in the time interval [τ/2,τ]. We would argue that

this is a reasonable approach, in the sense that we focus in the later time interval, where,

coincidentally, we are able to make more precise decisions since randomness has been

resolved.
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Numerical example

We implement a numerical example for moderately large m = 50 using the methodology

in Section 4.4.4. In the test,

• The distribution of W is shown in Figure 4.4.

• k∗ = k+10 = 120oC.

• The number of enumerated values of ẑ1 is 1000.

• The remaining parameters are as in Section 4.4.3. This implies that L(0,τ) ≈

110.80.

Figure 4.4: Distribution of W

In the experiment we performed, F(I1, I2) = I1 + ∑
m
i=1 piI2,i, i.e. we seek to maxi-

mize the average line limit (averaged over first and second stages and across all realiza-

tions). Solution of the resulting ensemble of knapsack problems yields I1 = 120.98, and

the values of I2,i, i = 1,2, . . . ,m, as shown in Figure 4.5. The entire computation (1000

knapsacks) required approximately one CPU second on a current workstation.
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Figure 4.5: Values of I2 for first 2-stage experiment

The figure displays a compelling behavior: when W is large then I2 is small (because

it should be) and when W is small then I2 is large (because it can be). Moreover, this

intelligent second-stage behavior is leveraged in the first stage by setting I1 quite large; in

fact large compared to L(0,τ). Hence the main benefit of the two-stage approach is that

during the first stage the line limit is approximately 9% higher; moreover the average of

first- and second-stage limits is approximately 111.83, again larger than L(0,τ), and all

of this under the much more conservative additional constraint that guarantees that line

temperature will not exceed the value k∗ with probability one.

Figure 4.6: Optimal Values change with z1
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4.5 Conclusion

In this chapter we have presented a rigorous analysis of a stochastic variant of the heat

equation which leads to control guidelines under different failure criteria. If we are inter-

ested in the probability that the maximum temperature over a fixed amount of time along

a single line exceeds a critical threshold, then a guidance for the choice of frequency and

the way to modify current so that the failure probability is kept at a safe level is pro-

vided. If we are interested in the average temperature, then accurate chance-constrained

policies for setting line limits, obtained as the (approximate) solution to an appropriate

optimization problem are provided. In this case, we also consider a two-stage stochastic

optimization problem that leads to an adaptive control mechanism, where observations

made at an intermediate point in a time window provide a means to adjust line limits.
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