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Abstract Global or indirect illumination e�ects such
as interre
ections and subsurface scattering severely
degrade the performance of structured light-based 3D
scanning. In this paper, we analyze the errors in struc-
tured light, caused by both long-range (interre
ections)
and short-range (subsurface scattering) indirect illumi-
nation. The errors depend on the frequency of the pro-
jected patterns, and the nature of indirect illumination.
In particular, we show that long-range e�ects cause de-
coding errors for low-frequency patterns, whereas short-
range e�ects a�ect high-frequency patterns.

Based on this analysis, we present a practical 3D
scanning system which works in the presence of a broad
range of indirect illumination. First, we design binary
structured light patterns that are resilient to individual
indirect illumination e�ects using simple logical opera-
tions and tools from combinatorial mathematics. Scenes
exhibiting multiple phenomena are handled by combin-
ing results from a small ensemble of such patterns. This
combination also allows detecting any residual errors
that are corrected by acquiring a few additional images.
Our methods can be readily incorporated into existing
scanning systems without signi�cant overhead in terms
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of capture time or hardware. We show results for several
scenes with complex shape and material properties.

Keywords Structured light 3D scanning, interre
ec-
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tion, indirect illumination, light transport, projectors.

1 Introduction

Structured light triangulation has become the method
of choice for shape measurement in several applica-
tions including industrial automation, graphics, human-
computer interaction and surgery. Since the early work
in the �eld about 40 years ago [37,25,33], research has
been driven by two factors: reducing the acquisition
time and increasing the depth resolution. Signi�cant
progress has been made on both fronts (see the survey
by Salvi et al. [34]) as demonstrated by systems which
can recover shapes at close to 1000 Hz. [41] and at a
depth resolution better than 30 microns [11].

Despite these advances, the applicability of most
structured light techniques remains limited to well be-
haved scenes. It is assumed that scene points receive
illumination only directly from the light source. For
many real world scenarios, this is not true. Imagine a
robot trying to navigate an underground cave or an
indoor scenario, a surgical instrument inside human
body, a robotic arm sorting a heap of metallic machine
parts, or a movie director wanting to image the face
of an actor. In all these settings, scene points receive
illumination indirectly in the form of interre
ections,
subsurface or volumetric scattering. Such e�ects, col-
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Translucent Marble Slab 

Concave Bowl 

Strong Interreflections Blurring due to sub-surface scattering 

(a) Concave bowl on a (b) Input image under (c) Input image und er
translucent marble slab low-frequency illumination high- frequency illumination

Errors due to 
interreflections 

Errors due to 
subsurface scattering 

(d) Shape recovered using (e) Shape recovered using (f) Shap e recovered using
Conventional Gray codes (11 images) Modulated phase shifti ng [8] (162 images) our ensemble codes (42 images)

Fig. 1 Measuring shape for the `bowl on marble-slab' scene. This scene is challenging because of strong interre
ection s inside
the concave bowl and subsurface scattering on the transluce nt marble slab. (b) Scene points inside the bowl which are not directly
illuminated receive substantial irradiance due to interre 
ections. (d) This results in systematic errors in the recov ered depth. (c) Due to
subsurface scattering on the translucent marble slab, high -frequency illumination patterns are severely blurred. No tice the low contrast
of the stripes as compared to the bowl. (e) This results in dep th-errors on the marble-slab. (f) Our technique uses an ense mble of
codes optimized for individual indirect illumination e�ec ts, and results in an accurate shape reconstruction. Parent heses contain the
number of input images. More results and comparisons with existing techniques are a t the project web-page [1].

lectively termed global or indirect illumination 1, often
dominate the direct illumination and strongly depend
on the shape and material properties of the scene. Not
accounting for these e�ects results in large errors in the
recovered shape (see Figure 1b). Because of the system-
atic nature of these errors2, it is hard to correct them
in post-processing.

The goal of this paper is to build an end-to-end
system for structured light 3D scanning under a broad

1 Global illumination should not be confused with the oft-use d
\ambient illumination" that is subtracted by capturing ima ge
with the structured light source turned o�.

2 In photometric stereo, interre
ections result in a shallow but
smooth reconstruction [29,28]. In structured light 3D scan ning,
interre
ections result in local errors.

range of indirect illumination e�ects. The focus is on de-
signing the projected patterns (coding) and decoding
schemes. In particular, we consider binary structured
light patterns, which are perhaps the simplest to imple-
ment and widely used in several research and commer-
cial systems. The key observation is that di�erent in-
direct illumination e�ects place contrasting constraints
on the spatial frequencies of projected structured light
patterns. In particular, interre
ections result in errors
for low-frequency structured light patterns 3. On the

3 Strictly speaking, since all binary patterns have step edge s,
all of them have high spatial frequencies. For the analysis a nd
discussion in this paper, low-frequency patterns implies p atterns
with thick stripes. Similarly, high-frequency patterns me an pat-
terns with only thin stripes.
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other hand, local e�ects such as subsurface scattering
and defocus blur the high-frequency patterns, making
it hard to decode them reliably.

We design patterns that modulate indirect illumi-
nation and prevent the errors at capture time itself.
We show that it is possible to construct codes with
only high-frequency binary patterns by introducing the
concept of logical coding and decoding. The key idea is
to express low-frequency patterns as pixel-wise logical
combinations of two high-frequency patterns. Because
of high frequencies, these patterns are resilient to long-
range e�ects. In order to deal with short-range e�ects,
we use tools from combinatorial mathematics to design
patterns consisting solely of low frequencies. In compar-
ison, most currently used patterns (e.g., Gray codes)
contain a combination of both low and high spatial fre-
quencies, and thus are ill-equipped to deal with indirect
illumination.

Indirect illumination in most real world scenes is not
limited to either short or long-range e�ects. Codes opti-
mized for long-range e�ects make errors in the presence
of short-range e�ects and vice versa. How do we han-
dle scenes that exhibit more than one type of indirect
illumination e�ect (such as the one in Figure 1(a))? To
answer this, we observe that the probability of two dif-
ferent codes producing the same erroneous decoding is
very low. This observation allows us to project a small
ensemble of codes and use a simple voting scheme to
compute the correct decoding at every pixel, without
any prior knowledge about the scene (Figure 1(d)).

Finally, for highly challenging scenes, we present
an error detection scheme based on a simple consis-
tency check over the results of the individual codes in
the ensemble. We then use an error correction scheme
which further reduces the errors due to indirect illu-
mination by selectively re-illuminating only the incor-
rectly reconstructed scene points [38]. We demonstrate
accurate reconstructions on scenes with complex ge-
ometry and material properties, such as shiny brushed
metal, translucent wax and marble and thick plastic
di�users (like shower curtains). Our techniques outper-
form many existing schemes while using signi�cantly
fewer images (12-42 versus 200-700) as compared to
previous work dealing with indirect illumination. We
believe that these techniques are important steps to-
wards making 3D scanning techniques applicable to a
large class of complex, real world scenarios.

2 Related Work

Structured light 3D Scanning: 3D scanning using
structured light is one of the oldest computer vision

techniques. Since the �rst papers [37,25,33], a lot of
progress has been made in terms of reconstruction speed,
accuracy and resolution. Broadly, these techniques are
divided into discrete [22] and continuous [40] coding
schemes. For an exhaustive survey on structured light
techniques, reader is referred to the survey by Salvi et
al [34]. In addition, hybrid techniques that combine
structured light with photometric stereo based tech-
niques have been proposed as well [30,3].

Shape recovery in the presence of indirect illu-
mination: The seminal work of Nayar et al. [28] pre-
sented an iterative approach for reconstructing shape
of Lambertian objects in the presence of interre
ec-
tions. Liu et al. [24] proposed a method to estimate
the geometry of a Lambertian scene by using the second
bounce light transport matrix. Gupta et al. [19] pre-
sented methods for recovering depths using projector
defocus [39] under indirect illumination e�ects. Chan-
draker et al. [6] use interre
ections to resolve the bas-
relief ambiguity inherent in shape-from-shading tech-
niques. Holroyd et al. [21] proposed an active multi-
view stereo technique where high-frequency illumina-
tion is used as scene texture that is invariant to indirect
illumination. Park et al. [32,31] move the camera or the
scene to mitigate the errors due to indirect illumination
in a structured light setup. Hermans et al. [20] use a
moving projector in a variant of structured light trian-
gulation. The depth measure used in this technique (fre-
quency of the intensity pro�le at each pixel) is invariant
to indirect illumination. In this paper, our focus is on
designing structured light systems that are applicable
for a wide range of scenes, and which require a single
camera and a projector, without any moving parts.

Nayar et al. showed that the direct and indirect
components of scene radiance could be e�ciently sep-
arated [29] using high-frequency illumination patterns.
This has led to several attempts to perform structured
light scanning under indirect illumination [7,8,14]. All
these techniques rely onsubtracting or reducing the in-
direct component and apply conventional approaches
on the residual direct component. While these approaches
have shown promise, there are three issues that pre-
vent them from being applicable broadly: (a) the di-
rect component estimation may fail due to strong in-
terre
ections (as with shiny metallic parts), (b) the
residual direct component may be too low and noisy
(as with translucent surfaces, milk and murky water),
and (c) they require signi�cantly higher number of im-
ages than traditional approaches, or rely on weak cues
like polarization. Recently, Couture et al. [9] proposed
using band-pass unstructured patterns to handle inter-
re
ections. Their approach involves capturing a large
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number (200) of images with random high-frequency
patterns projected on the scene. In contrast, we ex-
plicitly design ensembles of illumination patterns that
are resilient to a broader range of indirect illumination
e�ects (interre
ections, subsurface scattering, defocus,
di�usion, and combinations of multiple e�ects), while
using signi�cantly fewer images.

Shape recovery in other optically challenging
scenarios: Active illumination has also been used to
measure density distribution of volumetric media [4,
15] and reconstruct transparent objects [35,26]. For a
detailed survey on techniques for reconstructing trans-
parent and specular surfaces, please refer to the state
of the art report by Ihrke et al. [23]. There have also
been techniques for performing 3D scanning in the pres-
ence of volumetric media using light striping [27,17].
Our techniques can not handle volumetric scattering.
The focus of this work is on reconstructing opaque and
translucent surfaces with complex shapes.

3 Analysis of Errors due to Indirect
Illumination

In this section, we analyze errors in structured light
caused due to di�erent indirect illumination e�ects. The
basic principle behind shape from structured light is
triangulation. Each projector row/column is encoded
with a unique spatial or temporal code. A projector
illuminates the scene with the assigned code and cam-
era takes a sequence of images, one for each projected
pattern. For each camera pixel, the corresponding pro-
jector row/column is found by decoding the measured
intensity values. Once the correspondence is computed,
depth is computed by triangulation.

The resulting depth estimate is incorrect if there is
an error in estimating the correspondence. The magni-
tude of errors depends on the region of in
uence of indi-
rect illumination at any scene point. For instance, some
scene points may receive indirect illumination only from
a local neighborhood (subsurface scattering). We call
these short-range e�ects. Some points may receive indi-
rect illumination from a larger region (interre
ections
or di�usion). We call these long-range e�ects. As shown
in Figures 2 and 3, long-range e�ects and short range
e�ects result in incorrect decoding of low and high spa-
tial frequency patterns, respectively. We analyze these
errors for the case of binary structured light patterns.

Binary patterns are decoded by binarizing the cap-
tured images into illuminated vs. non-illuminated pix-
els. A robust way to do this is to capture two images
L and L , under the pattern P and the inverse pattern

P, respectively 4. For a scene pointSi , its irradiances
L i and L i are compared. If,L i > L i , then the point is
classi�ed as directly lit. A fundamental assumption for
correct binarization is that each scene point receives ir-
radiance from only a single illumination element (light
stripe or a projector pixel). However, due to indirect il-
lumination e�ects and projector defocus, a scene point
can receive irradiance from multiple projector pixels,
resulting in incorrect binarization.

In the following, we derive the condition for correct
binarization in the presence of indirect illumination and
defocus. SupposeSi is directly lit under a pattern P.
The irradiances L i and L i are given as:

L i = L i
d + � L i

g ; (1)

L i = (1 � � ) L i
g ; (2)

whereL i
d and L i

g are the direct and indirect components
of the irradiance at Si [29], when the scene is fully lit.
� is the fraction of the indirect component under the
pattern P.

In the presence of defocus (projector or camera), the
projected patterns and the captured image is blurred.
Similarly, aberrations due to imperfect projector optics
also result in blurring of the projected patterns. The
blur in
uences the highest frequency patterns, often
completely blurring them out 5. Defocus, unlike indirect
illumination e�ects, modulates the direct component as
well, as shown in [19]:

L i = � L i
d + � L i

g ; (3)

L i = (1 � � ) L i
d + (1 � � ) L i

g : (4)

The fractions (� and 1� � ) depend on the projected
pattern and the amount of defocus. In the absence of
defocus,� = 1. For correct binarization, it is re-
quired that L i > L i , i.e.

� L i
d + � L i

g > (1 � � ) L i
d + (1 � � ) L i

g (5)

This condition is satis�ed in the absence of indirect
illumination ( L i

g = 0) and defocus (� = 1). Next, we
analyze the errors in the binarization process due to
di�erent indirect illumination e�ects and defocus 6.

4 The inverse pattern can be generated by subtracting the im-
age from image of the fully lit scene.

5 For example, pico-projectors are increasingly getting pop u-
lar for structured light applications in industrial assemb ly lines.
However, due to imperfect optics, they can not resolve patte rns
with thin stripes, for example, a striped pattern of 2-pixel width.

6 Errors for the particular case of laser range scanning of
translucent materials were analyzed in [13]. Errors due to s en-
sor noise and spatial mis-alignment of projector-camera pi xels
were analyzed in [36].
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Scene with interre
ections: Concave V-groove

Illustration of errors due to interre
ections (color onlin e): The scene point marked with red is directly illuminated when the
low-frequency pattern is projected on the scene. It is not di rectly lit when the inverse pattern is projected. Due to inte rre
ections, its
intensity is higher when it is not directly lit (0 :25) as compared to when it is directly lit (0 :16). This results in a decoding (binarization)
error, as shown on the right. Scene points decoded as one (dir ectly illuminated) are marked in yellow and points decoded a s zero (not
illuminated) are marked in blue. In the correct decoding, on ly the points to the left of the concave edge should be zero.

Decoding for high-frequency patterns: High-frequency patterns are decoded correctly even in the p resence of interre
ections. See
Section 3.1 for a detailed explanation.

Fig. 2 Structured light decoding in the presence of interre
 ections (color online). Top: A concave v-groove. Middle:
Illustration of structured light decoding errors due to int erre
ections. Interre
ections result in low-frequency pa tterns being decoded
incorrectly. Bottom High-frequency patterns are decoded correctly.
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(a) (b) (c) (d) (e)

Fig. 3 Structured light decoding in the presence of subsurfa ce scattering: (a) This scene consists of a translucent slab of
marble on the left and an opaque plane on the right. (b) A high- frequency pattern is severely blurred on the marble. Conseq uently,
binarization information can not be extracted reliably on t he marble slab (c). In contrast, the image captured (d) under a low-frequency
pattern is binarized (e) more accurately.

3.1 Long-range e�ects (interre
ections)

Suppose a scene pointSi receives most of the indirect
component when it is not directly lit ( � � 0 in Eqs. 1-
4), and the indirect component is larger than the direct
component (L i

d < L i
g). Substituting in the binarization

condition (Eq. 5), we get L i < L i , which results in a bi-
narization error. Such a situation may arise due to long-
range interre
ections, when scenes are illuminated with
low-frequency patterns. This is because low-frequency
patterns illuminate the scene asymmetrically. For ex-
ample, consider the v-groove concavity shown in Fig-
ure 2. Under a low-frequency pattern, several points in
the concavity are brighter when they are not directly
lit, resulting in a binarization error.

On the other hand, if the scene is illuminated with
a high-frequency pattern, the captured image is bina-
rized correctly even in the presence of interre
ections.
This is explained as follows. If a high-frequency pat-
tern (with equal o� and on pixels) is projected on the
scene, scene points receive approximately half the in-
direct component, i.e., � � 0:5 [29]. Thus, for a scene
point Si , L i � L i

d + 0 :5L i
g and L i � 0:5L i

g. Conse-

quently, L i � L i , and the condition for correct bina-
rization is satis�ed. An example is shown in Figure 2.

3.2 Short-range e�ects (subsurface scattering and
defocus)

Short-range e�ects result in low-pass �ltering of the in-
cident illumination. In the context of structured light,
these e�ects may severely blur the high-frequency pat-
terns, making it hard to correctly binarize them. This
can be explained in terms of the binarization condition
in Eq. 5. For high-frequency patterns, � � 0:5 [29]. If
the di�erence in the direct terms j� L i

d � (1 � � ) L i
d j is

small, either because the direct component is low due

to subsurface scattering (L i
d � 0) or because of severe

defocus (� � 0:5), the pattern can not be binarized
robustly. An example is shown in Figure 3.

For short-range e�ects, most of the indirect illumi-
nation at a scene point comes from a local neighbor-
hood. Suppose a low-frequency patterns is projected on
the scene. If a scene point is directly illuminated, most
of its local neighborhood is directly illuminated as well.
Hence, � � 0:5 and � � 0:5. Thus, for low-frequency
patterns, short-range e�ects actually help in correct de-
coding even when the direct component is low.

For conventional Gray codes, the high-frequency pat-
terns correspond to the lower signi�cance bits. Incorrect
decoding of high-frequency patterns results in a loss of
depth resolution. For example, when conventional Gray
codes are used, if patterns of stripe-width less than 5
pixels are not resolved, last 2 bits of information are
lost. An example is shown in Figure 6.

In summary, long and short-range e�ects re-
spond di�erently to the spatial frequencies of
the incident illumination. In the presence of long-
range e�ects, low-frequency patterns are susceptible to
incorrect binarization, whereas high-frequency patterns
are decoded correctly. On the other hand, for short-
range e�ects, high-frequency patterns are susceptible
to coding errors while the low-frequency patterns are
decoded accurately.

4 Patterns for Error Prevention

In this section, we design patterns that modulate in-
direct illumination and prevent errors at capture time
itself. Because of the contrasting requirements on spa-
tial frequencies (as discussed in the previous section), it
is clear that we need di�erent codes for di�erent indirect
illumination e�ects. For long-range e�ects, we want pat-
terns with only high frequencies (low maximum stripe-
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widths). For short-range e�ects, we want patterns with
only low frequencies (high minimum stripe-widths). How-
ever, most currently used patterns contain a combina-
tion of both low and high spatial frequencies. How do
we design patterns with only low or only high frequen-
cies? We show that by performing simple logical op-
erations, it is possible to design codes with only high
frequency patterns. For short-range e�ects, we draw on
tools from the combinatorial maths literature to design
binary codes with large minimum stripe-widths, result-
ing in patterns with low spatial frequencies.

4.1 Logical coding-decoding for long-range e�ects

We introduce the concept of logical coding and decod-
ing to design patterns with only high frequencies. An
example is given in Figure 4. For binary structured
light, the goal is to correctly binarize the captured im-
ages. We model the binarization process as a function
from the set of binary projected patterns (P) to the set
of binary classi�cations of the captured image (B):

f : P ) B : (6)

For a pattern P 2 P, f (P) is the binarization of
the captured image if the scene is illuminated byP. As
discussed in the previous section, under interre
ections,
f (P) is computed robustly if P is a high-frequency pat-
tern. But, if P is a low-frequency pattern, f (P) may
be computed incorrectly. How do we ensure thatf (P)
is computed correctly even for low-frequency patterns?
We propose decomposing a low-frequency patternPlf

into two high-frequency patterns P1
hf and P2

hf using
pixel-wise binary operators� and b� , such that:

f (Plf ) = f
�
P1

hf � P2
hf

�
= f

�
P1

hf

�
b� f

�
P2

hf

�
(7)

If we �nd such a decomposition, we can robustly
compute the binarizations f

�
P1

hf

�
and f

�
P2

hf

�
, and

combine these to achieve the correct binarizationf (Plf ).
Two questions remain: (a) What binary operators can
be used? (b) How can we decompose a low frequency
pattern into two high-frequency patterns? For both bi-
nary operators, we choose the logical XOR (
 ) because
it has the following properties. First, the binarization
function f is distributive with respect to XOR:

f
�
P1

hf 
 P2
hf

�
= f

�
P1

hf

�

 f

�
P2

hf

�
(8)

This property allows decomposing a pattern into
two patterns, then computing and combining their bi-
narizations to achieve the binarization for the original

pattern. Second, the all zero pattern 0 is the identity
for XOR, i.e., P 
 0 = P. Third, XORing a pattern with
itself gives the zero pattern, i.e.,P 
 P = 0. Fourth,
XOR is associative, i.e., for any three patternsP; Q; R,
(P 
 Q) 
 R = P 
 (Q 
 R). Using these three prop-
erties, it is easy to show that if Plf = P1

hf 
 P2
hf , then

P2
hf = Plf 
 P1

hf .

This provides a simple means to �nd the decompo-
sition for a low-frequency pattern Plf . First, choose a
high-frequency pattern P1

hf . The second patternP2
hf is

then computed by simply taking the pixel-wise logical
XOR of Plf and P1

hf . We call the �rst high-frequency
pattern the basepattern. Instead of the low-frequency
pattern, the two high-frequency patterns P1

hf and P2
hf

are projected on the scene. The corresponding captured
images are binarized. The two binarizations are then
combined by performing another pixel-wise logical XOR
operation. This produces the correct binarization as if
the scene was illuminated by the original low-frequency
pattern. An example is shown in Figure 4.

The logical patterns can be constructed by taking
the pixel-wise logical XOR of a high-frequency pattern
(base pattern) in the conventional Gray codes with all
other patterns. This is illustrated in Figure 4. The re-
sulting patterns have only high spatial frequencies. Note
that there is no overhead introduced; the number of pro-
jected patterns remains the same as the conventional
codes. If the last Gray code pattern is chosen as the
base plane, the resulting codes are called logical XOR-
02 codes. All the projected patterns have a maximum
stripe width of 2 pixels. In contrast, the original Gray
codes have a maximum stripe-width of 512 pixels.

If the second-to-last pattern is used as the base
plane, the resulting codes are called logical XOR-04
codes. The last pattern is projected unmodi�ed. In these
codes, all the projected patterns have a maximum stripe-
width of 4 pixels. In general, if the (n � k)th pattern
is used as the base plane, the resulting codes are called
logical XOR-2k+1 codes, wheren is the total number
of projected patterns. The maximum stripe width is
2k+1 pixels and the last k � 1 planes are projected un-
modi�ed. The patterns for logical XOR-02 and XOR-04
codes are shown in Figure 7. The pattern images can
be downloaded from the project web-page [1].

Color Logical XOR Codes: Color can be used to
reduce the number of required input images7 as com-
pared to binary patterns. It is possible to construct

7 The color of the incident illumination can be decoded from
the image of the illuminated scenes on a per-pixel basis, eve n for
non-white scenes [5]. It is not required to assume spatial sm ooth-
ness or color neutrality of the scene.
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(a) Conventional Decoding vs. Logical Coding and Decoding ( b) Generation of Logical XOR Patterns
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Our XOR-04 Codes
Conventional Gray Codes
Ground Truth

(c) Depth (conventional Gray codes) (d) Depth (our Logical X OR04 codes) (e) Comparison with the ground truth
Mean absolute error = 28 :8mm Mean absolute error = 1 :4mm

Fig. 4 Logical coding and decoding for long range indirect il lumination (color online): (a) In logical coding and decoding,
a low-frequency pattern is expressed as a pixel-wise logica l combination (e.g., XOR) of two high-frequency patterns. T he high-frequency
patterns are projected on the scene and the captured images a re binarized. The two binarizations are combined by perform ing another
pixel-wise XOR operation. This produces the correct binari zation as if the scene was illuminated by the original low-fr equency pattern.
(b) The logical patterns can be constructed by taking the pixel- wise logical XOR of a high-frequency pattern (base plane) in the
conventional Gray codes with all other patterns. The result ing patterns have only high spatial frequencies. The number of projected
images remains the same. If the last pattern is chosen as the base plane, the resultin g codes are called logical XOR-02 codes. If the
second-to-last pattern is used as the base plane, the result ing codes are called logical XOR-04 codes. (c) Depth map computed with
the conventional codes. Because of incorrect binarization of the low-frequency patterns, depth map has large and syste matic errors.
Because of their systematic nature, these cannot be removed by simple smoothing in post-processing. (d) Depth map computed using
our logical XOR-04 codes. The errors due to interre
ections have been signi�cantly reduced. (e) Comparison with the ground-truth.

color logical XOR codes by performing logical opera-
tions, similar to the binary case.

We consider the case where each color channel at
a projector pixel has a binary value. Thus, each pro-
jector pixel can take 8 possible color values -f RGBg
= f 000, 001, 010, 011, 100, 101, 110, 111g. For exam-
ple, if a projector pixel is encoded asf 100g, its red
channel is 1, and the green and blue channels are 0. In
this case,Ncolor = dlog8(M )e patterns are required to
uniquely encodeM projector columns. In contrast, for

binary coding schemes,Nbin = dlog2(M )e patterns are
required to encodeM di�erent projector columns. For
example, if M = 512, Ncolor = 3 and Nbin = 9.

Figure 5 (a-c) shows color Gray codes for a pro-
jector with 512 columns. These codes were generated
using the K-ary (K = 8) re
ected Gray code construc-
tion [10]. Figures 5 (d-f) show input images of a concave
bowl under the color Gray codes. Due to low frequencies
in the projected patterns, interre
ections result in er-
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(a-c) Color Gray codes

(d-f) Input images for concave bowl using color Gray codes (g ) Depth map

(h-j) Color Logical XOR codes

(k-m) Input images for concave bowl using color Logical XOR c odes (n) Depth map

Fig. 5 Color Gray codes vs. color Logical XOR codes (color onl ine). (a-c) Color Gray codes for a projector with 512
columns. Since 8 distinct color values are used, only 3 patte rns are required to encode 512 distinct columns (binary codi ng requires
9 patterns). (d-f ) Input images of a concave bowl for projected patterns (a-c). (g) Computed depth map. Interre
ections result in
erroneous reconstruction near the periphery of the bowl. Pl ease zoom in for details. (h-j) Color Logical XOR codes, constructed by
performing logical XOR operations on the color Gray codes. A ll the patterns have high spatial frequencies. (k-m) Input images of a
concave bowl for projected patterns (h-j). (n) Computed depth map. Errors due to interre
ections have been signi�cantly mitigated.
Most of the residual errors are due to pixel saturation.
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roneous reconstruction near the periphery of the bowl.

In order to construct color logical XOR codes, we
start with color Gray codes. It has been shown that by
performing a color calibration between projector and
camera [5], the color transfer matrix between the pro-
jector and the camera can be made a diagonal matrix,
and each color channel can be treated independently.
With this observation, the color logical XOR codes can
be constructed in a similar way as binary codes. First,
a base plane is chosen. In our experiments, we chose
the highest frequency pattern as the base plane. The
remaining color XOR codes are made by taking the
pixel-wise logical XOR of the base plane with other
patterns, for each color channel independently:

X i
c = Gi

c 
 G1
c ; (9)

for c = f R; G; B g; i = f 2 : Ncolor g. X i
c is the cth color

channel of the i th pattern of the color Logical XOR
codes.Gi

c is the cth color channel of thei th pattern of
the color Gray codes.G1

c is the cth color channel of the
base plane. The captured images are �rst binarized in
each color channel independently8 and then combined
by performing a pixel-wise logical XOR operation in
each color channel. This produces theK � ary (in this
case,K = 8) decoding as if the scene was illuminated by
the original low-frequency patterns. Figure 5 (h-j) show
the color Logical XOR codes constructed using the algo-
rithm described above. All the patterns have high spa-
tial frequencies. Figures 5 (k-n) show the correspond-
ing input images of the concave bowl and the computed
depth map. Errors due to interre
ections have been sig-
ni�cantly mitigated. The MATLAB code for generating
the patterns and decoding the input images is provided
on the project web-site [1].

4.2 Maximizing the minimum stripe-widths for
short-range e�ects

Short-range e�ects can blur the high-frequency base
plane of the logical XOR codes. The resulting binariza-
tion error will propagate to all the decoded patterns.
In order to be resistant to local blurring, patterns with
low spatial frequencies must be designed. For binary
patterns, this means designing patterns with large min-
imum stripe-width. In general, it is not feasible to �nd

8 Two additional images of the scene, one under all white illu-
mination, and one under all black illumination were acquire d to
establish the per-pixel intensity thresholds for binariza tion.

such codes with a brute-force search as these codes are
extremely rare9.

Fortunately, this problem has been well studied in
combinatorial mathematics. There are constructions avail-
able to generate codes with large minimum stripe-widths
(min-SW). The 10-bit binary Gray code with the max-
imum known min-SW (8 pixels) was proposed by God-
dyn et al. [12]. We call these codes the maximum min-
SW Gray codes. These codes are shown in Figures 6
and 7. The algorithm to construct these codes is given
in [12]. The MATLAB code to generate these codes can
be downloaded from the project web-site [1].

In comparison, conventional Gray codes have a min-
SW of 2 pixels. For Gray codes, increasing the minimum
stripe-width also serves the dual purpose of reducing
the maximum stripe-width. Thus, maximum min-SW
Gray codes have a maximum stripe width of 32 pix-
els. Consequently, these codes, while being resistant to
short-range e�ects, are also more resistant to long-range
e�ects as compared to the conventional Gray codes.
Figure 6 shows a scene consisting of industrial parts.
A pico-projector was used to illuminate the scene. Due
to defocus, the high-frequency patterns in the conven-
tional Gray codes can not be decoded reliably, resulting
in a loss of depth resolution. In contrast, depth map
computed using maximum min-SW Gray codes does
not su�er from loss of depth resolution.

5 Ensemble of codes for general scenes

So far, we have designed codes optimized for long or
short-range e�ects. In general, it is not straight-forward
to identify which code to use without knowing the domi-
nant error-inducing mode of indirect illumination. This,
in turn, requires a priori knowledge about scene. More-
over, indirect illumination in most real world scenes is
not limited to either short or long-range e�ects. Codes
optimized for long-range e�ects would make errors in
the presence of short-range e�ects, and vice versa. In
this section, we address the question: how can we han-
dle general real world scenes that have both short and
long-range indirect illumination e�ects?

5.1 Depth recovery algorithm using ensemble of codes

We show that by projecting a small ensemble of codes
optimized for di�erent e�ects, it is possible to handle a

9 It is relatively easy to generate codes with small maximum
stripe-width. For example, we could �nd 10-bit codes with a m ax-
imum stripe-width of 9 pixels by performing a brute-force se arch.
In comparison, conventional Gray codes have a maximum strip e-
width of 512 pixels.
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(a) Maximum min-SW Gray codes (b) Conventional Gray codes

(c) Histogram of stripe-widths (d) Histogram of stripe-wid ths (e) Histogram of stripe-widths (f) Histogram of stripe- widths
Maximum min-SW Gray codes Conventional Gray codes Logical X OR-04 codes Logical XOR-02 codes
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Conventional Gray Codes
Our Gray Codes

(g) Scene consisting of (h) Depth map using (i) Depth map usin g (j) Depth map comparison
industrial parts conventional Gray codes maximum min-SW Gr ay codes

Fig. 6 Designing patterns for short-range e�ects (color onl ine): (a) Short-range e�ects such as subsurface scattering and
defocus result in blurring of projected patterns. For such e �ects, patterns with low spatial frequencies (large stripe -widths) must be
designed. We used tools from combinatorial mathematics lit erature to design binary patterns which maximize the minimu m stripe
width. These patterns are called maximum min-SW Gray codes. (b) Conventional Gray codes. (c-d) Histograms of stripe-wi dths for
di�erent 10-bit codes. For the maximum min-SW Gray codes, al l the stripes have widths in the range [8, 32] pixels. The rang e of
stripe-widths for conventional Gray codes, [2, 512] pixels , is signi�cantly larger. For XOR-04 and XOR-02 codes, the ra nges are [2,
4] and [1, 2] pixels respectively. (g) A scene consisting of i ndustrial parts. (h) Due to defocus, the high-frequency pat terns in the
conventional Gray codes can not be decoded reliably, result ing in a loss of depth resolution. Notice the quantization ar tifacts. (i)
Depth map computed using Gray codes with large minimum strip e-width (min-SW) does not su�er from loss of depth resolutio n.

large class of scenes, without a priori knowledge about
scene properties. Thekey idea is that errors made by
di�erent codes are nearly random. Thus, if the depth
values computed using two di�erent codes is the same,
with a very high probability, it must be the correct
value. Based on this observation, we propose a simple
depth recovery algorithm.

We project four di�erent codes: two optimized for
long-range e�ects (theXOR-04 and the XOR-02 codes),
and two codes for short-range e�ects (the Gray codes
with maximum min-SW and the conventional Gray codes).
Each code returns a depth map of the scene, as shown
in Figure 8 (a-d). The �nal depth value is computed by
performing a simple consistency check across the depth
values computed using the individual codes. If any two

depth values are within a small threshold, that value is
returned 10.

Intuitively, the two long-range codes produce the
correct depth value in the presence of long-range e�ects,
and the short-range codes produce the correct value in
the presence of short-range e�ects. Since there are two
codes each for long and short-range e�ects, the consis-
tency check will pick the correct depth value. Note that

10 Due to imperfect projector optics, insu�cient cam-
era/projector resolution or misalignment between project or and
camera pixels, the depth results from individual codes migh t suf-
fer from spatial aliasing. This problem is more pronounced f or the
high-frequency XOR codes. To prevent aliasing from a�ectin g the
�nal depth estimate, we apply a median �lter (typically 3 � 3 or
5 � 5) to the individual correspondence maps before performing
the consistency check.
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Conventional Gray Codes

Maximum Min-SW Gray Codes

Logical XOR-04 Codes

Logical XOR-02 Codes

Fig. 7 Visualization of di�erent binary coding schemes: The patterns are for a projector with resolution 768 � 1024; thus, each
scheme has 10 patterns. For each scheme, each row in the �gure represents one pattern. Conventional Gray codes have a wide range of
stripe-widths - [2 ; 512] pixels. The range for maximum min-SW Gray codes is [8 ; 32] pixels. For logical XOR-04 and XOR-02 codes, the
ranges are [2; 4] and [1; 2] pixels respectively. Horizontal lines in the second row ( maximum min-SW Gray codes) are actually parallel;
they appear sloped because of an optical illusion called the cafe wall illusion [2]. Patterns are available at the project web-site [1].

the conventional Gray codes may lose depth resolution
due to defocus of subsurface scattering. Therefore, if

only the two Gray codes agree, we return the depth
value computed by the maximum min-SW Gray codes.
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The pseudo-code for the method is given in Algo-
rithm 1. MATLAB code can be downloaded from the
project web-page [1].

Figure 8 (e) shows the depth map computed using
the above algorithm. While the individual codes pro-
duce signi�cant errors, the �nal depth map is nearly
error-free. The 3D reconstruction of the scene is shown
in Figure 1.

In the following, we show that the probability of two
di�erent codes making the same error, i.e., two di�erent
codes producing the same incorrect depth value, is very
low. Readers not interested in the error analysis can
skip Section 5.2 and go directly to results in Section 6.

5.2 Error analysis of the code ensemble algorithm

Assume, without loss of generality, that the intensity
coding is along the x-dimension of the projector im-
age plane, i.e., vertical stripes are projected. Therefore,
each projector column has a unique code. For binary
patterns, the code is binary. If the total number of
projector columns is M , the code hasN bits, where
N = dlog2(M )e. N binary patterns are projected on
the scene and the camera capturesN images, one for
each projected pattern.

Let the binary code for projector column a be CS
a .

S denotes the coding scheme, where,S 2 f CG; MM �
SW; XOR02; XOR 04g, corresponding to conventional
Gray, maximum min-SW Gray, logical XOR02 and log-
ical XOR04 codes, respectively. Suppose a pixel in col-
umn a directly illuminates the camera pixel x. Let the
vector of intensity values at x be I S

x . For correct cor-
respondence to be established, the codeCS

a should be
recovered fromI S

x . However, various factors such as sen-
sor noise, or illumination 
uctuations or defocus and
indirect illumination can result in some of the bits 
ip-
ping from 0 to 1 or vice versa. This results in a decoding
error. Let the recovered code beCS

b . We assume that

ipping of each bit in the code is independent of other
bits. Then, the probability of code CS

a getting decoded
incorrectly as CS

b is

P r [CS
a ! CS

b ] = pd ; (10)

where p is the probability of one bit 
ipping and d is
the hamming distance betweenCS

a and CS
b , 0 � d � N .

p is a function of sensor noise, illumination levels, scene
albedos and light transport in the scene. A small value
of p implies that reliable decoding. A large value ofp
indicates unreliable decoding. If we pose the problem of
structured light as a communication problem, p would

(a) Conventional Gray codes (b) Maximum min-SW Gray codes

(c) XOR-04 codes (d) XOR-02 codes

(e) Code ensemble algorithm (f) Qualitative light transpor t

Fig. 8 Code ensemble algorithm to reconstruct scenes
with multiple indirect illumination e�ects (color online) :
The scene is the same as shown in Figure 1. We project four
di�erent codes - two logical XOR codes and the two Gray codes.
(a-d) Depth estimates using individual codes have errors.
(e) The code ensemble algorithm performs a simple consisten cy
check to compute a depth map with signi�cantly fewer errors. (f)
By analyzing the errors made by the individual codes, we can i nfer
qualitative information about light-transport. Points ma rked in
green correspond to translucent materials. Points marked i n light-
blue receive strong interre
ections.

denote the reliability of the communication channel be-
tween the projector and the camera.

We have assumedp to be constant for all bit posi-
tions. In general, since the errors due to indirect illu-
mination are structured, p is di�erent for di�erent bit
positions. For example, for conventional Gray codes,
in the presence of interre
ections, since low-frequency
patterns (higher signi�cance bits) are more likely to be
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Conventional Gray Codes Maximum min-SW Gray Codes Logical X OR-04 Codes Logical XOR-02 Codes
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Fig. 9 Confusion matrices for di�erent coding schemes. Confusion matrix for a coding scheme gives the probabilitie s of a
projector column being decoded incorrectly as another proj ector column. For the scheme to be the most error resistant, t he confusion
matrix should be a diagonal matrix. We use the confusion matr ices of individual coding schemes to perform error analysis of our code
ensemble algorithm (Section 5). Top row: Confusion matrices for p = 0 :05, where p is the probability of a single binary bit (of the N
bit code) 
ipping. p is a function of the noise of the imaging and illumination sys tem, scene albedos and light transport in the scene.
For a low value of p, the confusion matrices for all the schemes are nearly diago nal. Bottom row: Confusion matrices for p = 0 :3.
Because of a high value of p, the o�-diagonal terms are comparable to the diagonal terms .

decoded incorrectly, p is more for higher signi�cance
bits than lower signi�cance bits. Computing the p val-
ues for di�erent codes would require knowing the scene
structure a priori. One possibility is to simulate struc-
tured light decoding by rendering several scenes with
global illumination. While such an approach can pro-
vide estimates of the value ofp, it is beyond the scope
of this paper. The goal of our analysis is to show that
the probability of two di�erent coding schemes making
the same error is very low, for a wide range of values
of p. If di�erent p values are estimated for di�erent bit
positions, a similar analysis can be done.

We de�ne the confusion matrix M S for a coding
schemeS as M S(a; b) = P r [CS

a ! CS
b ], where a and b

are two projector columns. M S (a; b) is the probability
of CS

a being decoded incorrectly asCS
b . This matrix is

a measure of error resilience of a given coding scheme.
In order to be the most error resistant, the confusion
matrix should be a diagonal matrix. Note that the con-
fusion matrix is a function of p, the probability of a
single bit-
ip.

Figure 9 shows the confusion matrices for four cod-
ing schemes, for two di�erent values ofp. As expected,
for a low value of p, the matrix is nearly diagonal for
all the schemes. However, for a large value ofp, the

o�-diagonal terms are comparable to the near-diagonal
terms. This can result in large decoding errors. Note
that the structure of the confusion matrices for the logi-
cal XOR codes is similar to the conventional Gray codes
as the former are derived from the latter.

The code ensemble algorithm (Section 5.1) produces
an error if the same decoding error happens for two
di�erent schemes. For the camera pixelx, suppose the
correct corresponding projector column isa. The joint
probability of the column a being incorrectly decoded
as the column b, for two di�erent coding schemes S1
and S2 is

P r [(CS1
a ! CS1

b ) & ( CS2
a ! CS2

b )] =

P r [CS1
a ! CS1

b ] : P r [CS2
a ! CS2

b ] : (11)

This follows from the independence of the decod-
ing process for the two schemes. These probabilities
form the joint error probability matrix P (S1;S 2) , where
P (S1;S 2) (a; b) = M S1(a; b) � M S2(a; b). Figure 10 shows
the matrices for 6 pairs of schemes. The o�-diagonal
values are small. Finally, we note that a columna can
be incorrectly decoded as any other columnb. So, the
probability that the code ensemble algorithm will result
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Error probabilities for the code ensemble algorithm (p=0.3)

Fig. 10 Error analysis of our code ensemble algorithm (Secti on 5.1). First and third rows: Joint error probability matrices
for di�erent pairs of schemes, for di�erent values of p. Most of the o�-diagonal values are of the order of 10 � 6 . Second and fourth
rows: Sum of rows of the joint error probability matrices. The resu lting plots are the probabilities that the code ensemble alg orithm
will result in a decoding error, for each projector column. M ost of the probability values are less than 1%.

(CG, MM-SW) (CG, XOR04) (CG, XOR02) (MM-SW, XOR04) (MM-SW, XOR02) (XOR04, XOR02)
p=0.05 0.2% 0.9% 0.9% 0.2% 0.1% 0.8%
p=0.1 0.3% 1.4% 1.4% 0.3% 0.2% 1.2%
p=0.3 1.4% 0.3% 0.3% 0.1% 0.1% 0.3%
p=0.5 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

Fig. 11 Mean error probabilities for the code ensemble algor ithm. This table gives the mean probabilities of a pair of
schemes making the same decoding error. These are computed by taking the mean of the error probabilities for all the proje ctor
columns (Figure 10, second and fourth rows). Most of the valu es are less than 1%, with the maximum being 1 :4%.

(CG, MM-SW) (CG, XOR04) (CG, XOR02) (MM-SW, XOR04) (MM-SW, XOR02) (XOR04, XOR02)
p=0.05 0.01 1.03 1.03 0.02 0.02 1.06
p=0.1 0.06 1.67 1.67 0.07 0.07 1.74
p=0.3 0.25 0.52 0.51 0.29 0.28 0.56
p=0.5 0.33 0.33 0.33 0.33 0.33 0.33

Fig. 12 Mean decoding error (in pixels) for the code ensemble algorithm. A decoding error results in an incorrect depth
estimate. The magnitude of the depth error is directly propo rtional to the column error ja � bj, where a is the correct column number
and b is the decoded (incorrect) column number. This table gives t he mean column decoding errors for di�erent pairs of schemes . Most
of the errors are less than 1 pixel, with the maximum being 1 :67 pixels.
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in a decoding error for the columna is the sum of the
ath row of the matrix P (S1;S 2)

P (S1;S 2) (a) =
X

b

P (S1;S 2) (a; b) : (12)

Figure 10 (second and fourth rows) shows the plots
for P (S1;S 2) (a) with respect to a for di�erent pairs of
schemes. Note that most of the probability values are
less than 1%. Figure 11 shows the mean probability of
error for di�erent pairs of schemes, where the mean is
taken over all the projector columns. Most of the values
are less than 1%, with the maximum being 1:4%.

Mean depth error: A decoding error results in an
incorrect depth estimate. The magnitude of the depth
error is directly proportional to the column error ja �
bj, where a is the correct column number andb is the
decoded column number. The expected column error
E (S1;S 2) for a pair of schemesS1 and S2 is

E (S1;S 2) =
1

M

X

a;b

ja � bj P (S1;S 2) (a; b) ; (13)

whereM is the total number of projector columns. Fig-
ure 12 shows the mean column decoding error for di�er-
ent pairs of schemes, under di�erent noise levels. Most
of the errors are less than 1 pixel, with the maximum
being 1:67 pixels. While this analysis was done for a
projector with 1024 columns, it can be extended in a
similar way for a di�erent number of columns.

6 Experiments and Results

In our experiments, for phase-shifting, we project 18
patterns (3 frequencies, 6 shifts for each frequency). For
modulated phase-shifting [8], we project 162 patterns
(9 modulated patterns for each phase-shifting pattern).
For our ensemble codes, we project a total of 42 pat-
terns - 10 patterns for each of the 4 codes, 1 all-white
pattern and 1 all-black patterns. Images captured un-
der the all-white and all-black illumination patterns are
used to establish per-pixel intensity thresholds for bi-
narization.

Scenes with subsurface scattering and defocus:
Figure 6 shows a scene consisting of industrial parts.
Due to defocus, the high-frequency patterns in the con-
ventional Gray codes are not decoded reliably, result-
ing in a loss of depth resolution. Depth map computed
using maximum min-SW Gray codes does not su�er
from loss of depth resolution. Figure 13 and 14 shows
objects and scenes with strong subsurface scattering.

Translucent materials are often characterized by low di-
rect component. Since modulated phase shifting [8] re-
lies on explicitly separating the direct and the indirect
components, it su�ers from low signal-to-noise-ratio for
highly translucent materials. The resulting depth maps
are severely degraded due to noisy. Our code ensem-
ble does not rely on explicit direct-indirect separation,
resulting in signi�cantly better reconstructions.

Scenes with di�usion: Next, we consider scenes which
have only long-range e�ects. Figures 15 and 16 show
scenes comprising of thin, nearly transparent surfaces.
In both cases, light di�uses through the material and is
re
ected from the background/interior, creating long-
range optical interactions. Consequently, conventional
Gray codes and phase-shifting result in large errors in
the reconstructed shape. For some moderately di�cult
scenes, such as the shower curtain in Figure 15, it is
su�cient to use only one of our codes, instead of the
full ensemble.

Scenes with multiple indirect illumination ef-
fects: Next, we show scenes which have multiple indi-
rect illumination e�ects (but each scene point receives
either long or short-range e�ects). Figures 1 and 8 show
a scene consisting of a bowl on a marble slab. Depth
estimates using individual codes (Figures 8(a-d)) have
errors due to various indirect illumination e�ects. The
depth estimate using our code ensemble has signi�-
cantly fewer errors. Corresponding 3D reconstructions
are shown in Figure 1. By analyzing the errors made
by the individual codes, qualitative information about
light-transport can be inferred, as shown in Figure 8
(f). Points marked in green correspond to translucent
materials. Points marked in light-blue receive strong in-
terre
ections.

The scenes in Figures 17 and 18 have both inter-
re
ections and subsurface scattering. Modulated phase-
shifting performs poorly on translucent materials, whereas
conventional Gray codes and phase-shifting produce er-
rors due to interre
ections. In contrast, reconstruction
produced using our ensemble of codes has signi�cantly
reduced errors.

Finally, we consider scenes which have points that
receive both short and long-range e�ects. Figure 19
shows results for a cup made of styrofoam. Since styro-
foam is weakly translucent, points inside the cup receive
both subsurface scattering and strong interre
ections.
Conventional Gray codes produce large errors in the
recovered shape. The spatial frequencies of the max
min-SW Gray codes are not su�ciently high to pre-
vent errors. However, accurate shape is recovered using
the code ensemble because of high-frequency XOR-02
and XOR-04 codes. Figure 20 shows shape recovery re-
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(a) Object (b) Modulated PS (c) Code ensemble (d) Object (e) M odulated PS (f) Code ensemble

Fig. 13 Reconstructing translucent wax objects: Translucent materials (a,d) are often characterized by low direct component.
Since modulated phase shifting relies on explicitly separa ting the direct and the indirect components, it su�ers from l ow signal-to-
noise-ratio for highly translucent materials. The resulti ng depth maps are very noisy (b,e). Our code ensemble does not rely on explicit
direct-indirect separation, resulting in better quality d epth-maps (c,f).

(a) Candles and 
ower vase (b) Conventional Gray codes (c) Mo dulated phase shifting (d) Our code ensemble

Fig. 14 Candles and 
ower-vase: (a) The scene consists of a 
ower vase and some wax candles. Th e 
ower vase is made of di�use
glass, resulting in di�usion of light. The wax candles have s ubsurface scattering. Depth from phase shifting (b) has err ors on the 
ower
vase, while modulated phase shifting results in errors on th e candles (c). Depth map using our code ensemble (d) is nearly error free.
Zoom in for details.

(a) Shower curtain (b) Conventional Gray codes (c) Phase shi fting (d) The XOR-04 codes

Fig. 15 Shower-curtain: (a) Light di�uses through the curtain and is re
ected from th e background, creating long-range optical
interactions. Consequently, (b) conventional Gray codes a nd (c) phase-shifting result in large holes in the estimated shape. The correct
shape of the curtain is approximately planar, with small rip ples. (d) Reconstruction using our logical XOR-04 codes is n early error
free, with the same number of input images as the conventiona l Gray codes.

(a) Ikea lamp (b) Conventional Gray codes (c) Our code ensemb le (d) Visualization of (c)

Fig. 16 Reconstructing an Ikea lamp (color online): The lamp is made of thin translucent paper. Light di�uses ins ide the lamp,
bounces inside and comes back out. (b) Conventional Gray cod es result in errors near the periphery of the lamp (marked in r ed). (c)
Depth map using our code ensemble. (d) 3D visualization of (c ).
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(a) Fruit-basket (b) Conventional Gray (11 images)

(c) Phase shifting (d) Modulated phase shifting [8]
(18 images) (162 images)

(e) Code ensemble (42 images) (f) 3D Visualization for (e)

Fig. 17 Measuring 3D shape of a fruit-basket (color on-
line). (a) This scene has both interre
ections (corner of the fruit -
basket) and subsurface scattering on the fruits. (b-c) Conv en-
tional Gray codes and phase-shifting produce erroneous dep th-
maps to interre
ections (errors marked in red). (d) Modulat ed
phase shifting produces errors on the translucent fruits du e to
low direct component. (e) Our technique using an ensemble of
codes results in signi�cantly fewer errors. Parentheses co ntain
the number of input images.

sults for a wax bowl. Points inside the bowl receive
strong subsurface scattering. Since the interre
ections
are weak (the bowl is shallow), the code ensemble pro-
duces an accurate shape. For more results and high-
resolution images, see the project web-page [1].

Figure 21 shows a failure case - a deep container
made of highly translucent wax. Points inside the con-
tainer receive both strong interre
ections and strong
subsurface scattering. Since none of the four codes com-
pute the correct shape, the code ensemble fails to re-
construct the object.

Comparisons with Couture et al. [9]: Recently,
Couture et al. [9] proposed an approach to deal with
interre
ections by projecting a large number (200) of

(a) Bowls and milk (b) Conventional Gray (11 images)

(c) Phase-shifting (18 images) (d) Code ensemble (42 images )

3D Visualizations for (d)

Fig. 18 Depth map computation for the bowls and milk
scene (color online). (b) Conventional Gray codes and (c)
phase-shifting result in errors (marked in red) at points re ceiving
strong interre
ections. (d) Depth-map using our code ensem ble.

random high-frequency patterns on the scene. Figure 22
shows comparisons of their approach with our XOR-04
codes, which have similar spatial frequencies as used
in [9]. Since all three scenes have strong interre
ections,
the conventional Gray codes result in large errors. The
random high-frequency codes successfully remove the
errors. The XOR-04 codes produce results of the same
accuracy, while requiring an order of magnitude fewer
images (12 versus 200).

7 Error detection and correction

The patterns presented in the previous section can suc-
cessfully prevent a large fraction of errors. For highly
challenging scenes, however, some errors might still re-
main. An example is shown in Figure 23. This object
is a concave lamp made of brushed metal. This is a
challenging object due to strong, high-frequency inter-
re
ections. Figure 24 (e) shows the reconstruction re-
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(a) Styrofoam cup (b) Conventional Gray codes (c) Max min-SW Gray codes (d) Code ensemble

Fig. 19 Styrofoam cup (interre
ections+subsurface scatte ring): Styrofoam is weakly translucent. Points inside the cup rece ive
both subsurface scattering and strong interre
ections. (b ) Conventional Gray codes produce large errors in the recove red shape. (c)
The spatial frequencies of our max min-SW Gray codes are not s u�ciently high to prevent errors. (d) Accurate shape is reco vered
using our code ensemble because of high-frequency XOR-02 and XOR-04 codes.

sults using the code ensemble. While the reconstruction
is better as compared to individual codes, a signi�cant
amount of errors remain. For building a reliable shape
measurement system, it is critical to detect and correct
these residual errors.

Traditionally, error detection and correction strate-
gies from communication theory have been adopted in
the context of structured light. An example is the Ham-
ming error correcting codes used by Minouet al. [25].
These techniques treat structured light coding-decoding
as a signal transmission problem. Although good for
handling random sensor/illumination noise, these codes
can not handle the systematic errors made due to indi-
rect illumination. In this section, we present strategies
for detecting and correcting such errors.

7.1 Error detection

Our error detection algorithm is based on a simple ob-
servation. The consistency check proposed in the pre-
vious section, in addition to preventing errors, can also
be used for detecting errors. For a pixel, if none of the
four codes agree, it is marked as anerror pixel, as illus-
trated in Figure 24 (f). It is possible that one of the four
values might be the correct value. However, as there is
an error correction stage to follow, we take a conserva-
tive approach and classify such pixels as error pixels.
Since no extra patterns need to be projected, the error
detection stage does not place any overhead in terms of
acquisition time.

Park et al. [32,31] use similar consistency checks
across range scans acquired from di�erent view points.
By registering di�erent scans and comparing the val-
ues from di�erent scans, they remove spurious measure-

(a) Wax bowl (b) Code ensemble

Fig. 20 Wax bowl (interre
ections+subsurface scatter-
ing): (a) Points inside the bowl receive weak interre
ections (th e
bowl is shallow) and strong subsurface scattering. (b) Shap e com-
puted using the code ensemble algorithm.

(a) Deep wax container (b) Code ensemble

Fig. 21 Deep wax container (failure case): Points inside the
container receive both strong interre
ections and strong s ubsur-
face scattering. Since none of the four codes compute the cor rect
shape, the code ensemble fails to reconstruct the object.

ments due to specular interre
ections. In contrast, our
technique does not require moving the acquisition setup
or the object.
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Scene Conventional Gray Our XOR-04 codes Codes in [9]
(12 images) (12 images) (200 images)

`Ball' Scene

`Games' Scene

`Corner' Scene

Fig. 22 Comparisons with Couture et al. [9]: First column shows scenes with interre
ections. Second col umn shows shape
recovered with conventional Gray codes. Since all the scene s have strong interre
ections, conventional Gray codes res ult in large errors
(marked in red). The random high-frequency codes [9] succes sfully remove the errors, as shown in the third column. The XO R-04
codes produce results of the same accuracy (fourth column), while requiring an order of magnitude fewer images (12 versu s 200).

7.2 Error correction

To correct the errors, we iteratively collect additional
images while illuminating only the scene points cor-
responding to the error pixels. This technique, based
on the work of Xu et al. [38], progressively reduces
the amount of indirect illumination, resulting in reduc-
tion of the error pixels. In the subsequent iterations,
the scene points which are already decoded correctly
are not illuminated. This is achieved using illumination
masks, as shown in Figures 24 (g,h). By progressively
reducing the number of points getting illuminated (and
hence, interre
ections), the residual errors are reduced.
By acquiring images in 2 extra iterations 11, we achieve
a nearly perfect reconstruction.

Conventional Gray codes can not reconstruct a large
portion of the object. Modulated phase-shifting [8] can
not remove the high-frequency interre
ections, result-
ing in large errors. The mean absolute errors as com-

11 We projected only the logical codes in subsequent iteration s,
thus requiring 82 images in total.

pared to the ground truth for our result, conventional
Gray codes and modulated phase-shifting are 1:2mm,
29:8mm and 43:9mm respectively (height of the lamp =
250mm), respectively. The ground truth was acquired
by manually binarizing the captured images.

It is important to note that for this error correction
strategy to be e�ective, the error prevention and detec-
tion stages are critical. Since our techniques correctly
reconstruct a large fraction of the scene in the �rst it-
eration itself, we require only a small number of extra
iterations (typically 1-2) even for challenging scenes.
In comparison, the approach presented in [38] requires
a large number of iterations (10-20) and images (500-
800). This is because it uses conventional Gray codes,
which do not prevent errors in the �rst place. Secondly,
its error detection technique, based on direct-indirect
separation, is conservative. Consequently, if the direct
component is low (for example, in the presence of sub-
surface scattering), this technique may not converge.
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Algorithm 1 Structured Light Scanning in the Pres-
ence of Indirect Illumination
1. Project patterns and capture images for the 4 codes - two

Gray codes (Conventional Gray and Gray codes with max-
imum min-SW), and the two logical codes (XOR02 and
XOR04).

2. Compute depth values for the two Gray codes using conven-
tional decoding and the two logical codes using the logical
decoding (Section 4.1).

3. Apply a median �lter (e.g., 3 � 3 or 5 � 5) to the individual
depth values to prevent propagation of aliasing errors.

4. Compare the depth values. If any two codes are consistent,
return that value as the correct depth. If the two Gray codes
are consistent, return the value computed by the maximum
min-SW Gray codes (Section 5).

5. Error detection: Mark the camera pixels where no two
codes agree as error pixels (Section 7). An example is shows
in Figure 24.

6. Error correction: Mask the patterns so that only the scene
points corresponding to the error pixels are lit [38]. Repea t
steps 1 � 5 to progressively reduce the residual errors (Sec-
tion 7, Figure 24).

8 Discussion and Limitations

Frequencies of the projected patterns: Our meth-
ods make the following assumptions on indirect illumi-
nation. The high-frequency codes assume that indirect
illumination is locally smooth. The low-frequency codes
assume that the indirect illumination is local. If both
these conditions are violated simultaneously, our tech-
niques may produce incorrect results. For example, if a
scene has mirror interre
ections, or if the extent of sub-
surface scattering is signi�cantly larger than the mini-
mum stripe width of max min-SW codes, our techniques
may fail to reconstruct the scene accurately.

This limitation is because we have classi�ed indi-
rect illumination into either long or short-range. To
handle general scenes with a continuous range of in-
direct illumination e�ects, patterns with a continuous
set of frequencies can be used. For example, it is possi-
ble to construct di�erent band-pass codes by doing the
XOR operations. Instead of only XOR-02 and XOR-
04 codes, depending on the scene, XOR-08, XOR-16,
XOR-32 codes can be used. Alternatively, sinusoidal
patterns can be used as they provide more 
exibility
in controlling spatial frequencies [18]. Ultimately, there
is a trade-o� between acquisition speed and the range
of scenes that can be handled. Four sets of patterns
with extreme frequencies can be considered to be the
minimal set.

What are the good spatial frequencies to use? An-
swering this requires a more thorough analysis of the
frequencies of light transport. While such an analysis
is hard for general scenes, we believe that studying the

(a) Concave Metal Lamp

Fig. 23 Concave metal lamp: A highly challenging object due
to strong, high-frequency interre
ections.

statistics of light transport for natural scenes will pro-
vide useful insights. This forms a promising direction
of future research.

Single dominant mode of indirect illumination:
Our techniques assume a single dominant mode of indi-
rect illumination for every scene point. If a scene point
receives both strong short-range and long-range e�ects,
for example, inside of a strongly translucent and deep
bowl, none of the codes will produce the correct re-
sult. An example is shown in Figure 20. In this case,
the code ensemble algorithm and the error correction
step will not be able to retrieve the correct result. Our
techniques can not handle scenes in the presence of par-
ticipating media as volumetric scattering also results in
both short-range and long-range interactions.

Qualitative classi�cation of indirect illumination:
The qualitative classi�cation of indirect illumination
shown in Figure 8 is speci�c to the projector camera
con�guration. So far, we haven't reached a stage where
this classi�cation can provide reliable quantitative in-
formation about the scene. For example, most of the
points inside the bowl receive interre
ections. But since
this classi�cation is based on the errors that the code
ensemble algorithm makes, only a few points are clas-
si�ed as receiving interre
ections.
Conventional Gray codes as short-range codes:
In our code ensemble, we have considered conventional
Gray codes as being resistant to short-range e�ects.
This is an approximation. Due to local e�ects, the higher
frequency images in the conventional Gray codes will
get blurred, and might not be decoded correctly. How-
ever, since the high-frequency patterns correspond to
the lower signi�cance bits, the resulting errors are small
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(a) Conventional Gray (b) Max min-SW Gray 

(c) Logical XOR-4 (d) Logical XOR-02 

Consensus-checking among the code ensemble 

Any Two Codes 
Consistent 

No Two Codes 
Consistent 

(e) Depth from Ensemble 

(f) Error map (Red Pixels) (i) Depth Map 

First Iteration 

(g) Illumination Mask 

Second Iteration 

(h) Illumination Mask 

(j) Depth Map 

Error detection using consistency check Error correction

(k) Conventional Gray codes (l) Modulated phase shifting (m ) Our code ensemble (n) After error detection
(11 images) (162 images) (42 images) and correction (82 imag es)

Fig. 24 Error Detection and Correction (color online): (a) We use the same consistency check as in the code ensemble algorithm
for detecting errors. (a-d) Four depth maps using the indivi dual codes. (e) Depth using the code ensemble algorithm has a signi�cant
amount of residual errors. (f) For a pixel, if no two codes agr ee on a depth value, it is marked as an error pixel (red). Since no extra
patterns are projected, the error detection stage places no overhead in terms of acquisition time. In subsequent iterat ions, scene points
that are already decoded correctly are not illuminated. Thi s is achieved using an illumination masks (g,h). By progress ively reducing
the number of points getting illuminated (and hence, interr e
ections), the residual errors are reduced [38] (i,j). Thi s object is very
hard to reconstruct with existing schemes (k,l). Using our t echniques, we achieve a high quality reconstruction (n). Th e mean errors
for our result (n), conventional Gray codes (k) and modulate d PS (l) are 1 :2mm , 29:8mm and 43:9mm respectively (height of lamp
= 250mm). The parentheses contain number of input images.

(e.g., < 4 pixels if the last two patterns are lost). Hence,
in the consistency check step, the result of conventional

Gray codes will still agree with that of the max min-
SW Gray codes. In this case, the value computed by the
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minimum min-SW codes is returned. A future research
direction is to design more codes with large minimum
stripe widths.

Acquisition speed: Our techniques are currently lim-
ited to binary codes (monochrome and color) and thus
require capturing several tens of images, making them
unsuitable for dynamic scenes. The number of input
images can be decreased by having more than two in-
tensity levels in the projected images. An interesting
direction of future work is to extend our techniques to
N -ary (N > 2) codes and continuous schemes, such
as phase shifting [18], which require fewer images as
compared to discrete binary patterns. The number of
images can also be reduced using a priori knowledge
about the scene. For example, if the scene is known
to have only interre
ections, then it is su�cient to use
only the logical codes, e.g., XOR-04. If, however, no a
priori knowledge about the scene is available, then the
code ensemble should be used.
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